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An Extension of Bielecki’s Method of Proving of Global Existence
and Uniqueness Results for Functional Equations

Pewne uogélnienie metody Bieleckiego dowodzenia twierdzen o globalnym istnieniu
i jednoznacznofci rozwigzan réwnan funkcyjnych

Hexotopnie o6oweHite MeTona Beneukoro ycTaHaBIMBaHKA TeopeM I71062nHOIO CylLeCTBOBaILIS
H OHOIHAYHOCTH pelleHnA GYHKUHONANLHbIX ypaBHeHHR

Since 1956 when A. Bielecki published his note Une remarque sur la méthode de Ba-
nach-Cacciopoli-Tikhonov dans la théorie des equationes differentielles ordinaires [1] the
method of weighted norm has been used very frequently to establish global existence and
uniqueness results for wide classes of differential, differential-delay, differential-integral,
integral, integral-functional and other functional equations. There is a huge number of
papers which make use of Bielecki’s method. Among them is a number of papcrs due to
C. Corduneanu and his students which may be found in the review paper of Cordunea-
nu [3]. Bielecki’s students. J. Btaz, T. Dtotko and K. Zima uscd his method extensi-
vely in the early sixties to establish existence and uniqueness results for differential equa-
tions with deviated arguments. There are many others, including the author of the present
paper who have employed Bielecki’s method. It is not the aim of the present paper to
give a review of the results obtained by the method mentioned above but to present a
general result obtained in the spirit of Bielecki’s method. This will be an application of
an abstract result formulated in [S].

1. Let C{, B) denote the space of continuous functions defined on the interval / = fo,
a), 0 < a < + oo, with values in a Banach space B; || - || will denote the norm in B. Let an
operator F : C(I, B) = C(l, B) be given. Consider the equation
(1) x(t) = (Fx) (), tel

We are interested in establishing of the existence and uniqueness of solution of the equa-
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tion (1). In order to do this take some xo € C(/, B) anduo, € C{I, R,),R . = [0, + ),
and define

V(o) = fu: u€C( R.),0<u(t) < cuo(t),c >0},
D(xo, o) = $x : x €C(L B), Ix(t) — xo(1)ll < cuo(t), ¢ > O},
with the usual partial order in V (i),
ieuSvy=u(t)<v(), tel
We will use the following:

Assumption A, . Assume that
(i) there is a nondecreasing operator 2 : V(o) = V() such that

NEY@O—F)ON<Q(IIx—=y ) (@), t€l,
for any x, y € D(xo, o).
(ii) there is a function ¢ : R, = R, which is upper semicontinuous from the right, hav-
ing the properties:
®(0) =0, ¢(s)<s, s>0, for which
QuoX) < d(s)uo(2), tEL s> 0,
(iii) there is p > 0 such that
hxo (1) — (FxoXt) Il : = q(r) < puo(2), tE€1.
Now we are in position to formulate.
Theorem 1. If Assumption A, is fulfilled then there exists in D(xo. 4o) a unique solu-
tion of equation (1), say x*. This solution is a limit of the sequence of iterations of x,

bv F,i.e. F"X, - x* and the convergence is uniform in any compact subset of I.

Proof. First we define in D(xo, 4o) a metric by putting

hx(@) =yl
d(x,y)= T

=t Rl s fesuxo-yoi<ane. c> o}

where

lo = {t: IEI, “o(t)$0; x-}'eD(xm uo)} .
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It is clear that d(x, y) is finite and it satisfies the metric axioms, so (D(xq, up), d)isa
metric space. It is also easy to prove that this is a complete metric space. Next we observe
that F(D(xo, Uo)) C D(xq, ug). Indeed, for any x € D(x, uy) we get

XY () — xo (I < NEFX) () =@ XN + 1(Fxo0)(2) — Xo (DIl < Qllx —Xoli Y1) +4(8) <
< Q(cup)(r) + puo(t) < 9(c)ua (1) + puo(r) = (9(c) + p) 1 (¢)

for some ¢ > 0, this is proving our assertion.
Now we show that F is a nonlinear contraction in D(x,, u,). In fact for any x, y €
€ D(xgq, uo) we have

N (Ex) ()= FEP) O NS Q(x =y 1) ()< Q@(x, y)uo) (1) < o(d(x, y))uo(t),
tel,

but this means that

d(Fx, Fy)< ¢(d(x, y)).
Now the assertion of Theorem 1 is implied by the Boyd-Wong's result of [2].

Remark 1. Observe that in our considerations we did not use the fact that / is an in-
terval in R ,. One can take for I any topological space T.

Remark 2. The theory developed above works fairl:- well if we replace the Banach
space B by a locally convex topological space with the family of seminorms |[l-|i, ,
7 € ©. In this case C(, R,) should be replaced by C(/, R &) and ug(t) by uo(t, 1-) TEOQ.
For abstract considerations consult [S].

Note that we have not assumed that F is defined on the whole space C(/, B), some-
times it happens that F is defined only on C(x,, u4). In applications x, is usually taken
as xo(t)=0.

2. Let us now discuss brifly the Assumption 4. First of all we obscrve that the con-
dition (ii) of this assumption holds if the operator 2 has the properties:

(ii') Q(suo) < sQ(uo), s > 0, (uo) < auy for some 0<a< 1,

In this case (ii) holds with ¢(s) = as. Usually there is a problem how to find the func-
tion ug € C(I, R,) for which the conditions (ii) and (iii) of Assumption 4, hold. To solve
this problem we introduce.

Assumption 4, . Assume that

(i) there exists a nondecreasing operator  : C(/, R,) = C(/, R,) such that || (Fx) (1) —
—E)ON<Q(llx -y ) (@) tEL foranyx, y €C(L B),

(i) Qsu) <sQu),s > 0,u € C(I, R,),
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(iii) there exists 1o € C(Z, R+) and A > 1 such that

(2 up(t) 2 AQuo) (1) +q (1), tEL

It is quite clear that Assumption 4, implies the Assumption A, with ¢(s) = as, a =
=1/\,p=1.

As a collorary of Theorem 1 we get.

Theorem 2. If Assumption A; holds then there exists in D(xo, uo) a unique solution
of equation (1) and it is the limit of the iterations of xo by F.

Now it is natural to ask when does there exists ug € C(Z, R,) and A > 1 for which (2)
hrolds. The answer to this question gives us the following:

Lemma 1. If the condition (ii) of Assumption A; holds and there exists 0 < v < |
such that

(3) Q@) (1) <vq(t), te€l,
then (2) holds for
t
UO(t) = ]_q—(:y N IGI,

and \> | such that \v < 1.
Proof. For the A mentioned we get

q(r) = udt)(1 — W) = uo (£) — Wuo(f) = uo(r) —

Q
<o)~ AT A0 < (1)~ Ao XD)

 vq(r) <
e vq(r)

what gives (2).

Remark 3. We note that D(x, o) =D(xo,Vo) if ug = cvy for some ¢ > 0, so in the
case of Lemma | we get D(xg, t4g) = D(xq, q).

Note the following obvious observation: if for some uo € C(/, R,) the inequality

uo(t) > X(Quo) (1) + q (1), t€l,

holds for some £, ¢, Asuch that u > Qu, ¢ > q, X3 A > 1 then (2) holds for this ug.
If we assume that q is bounded, say q(£) < Q, t €/, and

su? Q) =v<t,
te
then we can take for ug
Q
uo(r)= i v, t€l.

-\

for which (2) holds.
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For the case when  is a linear operator we get.

Lemma 2. If the series

(@) T N@qXr), t€El,
ns=0

converges to the continuous function ug € C(I, R,) then the inequality (2) holds; here
we mean (S°q) (1) = q(1), (™' @) (1) = Q") (t),n =0, 1,... ,tEL

It is easy to see that the series (4) converges to a continuous function if condition (3)
holds and 1 <A < 1/v. Indeed in this case we have

@ O<V"q(@),  tE€Ln=0,1,...,.

3. Let us now ask the question what can be said about the case A = 1 in Assumption
A, . Unfortunately in this case the Bielecki’s method will not work because what we will
only be able to show is that F is non-expanding in the metric space D(xq, 4o). However
the assertion of Theorem 2 will hold true but this is due to the comparison method (see
(4] - [7]).

Let us quote briefly the result we mean. Take

Assumption A ;. Assume that Assumption A holds with the following changes:

a) the space C(/, R,) is replaced by the space of upper semicontinuous functions Co(/,
R,), QUEC(I, R,)ifu€ C(I,R,),

b) condition (iii) holds for A = 1 and uy € C(J, R,),

c) the operator §2 is continuous in the following sense: upn(t) ¥ u(t) € Co (I, R,) im-
plies (Qun) (2) © (R2u) (¢), in pointwise sense,

d)u(t) =0, €1, is the only upper semicontinuous solution of the equation

u(t) = () (¢), tel
satisfying the condition O < u(#) < uy (), t € I. Now we can formulate
Theorem 3. If Assumption A3 holds then there exists in D(xo, ug) a unique solution
of equation (1) and it is the limit of the iterates of xo by F.

For the proof of this theorem see [6].

4. Let us now discuss some applications of the general result.
a) Consider the functional equation

(1a) x(r)=F(t. x (B())), tel,
where FE€ C(I X B, B), B € (1, ). Assume that there exists | € C({, R,) such that

(ia) HF@x)—-F@y)I<I@)lix-yI, t€l, x,y€B.
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Let (1) 2 Il F(t, xo (B(7))) — xo () |l for some xo € C({, B). Now (Qu) (¢) =I(¢) *+ u(B())
and the inequality (2) has the form

(2a) uo ()= N(t)uo (B(1)) +q(1), tE]L
A continuous solution to this inequality exists if the series

(42) Z M) q B ),

converges, where In.; (f) = 1(t)ln (B(2)), lo(t) = 1,8™" (¢) = BB" (1)), 8° (¢) = ¢. For some
X > 1 this series certainly converges to a continuous function if the inequality

(32) 1) qB(1) < aq(®), tel,

holds for some a < 1.
Take l(r)=130,q(t) = Q1P exp (01),p 2 0,Q > 0, 0 € R and suppose that
. B ~ t
0< inf —— =B<ﬂ= sup ﬁ()
rer ! - tel ¢t
Now we see that (3a) holds if: /8P < 1,and B < 1, for 0 > 0 or IB? <1 and§ > 1 for
0 < 0. These are useful sufficient conditions for the existence and uniqueness of solution
of equation (1a) in the space D(xo, q). In the same way can consider the equation

<+ o0,

(1) x(=F@,x @ (1), ....x0())), €1

if we assume the continuity of given functions 4, F and the Lipschitz condition of the
form

v
NF@t %y, o Xp) = F@&, y1, o I < '?:’(r) lx;—yill, tE€L x;, y;EB.
Now

@ux) = £ kiloyu Gi()

and (3a) should be replaced by the condition

(32" £ ki(n) qBu®) < oq(f), 1€,
i=1

forsome 0 K @< 1 and

q()Z W F(t. x0 By (1)), . X0 (Br(t)) —Xxo (D)1 .
If q(f)= 01P, p > 0, ki(t) < kj < + o=, then (3a’) holds if

T k8P <1
i=1
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for
- Bi(t)

tel t

<+

This is an effective sufficient condition for the existence and uniqueness of solution of
equation (1a") in the space D(x,, q).
b) Let us consider now the integral equation

(1b) x(t) = f"’f(r. 5, x(s)) ds + h(t), 1EL,

where the functions f € C(I* X B, B), h € C(l, B), and « € C(I, I) are given. Assume
there is L € C(12, R,) such that

(ib) Nr@e, s, x)—f@t, s, ) ISLEs)x -y, tELx,y€EB.

Now the inequalities (2) and (3) take the form

(2b) uo (0> S OL(t, s)uo(s)ds + q(1), A> 1, tEL
[}

(3b) of“wz,(:, $)q(s)ds <aq(t), t€1, a<1,

and

2(©> I xo(0) — of"“’f(r. 5 Xo(s)) ds — h(r) I

In the general case it is not easy to find a continuous function uq for which (2b) holds.
Clearly we can get for u, the continuous sum of the series (4) with g defined by left
hand side of (3b) but we need investigate the convergence of this series. There is no pro-
blem if L(t, s) = L(s), a(t) < ¢t and q is taken as a nondecreasing function. In this case it
easy to check that we can take

uo(t) = q(t) exp (Xg"L(s) ds),A\>1, t€l .

Moreover if we know that
t
q(r)=Qexp (Paf L(s)ds) 020, p>1,

then (3b) holds for a = 1/p < 1 and we can take

uo(t) = exp (péf' L(s)ds), t€l,

for some A > | such that Aa< 1.

Now the existence and uniqueness result for equation (1b) hold in the space D(xo, 1)
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with uo defined above. This is just the case that appeared in Bielecki’s note of 1956.
There is no problem also if we assume L (2, s) = K(r) L(s) and a(r) < 1. In this case the
explicite formula for u, can be written down easily.

¢) Finally let us consider the integral-functional equation of the form

(10) x=16.f g5, x@) ds, xGON, 1€,
where fECUXB?, B), g€ C(’XB, B), a,pECU,I).
Assume

W, x,y)-fe.x, I<k, (@) llx-xN+IO Iy -y,
leg(t.s,x)—gt,s, ) I<k(t,s)lIx-yll,

for some continuous functions k,, ! € C(I, R,), k; € C(I%, R,).
Take

70> 1 ftp of"""s(r. 5, %(5) ds, %0 (B@)) — Xo(D) I
for some xo € C(I, B)

Now the operator 2 related to the equation (1c) has the form

(QuXt) = ky (1) f"’kz(r. $)u(s) ds + 1)), 1€L

According to the general theory on the existence and uniqueness of solution of equation
(1c) it is enough to find uy € C(I, R,) for which (2) holds. In order to do this it is enough
to find a function ¢ € C(I, R,), q(t) =2 q (1), t €1, for which (3) holds. In the general
case it is not easy to find such g but we are to do this under some additional assumptions.
We assume that k, is bounded, k; does not depend on ¢, a(t) <1, B(1)<t,tE€1 qis
nondecreasing and the inequality <

3¢) I()qg (1) < aq(1), t€],0<a<l,

holds. Under this assumption we can conclude that (3) holds for the operator Q defined
above and for the function

q(t) =T (1) exp (ug' ky(s)ds).t €1,

for such u that the inequality ¥ = K/u + @ < 1 is fulfilled; here k, (1) < K, t €1 Indeed,
we get
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Qa0 =k BT QYexp ] ka()dnyds +
(9] — t ;
+10TEO) exp (e <K (T O f ka@) explu f Ka(r)dnrds +
° .

K
+ aﬁ(r)expg'ukz(s)ds) S (o + AT el g’kz(r)dr) =1q(t).

Now we see that the condition (3c) is crucial for the existence and uniqueness of solutions
of equation (Ic) ot Volterra type in the space D(xq, q). Note that all considerations given
above hold trueinthe case I = [0,a], 0 <a < + =, In this case we get D(xq, q) = D(x0. q).

The same considerations can be carried out for more general integral-functional equa-
tions of the form

x@ =10, B 5, 5605, . T 5, X6 Xy 0), . X BaO. L.

as well as for functional equations of the form

x(1) =F(t, xp, (£, Xp,(t)s -+ X8xt)s t €I,
where F:IX [C(l,,B)]' —B, fy:I—1, I, =[—1,0], >0, x, =x(t +5), sE€ I,.
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STRESZCZENIE

W pracy dyskutowany jest problem istnienia rozwigzafh abstrakcyjnego réwnania fu’nkcyjncgo
x(t) = (Fx) (¢) w postaci C(/, B). Mctoda Bieleckiego uiyta jest do otrzymania twicrdzen egzysten-
Galnych.
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PE3IOME

B pa6oTe paccMaTpHBaeTca BOMPOC CYUIECTBOBaHHA pelueHiA aGCTPaKTHOrO, GYHKUHOHAUIBHOTO
ypaBHcHus X!) = (Fx) (t) B npoctpaictBe C(J, B). Hcnonsaosan meron A. Beneuxoro mis
YCTaHOBNIEHUA TEOPEM O CYLLECTBOBAHHH.



