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C. Dellacherie and P.-A. Mayer [2; Chap. IV, 69, p. 127] defined the predictable
stopping times in a way independent of probability. Using this definition and proceeding
alang the same main lines as in [2; Chap. IV, 88C]. [3; p. XIII-XV] or in [4; Chap. II},
it is possible to eliminate all arguments based on probability from the proof of the stan-
dard criterion for predictability of cadlag processes. The purpose of the present paper is
to explain this possibility.

1. Background.

1.1 Predictable sets and processes. Let (S2, F) be a measurable space with a filtration
F >0 and letF o. be a distinguished sub-o-field of the o-field F. According to [2;
IV, 67], the corresponding o-field P of predictable subsets of [0, =) X §2 is generated by
the family of sets

Po={lt,<)XB:1>0,B€ F,_].

where

Fio=\/ & fort>0.

$<?

Let £ be a separable metric space and B (E) the o-field of all its Borel subsets. The separ-
ability implies that B(£?) is equal to the product o-field B (E) X3 (E). An E-valued
process X = (X¢)r>0 on £ is simply a mapping



S0 J. Kisynski

X:[0,%] X 23 (1, w) — X(w)EE.

Such a mapping is called:

1) a predictable process iff it is measurable from ([0, *) X Q,P) to (E, B (E)),

2) an (Fy)-adapted process iff for each ¢ > 0 the mapping X; : 23w > X(w) EEis
measurable from (2,0 ;) to (£, B (E)), and

3) a cadlag. process iff for each w € Q the trajectory [0, =) 3 t = Xp(w) € E is
right continuous on [0, =) and has left-side limits everywhere on (0, ). -

" 1.2. Stopping times and the o-fields . 7. A [0, o]-valued function r on Q is called
a stopping time of the filtration (.F¢);»¢ iff 7<t € JF; for each ¢ > 0 or, which is
the same, iff the stochastic interval

fr,ool = {(t, w): wGQ,r(w)<t<°°J.

is (_¢)-adapted. According to [2; IV, 54.2], for any stopping time 7, the o-field - %.
of subsets of §2 is generated by the family of all sets of the form

t<t NB ,wheret>0andBEJ ..

It is cvident that if 7 is identically equal to a finite constant ¢, then J=;. coincides with
the «*7. defined in 1.1.

1.2.1. If 7 is a stopping time then § 7 <°°j =Q\ N {n < 13 € %. and the
mapping e %

Gr: {r<e} 3w -+ (1) wED<)XQ

is measurable from ({T < 00}, F7.) to ([0. ) X 2,57). Indeed, if BE F. then G
([t.=)X B)= {r <=} N 1< 7! NB, so that G ™' (P)E€ . for each PE .

1.2.2. As a consequence, if X is a predictable £-valued process and  a stopping time
then the mapping

X,: {r<=)3w-Xyu) (WEE

is measutable from ( {1 < °'~'{1 , #7.) to (E,B(E)). In particular, each predictable process
is ( Fy)-adapted.

1.3. Predictable times and their restrictions. According to the definition introduced in
[2. 1V, 69]. a [0, =] -valued function 7 on £ is called a predictable time iff [ 7, | € P.
It follows from 1.2.2 that cach predictable time is a stopping time.

1.3.1.If .Fo. = Jf, and the measurable space (2, 5) carries a probability measure P,
such that all P-negligible subsets of §2 belong to J). then a stopping time is predictable
if and only if it is foretellable. see [2; 1V, 71 and 77] or [4;11, T 13]. This equivalence
makes predictable times important for theory of stochastic processes.
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1.32. If 7 is a predictable time, then [ 7 | eP. Indeed, [ r ] =[r,o[\]r,o°],
where [ 7, o [ € J by definition of the predictable time, and ] 7, [ = W lr+in,
o [ € since the right shifts of predictable sets are predictable.

The restriction 74 of a stopping time 7 to a set A C Q is defined by

2 ”'r(w), ifw€EA,

1' =
A= feead.

1.3.3. Lemma, Let 7 be a predictable time and A a subset of Q. Then 14 is a predict-
able time if any only if {r <°°:} NAETS..

Proof. The Lemma is equivalent to [2; IV, 73(c)]. the proof of which is based on [2;
IV, 67(b)] . Arguing as in the latter,

{r<°°} N =G ([r4.>0).

so that, by 1.2.1, if 74 is a predictable time, then {‘r <=} N4 € F.. The proof of
the opposite implication, given below, is somewhat more direct then that in [2; IV,
73(c)]. The family @ of all the sets of the form [ 74, o [, where A C Q, is a o-ticld
with the unity [ 7, [, and

R,:2%3A4-[r4,~[ €O,

is an epimorphism of the o-field 22 onto the o-field .. We have to prove that R .(4) =
=R,( 47 <=} NA)EP whenever {r <=} N A€ F.. Thiswill follow, when we
show that R,(A)E.? whenever A € F,. Since R, is a morphism, it is sufficient to prove
that R, (4) €EJ for each member A of a family generating the o-ficld. /.. So, accord-
ing to 1.1 and 1.2 it remains to verify that R .( {t < r} N B)=([t, )X B)N [,
oo [ € P whenever BE F5. .

2. Criterion for predictability. Theorem of P. -A. Meyer [6; VII, T49] is a prototype
of the criterion for predictability of cadlag processes which may be found in [1; 1V, T31],
[2; 1V, 88C], [3; p. XIV] and [4; 11, 20] . A probability free formulation of this criterion
reads as follows. 4

2.1. Assumption. Let (2, J‘) be a measurable space with a filtration (\7:;),;.0 and
with distinguished sub-o-field «#. of the. o-field Fy. Let E be a separable metric space
and let X be an (J)-adapted cadlag process on § with values in E.

2.2. Theorem. Under Assumptions 2.1, the process X is predictable if and only if the
two conditions are satisfied simultaneously:

(a) the set {(r, W)E (0,2 X Q: Xp(w)#X ,(w)} is contained in a countuble sum
of graphs of predictable times and . s

(b) for each predictable time 1, the mapping X . is measurable from ( {r < °°_} r)
to (E, (E)).

2.3. Formulation involving probability. In addition to Assumptions 2.1 suppose that
the measurable space (£2,5) carries a probability measure P, such that Fo. contains all
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P-negligible subsets of §2. Then, as it follows at once from [2; IV, 88B] or from the Co-
rollary in our Section 2.4, condition (a) is equivalent to the following condition:

)P {1 < and X,. # X,] = 0 for each totally inaccessible stopping time 7. Re-
placing (a) with (a") in Theorem 2.2, we obtain the criterion for predictability in its ,,clas-
sical* version.

2.4. Necessity of condition (a). We shall sketch two proofs. The first proof starts with
remark that, by an argument as in [6; IV, 14(b)] , for each € > 0 and each 1,

Tn = n-th debut of {(t, w): dist (X¢.(w), Xp(w))> e_}

is a wide sense stopping time, so that
Irh=[€P
(because the process 1l ],; , o[ is left-continuous and (&5 )-adapted). From the equality
751 = { ¢ @) dist (Xr.(0). Xe(@)> e} (A1 .. U [r5, 1 U Ir, D),

it follows inductively that, if X is predictable, then

[ril€2.

Consequently [7§, o[ = [7§] U J7§, <[ €7, which means that the 7§ are predictable
times. Now, the proof follows from the obvious inclusion

l @) Xe@ # X)) €9, Trhm).

Another proof may be obtained as a Corollary to the following.
Lemma. Under Assumption 2.1, for each non-negative Borel function fon E?* vanish-
ing on the diagonal D of E* the equalities

B=0,F= I [fX.,X)ift>0,
0<s<1?

define a |0, =] -valued optional process which is predictable if X is predictable.

Proof of the optional part of the Lemma is the same as in [S;4.5]. Proof of the pre-
dictable part is similar. Suppose that X is predictable. Then, for each natural n and each
Borel function f on £? , the process

n
B = 8 1y Her, 120

is predictable. If f is continuous and such that

dist(x,y)<€e = f(x,y)=0
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for some € > 0, then, similarly to [S; 4.3],
lim P/"(w) =P{(w)
n ==
for each (¢, w) € [0, =) X £2, so that Plis predictable in this case. Finally, by a monotone

class argument as in [5; 4.5 and 4.8], Pis predictable for each Borel f = 0 vanishing
onD.

Corollary. Under Assumptions 2.1, let B,, B,, ... be a sequence of disjoint Borel sub-
sets of E* such that ) Bm = E* \ D and that inf {dist (x, y): (x, ) € Bm] > 0 for each
m. Write

71 =n—th debut of §(t, w): (Xr- (@), Xe(w)) EBm} .
Then the nT are stopping times with disjoint graphs such that
U I =4 o) Xi (@) # Xe@)] -
Moreover, if the process X is predictable, the the Ty are predictable times.
Proof. We have [#f, oof = §(t, ) : H{(W)>n} with f=lg,.

2.5. The necessity of condition (b) in Theorem 2.2 follows at once from 1.2.2.
2.6. Sufficiency of (a) and (b). In order to prove the sufficiency of (a) and (b) in
Theorem 2.2 we shall use arguments from [2; IV, 88C] with some minor simplifica-

tions. Suppose that Assumptions 2.1 and conditions (a) and (b) are satisfied. Define the
process X~ by

X;=Xo, X7 =X, for t>0.

The processes X ”is (}:' )-adapted and left-continuous. The latter implies that X, (w) =
= hm X (w) for each (t, w) € [0, ) X 2, where X" =X 11/n- For each B € B(E), we

have Bk = (Xj /)" (B) € Fipjy_X")'(B) = U (kfm, )X Br—[(c + 1)/n, o) %
X Bx)€ P. So, the process X" are predictable, and so is X .

According to the condition (a), there is a sequence 7,, 73, ... of predictable times such
that

§tw): (@ # Xk} € U I

By 1.3.2, the graphs [7, }, [72], ... are predictable subsets of {0, ) X £ which implies
that C = [0,%) X Q\J [7, ] is also predictable.
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We have to prove that X~ '(B8) € P whenever B €S (E). To this end, observe first of
all that X = X~ on C, so that

CNX'B)=CNX)'BEP
whenever B E,_B (E). Since

x'@=Cnx'@v l"J (1N X7'@)),

it remains to ascertain that [r] N X (B €B for each predictable time 7 and each B €
€.(E). The latter is a consequence of condition (b), according to which 4 = (X;)"(B) €
€ 7. whenever 7 is a predictable time and B Gl’i(E). Under the same conditions, by
1.3.3, 14 is a predictable time and so, by 1.3.2, [rf] N X 'B)=[r4 ] €F
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STRESZCZENIE
Praca zawiera niezaleiny od miary probabilistycznej dowod twierdzenia Dellacherie i Meyera [2],

charakteryzujacego procesy stochastyczne przewidywalne w klase proceséw stochastycznych, kté-
rych wszystkie trajektorie s3 prawostronnie ciagte i majg tylko skokowe niedagtosci.

PE3IOME

Pa6oTa conepXHT He3IBUCHMBY OT BOPOSTHOCTHOR MEph! IOKa3ATENbCTBO TeopeMnt Jlenratuepu
u Mafiepa [2]) xapakTepuayouucfi NpeacKadyeMbic CnydafiHble NPOUECChl B KJ1aCCE BCeX pedysisipHBIX
ClyvafHbiX NPOLECCOB.



