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0. TAMMI

On Maximizing Certain Fourth-Order Functionals of Bounded Univalent Functions

O maksymalizacji pewnych funkcjonatdw czwartego rzedu
w klasie funkcji ograniczonych i jednolistnych

OB OTHICKAHHH TAKCHMHMMA HEKOTOPLIX (PYHKUHOHANIOR YETBEPTOrO NOPAAKA
B KJTAcce OrpIHHYEHHLIX ONHOMHCTHBIX GYHKUHA

1. Introduction. The class S (b) consistsof bounded univalent functions f defined in
the unit disc U: | 21 <1 and normalized so that

f)=b+a 2 +.), If@I<1,0<b<I.

The information concerning the coefficient body (a1, ..., ap) applies also for functionals
of the coefficients involved. Thus, for sufficiently slmplc functionals extremal problems
can be expected to be solvable.

Incomplete information is provided by Grunsky type inequalities, onc form of which
is the Power inequality (cf. e g. [7]). By aid of these some of the lower coefficients and
functionals determined by them are maximized for certain values of b. Actually, only the
first nontrivial coefficient body (a3, a3) of § (b) is completely governed for each value
of b [7]. This allows maximizing Re (@3 + Aa;) [2], [8] and Re (a3 + Aa3) [4] in S (b)
for all values of the complex parameter A. In the real subclass Sg (b) of S (b) the algebraic
part of the second coefficient body (42, 3. a4) can be determined by aid of an extended
inequality proved by Jokinen [1]. This recent development opens up possibilities in
studying fourth order functionals in Sg (). Until now all results for them have concerned
homogeneous functionals and the information available has been based on the Power
inequality [3].

In this paper some homogeneous and some linear functionals of fourth order will be
considered in Sg (b). The homogeneous combinations of the a,-coefficients can be traced
back toa classic question concerning the b, -coefficients of the logarithmic derivative of f,
introducing the expansion
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z =l+b.z+bgz’+...,

The a,- and b, coefficient are connected:

nay .4 = E‘.a,,-.,., b, (@=1;n=1,2.).

By using Lowner’s functions f (2, u) obtained from

df 1+xf
u—=f
du 1—«f

, f@ )=z [ uESM),

generated by a step-function k (¥) =€~ 18 W) b Qu<1,one can construct examples of
the a,- and bycoefficients. This allows estimating max | b, | trom below. In [5] the
estimation is performed for the first indexes mainly for the purpose of showing that the
b, <oefficients exceed the Koebe-function limit 2.

For the first b, -coefficients we have

_bl =4a,
\

by = a3 — 5ai,

2
3

-

1
S4a3 .

bg==a.—a;a, + 3

The coefficient b, is maximized with a,. Similarly, the relatively simple technique of
maximizing a3 in S (b) can be applied to by too [6]. The problem for higher indexes is
open. For b, in Sg (b) the maximum will be determincd in this paper.

In [9] Zyskowska introduces a linear functional a3, + pda, ., and proves that in
Sg (b), for u > 0 and fixed, there exists an interval (0, b,] where the functional is
maximized by the left radial-slit-mapping. In [8] a complete solution in the case ay +
+ \a, is presented (if u = A~ ! the result applies to the Zyskowska-functional). Let a : §
be the name of a slit-domain where a is the amount of starting points and § the amount
of end-points of the slits. Then the list of extremal domains is

"1:2 for |A|<4b,
0<b<e!:
RER! for |A|24b;
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2:2 for [N|<4b (1 +logb),
e 'S b <1 d1:2 for 4b(1 +1logd)<|A|<4b,
1:1 for 4b<|A|.

Here 1: 1 means the left radial-slit-mapping.

In this paper we introduce the functional a4 + pa, and maximize it in Sg (b) for an
extensive set of values of the u-parameter. If appears that the Zyskowska-type extremal
occurs even for some negative u-parameters in the case where both coefficients are even.

2. Preliminaries. Let us collect here results concerning the two inequalities which
determine the algebraic part of the coeffictent body (a2, a3, a4) in Sg (b). The first one
follows from the Power inequality, mentioned above (7] :

~ 13 b 2 3
aq — 20303 + -l—z'ag + 50; -3 (= 5)+2\ (g, — zag + bay) +
\ +2\ [a;, —2(1 - b)) <0, )
LER.
e

The equality function of this is defined by the generating fugction cos 8 for: which

[1]. (8]

cosd = (0))
_%+ ‘;3" u Y a<u<l;

1 _. 4 43 1,8

3= 30V MG + S0, 3)

The corresponding extremal function f has the first coefficients:

o 2 2t _ =11
! 01=2(0‘—b)—'3(l"‘0)+ 351 3k)(| a /): : (4)
ay il %_ +b — _%f!_az & 3(l—”‘)(l—°m)+ 5(1—3)\)’(1-0“).

For f there hold the conditions obtained by integrating Lowner’s equation for Sg (b) in
two steps:

ro“({,’,” — )+ BA— 1+ 0V NI — f;V3) =gV 7 Mg g1 ;13

I bYI(gV3 — [-V3) = g3 (V3 — {513y, )
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The corresponding extremal domains are of the type 1:3and 3:3.
The inequality (1) is sharp on a defined part of the boundary of the coefficient body
when optimized by choosing A so that the left side is maximized. This yields the estimate

L ]
2 1 13 (as - %a} + bay)’
4, <5 (1=b%)—ba} + 2305 — = a} — 6
+ <3 ( )~ baz + 20y — 5@ 20-b)-a, (6)

which is obtained for

ﬂg"%ﬂ‘; +bdz_
2(1-b)-a;

)

The right side of (6) can further be maximized in @3. This yields for a4 an estimate in
a; and b:

a4<—l7—2a%+%(4—9b)a§+-§-(l—b’)=0., laz1<2(1—b). ®)

This inequality is sharp on the parabola

I°tay=— 5 & +Q2~3b)a;. ©)

By substituting (9) in (7) we see that on 1° A = g;. The maximum of a4 thus gained is
sharp so far as 1° remains in a defined subdomain I of the cocfficient region (a3, a3)
(cf. [8]). The extremal domains defined by (2)—(3) are of the type 1:3 or 3:3.

The second inequality is the one proved by Jokinen in [1]. It extends the Power
inequality and reads

‘a4 — 2030y +a) —b%a; + 2\ (a3 —a} +1-b)< %(l+)‘)’,
(10)
—1<A<0.
For the extremal generating function there holds
—l,b<u<o. o
cosd = 1, 0, <u<o, , (1)
1, 132 4 ;
P 3 + 6 u y 02 Sus<l;
o= Pep),
! (12)
-b<o,<oa<l.
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The initial coefficients of the corresponding function f are in this case

2 8
g'a; =— 3 =2b+d0,— 40 + i,

1 7 32 16 1
Lal=a§+ §‘+b2—"’9—~0?2.+ TO;

Lowner’s equation, when integrated in three steps for (11), yields for the extremal f :

o} (37 —[537) = 3o (1 — 5y =
= :}l‘} - :‘:l: + (l —4 a%"l)(:llz it z'ul).
N (14)

3 -v2
o2 Ualfz + fo.m)= ol? al.:) + fa,u )

L b"l: U,,,.;_!—I;E’_; o:/l (f‘:/‘l_ j‘;llli).

The extremal domains are of the type 2:3.
The optimized form of (10) reads

. 4
e, < a} + (36 =2)a; +2(a + X5~ 3 X0 (15)

oblained by chousing

(0K xo=A+1=+Va, —aj+1-bd' <L
(16)
di b -1 ay<alt bl
Again, when muximized in ay this gives the maximum of the right side in @, and b:

al+ (36 =2)a, + %("2 +1)’=G; for a; +130,

(17)

ag

a§+(3b’—2)a,=G; for a,+l<0.

The nuximizing choice of a3 is such that xo =az + 1 or xo = 0 which, in view of (16)
implies A =a; or A =— 1. From (10) we see that we have to restrict the use of (17) for
the valuesa; < 0. This guarantecs the validity of (16).

The upper limit Gy is sharp on
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2°:ay=2af +24y 1 b? (18)
and G gives the sharp upper bound on
Pigy=ai—1+ b2, (19)

So far as the parabolic arc 2° lies in the subdomain II (cf. [8]) of (a3, a3) the estimation
(17) remains to be sharp (3° lies on the lower boundary arc of 1I). The extremal domain
connected with 2° is defined by (11) and is of the type 2: 3. The extremal domain 2: 2
having two horizontal slits is connected with 3°.

3. The maximizing of b, in Sg (b). Rewrite (6) for estimating the combination by :

3 9 @y — %a} +bay)?
by—2(— b)<— = bad +3a;a,— - ad -3
3—2( ) 2 ba 103~ 7 @ 2 =0y F;

3 aj
= ""'(2—817— a;)a3 — m [as +(2b—1)a; — v 1*<

< %(2 —8b—a,)ad}.

Thus
by < 2 3 D o tntlanat” 3
3 3(‘_”)""‘2_“2“3'“2*”1(42) (20)
where the equality is reached for
ai

a;=(l-—2b)a;+T. (21)
The value of A in (7) for (21) is

a
A= 22)

Ohserve that we arrive at this choice also by starting from the unoptiniized inequality
{1) which for b, implies

[RYISY

b
*-i—a;a,+2)‘(a,—%a§+ ba,)+%a§+ %a",‘—

3 (1-b5%+

# A a3 —2(1 — b)]<0.
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The choice (22) eliminates a4 , yielding (20).

The sharpness of the estimate can be interpreted in terms of (21); the inequality (20)
is sharp as far as the parabola (21) lies in the subdomain I of (a;, a3) [8]. The equality
conditions can also be expressed by aid of (3), (4) and (22): The existence of the equality
function (2) is guaranteed by the existence of o and a;, such that

80+(3a;—2)a" V3 —6(@; + b)=0,
J 2_8 mn 2,16 3
3 30 ‘ﬂ3<3+ 35 . (23)
Lb<o<1.
Next, rewrite (15) for by:
! L3 4 0p? gim S o
3b, <3‘ﬂ3 + (-b "‘l)ﬂg +(dz +2)XQ_§x° (24)

where x, includes ay according to (16). When maximizing the right side in xo we obtain

b b
T’<§+2b'a,+%a§+

i

0} = M; @), (25)

[

The equality is reached for

a
A+1=xo=Va, —al F1=b7 = —2‘—+1 (26)

i.e. the choice (22) remains to hold for A. As before, we arrive at the same result by start.
ing from the unoptinuzed inequality (10), which for b, yields

b 2
T’—- aay +2N @y —a} +1- b))+ Jal— b4, < %(1 +2)°,

and which by (22) reduces to the form (25).
The sharpness of (25), taken from (26), implies that the parabola

ay=0b+a+ %a} 7

lies in the subdomain Il of (a3, @) [8]. Similarly, from (12) and (13) we deduce that the
cquality function (11) exists provided that the numbers 0, and 0, can be determined
to satisfy
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r ]—3/302 Zn
0 = ’
4
at+b
fieatit 8.0 ¥ S (28)
b <0,<0,<1.

We will apply (25) for — 2 (1 — b) < a; < — b where a;/2 =\, A€ [~ (I = b),
—b/2) € [-1,0]. (20) will be applicd tor —b<<a; <2() — b).

"M, (@)= %(1 b+ —'—'Zi‘iug s %43, ~b<a; <2(1-b),
b
—31 < F@)= < 29)
2 \ 1 5
M;(a,)=~3~ +2b a3+5a;+ﬁa —2(l b)<a;<—b.

-

This upper bound is differentiable even at the point a; = = b. Observe that the order of
M, and M, is changed at this point, because:

My @)~ M, @)= 3 @ + by,

The routs of M3 (a;) =0 are denoted by « and . Denote ¥ == b and let § be the non-
-vanishing oot of M} (a;)=0:

2 -
(a=- 2 - 2iTios”

wn

g:——+ \/1_101;’ (0<b<107¥3),

W (30)
yr=vir by,

4
L6=30-4b).
The upper bound F of 9)always has the local maximum

M, () = E - --b‘ + —(1 1063)¥?

The local nature of
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M, ()= %(1—b,)+ -287(1 _4b)y
depends of the sign of 1 — 4 b as well as on the reality and order of the numbers (29). We
omit the comparisons needed to check the fo_llowing list of orders:
0<b <% -2(1-b0) <a<y<Pe<0<Ks <2(1-D);
b =%: -2(1-b) <a<y <P <s =0
“<b <Hh:-2(1-b) <a<y<p <8<0;

b

ha:-2(1-b) <a<p =7y =85<0

Ya<b <10V 2(1-b)<a <P <8 <7y <O0;

b =10":2(1-b)<a =8 <8 <y <0
100V < b:85 <.
From this list we read out the alternatives for the local maxima:
0<b< Y%: local maxima are A, (a), M, (6);
14 <b < 107Y2: local maxima are M, (a), M, (0);
107Y3 <5< 1: the global maximum is M, (0) .
In order to distinguish between the two competing candidates we have to solve the

inequalities M, (0) 2 A, (a) and M, (a) 2 M, (8). This leads to the following:
Result.

1°. 0<b<b=0,077428918
by 2 8
max 3= = M, (8) = 3(1 —-bY)+ 27 (1-4 b)* .

The extremal domain is of the type 1:3 and be (0, %) is the root of the equation
Ma (@)= M, (B). o
2°. b<b< b =0.302279 250

by _ I8 4., 4 —
maxT M;(a)—z—s—gb+7s(1_|0b) ;

The type of the extremal domain is 2: 3 and be (10~ V2 %) isthe root of M, (0) = M, (a).
3°.b<H<)
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max -:,—3- =M, (0)= % (1 -b%).

The extremal domain is 3:3 with threg straight radial slits,

Observe, that at the points b and b there exist two different =xtremal functions, — a
phenomenon which holds in similar form also foras inSg(d ) [1].

Especially in the real unbounded case Sg = Sg (0) we obtain
max bs (0) = 29—" .

a3

4. The functional a4 — a;a; + — . Clearly, the above technique is applicable to the

two-parametric functional ¢

By(p.q)= a4 + pazay + qa}; p,qER.

The results in p and g would remain rather implicit. A3 8 curious example we mention
here only the result which concerns the case p = — 1, q = %.

Result.

1°.1/3<bH< 1

miB, (—1,%)= %(1-1»’).

The extremal domain is 3: 3.
2°. 0<bH< /3

=3y b 1,\%2
max B; ( 1,4)— 7y b* + 12 (1 -8b")¥2.
The extremal domain is 2: 3,

3°. b=0.
There exists also the extremal domain 1: 3 for which

=317

1-4b)

S. The linear combination a4 + pa;. The inequalities (8) and (17) yield the correspond-
ing estimates for a4 + pa,:

[ 7 3 1 3 2 3 2
a1+ 5(4-9b)a3 +3(1 -b*)+pa; =F, —=3b<a; <

= :
<2(1-b),

ay tpa; < a%+(3b3—2)a3+%(a,-tl)’-q»pa:uﬁ‘h —l<a;<—§b,
a3n

o +3 b2 = )+ miFyyes (1 mb) iy L b s

2
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Observe that for — 2 (1 — d)< a2 € —2/3 b Fy.and F, are below F; . Therefore, F; will
be limited to the interval — 2/3 b €a; < 2 (1 — b). Consider the derivatives.

1) -§b<a, <2(1-b); F, (a,)=—%a§ +(A=9b)as +pu

Denote the roots of F} (a;) =0 by

2 4
c,,a,=:,—(4—9b)t \%(4—9b)’+%&. (32)
Ata, F,; has a local maximum

File) =50 =0+ T3 (=960 + 24— 9 byt T (4 - 95" + 741,

(33)
2) —1<a<—3b; Fi@)=S5a}+4a;+3b +u
The roots of F3 (a;) = O are
3bz

Bi.Ba=—3 ¢ \/ g (34)
At 8; £ has a local maximum
F @)= 25 (3 B+ + o= [4 S35 +w)*2. (35)

3) —20-b)<a<—1, b<%;  Fi(a)=3al+3b' =2+,

F3 (a3) vanishes at

2—-3b—=u
NnaMa=t \/—3-——— : (36)
Thus, v, gives a local maximum for Fy:
' —3b? —

Fy(ny=2( 2220t ¢7)

The upper bound in (31) is differentiable even at the points — 2/3 b and ~ 1. Clearly,
it has the maximum for |a; | <2 (1 - b).
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If the maximum is achieved at a, the sharpness is guaranteed, provided o and a; =
=a, = X can be determined according to (3) and (4) i.e.

80+(6a;—2)0" V2 —(9a; +6b)=0,

T3 ca<]+ 307, (38)

b€ o <1,

M the maximum is at §; the sharpness requires,accordingto (12) and (13), the existence
of ¢y, 0, and ; =a; = A such that

—(J1=3a s

. T, b o

%
a‘.,aa.;.ia_?_“._zb_. 39)

b0, <0< 1,

The sharpness at the maximizing point 7y, requires only that —2 (1 —b)<y; < - I,
0<bh<H

As in Sections 3 and 4 also here the result depends on the order of the possible
maximizing points — 2 (1 = b), 72,82, @, and 2 (1 — b) as well as on the order of the
corresponding F -values. Clearly, a detailed treatment for all values of the parameters u
and b is excessively involved. Therefore, we shall restrict ourselves to some special cases
of the parameter u.

From the expressions of a,,, f,, 7, we see immediately that for a sufficiently large u
the upper bound (31) is monotonously increasing and for u properly liniited from above,
monotonously decreasing. Consider the first alternative.

We obtain a lower limil for g by requiring that

2(0-b)sey = '-2,‘(4—9b)+ -499—(4—9b)’ + i‘,;‘i

which is equivalent to
u=>01b-1)(1 -b). (40)

Similarly we see that
fa2—1 (41)

if
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u>—1-3ph2, (42)
For values (40) this requirement is automatically true.
If b < % we have to consider F3 for —2 (1 —b)<a; € —1. Because in this interval
la; | 2 1 and (42) holds, we have
Fi(@3)=3a3 +302 —2+u>3+302 =2+u>1+302=1-3b2 =0,
Altogether, if (40) is true the only competing maximizing points are ; and 2 (1 — b).

The former one of these exists so far as u < 4/S — 3 b2, Thus, the comparison is to be
performed as far as

n=(1b-1)(1-b)<u<T =36"=r;, B<I(1-V06)=0169... (43)
For values b > % (1 —+/0.6 ) there holds
-3 <ub-n0-B)<u

which implies that By is non-existent and F; is monotonously increasing. Hence, for
these values of b

max (a4 + pa;)=Fi(2(1 =5))=4-20b+300 — 140> +2(1 = b)u.

It remains to compare the values F; (;) and F, (2 (1 = b)) in the cases (43). The
number F,; (8;) of (35) is maximized in p at the point u = r; because — u < —ry.
Fy (2 (1 - b)) is minimized in u at the point u = r, because r; < u. For these values
we have finally:
max F; (5;) = -;—(6.4 —24b+16b%)+ '—30- (036 -24b+ 166 )% <

[}
<2(1 =b)(1 +4b—=4bY)= min F, 2 (1 - b))
1
if 0 < b < % (1 —+0.6). Equality is reached only at b = 0, u = — 1. We thus have:

Result. In Sg (b) the linear combination a¢ + pa, is maximized by the left radial-
-slit-mapping if
u2(11b-=1)(1 - b); (49)
max (aq + pa;)=4-20b+30b2 — 145> +2(1 =b)p. (45)

In the case b = 0, g = — 1 there exists also another extremal function F of the type
2:2,

Fi)y= ———
@ 1+ 24 2°
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The existence of the second extremal function follows from (39);b =0, u=—1;
By =—1;0; =1, 0y =%. Thus F is obtained from (14) as a limit case of

b(f+f '=2=z +z7 +1.
From (40) we see that if u > 25/11 then a4 + ua; is maximized by the left radial-

-slit-mapping on the whole interval 0 < b < 1. Similarly if 0 € p < 25/11 the same
radial-slit-mapping preserves its role for

6— V2511 6+ V25 11
0< b < o B and —ﬁ—“—<b<l. (46)

If — 1 <u <0 the former interval (45) preserves its meaning.  Thus, in the present case
of two even coefficients, the Zyskowska-type radial-slit maximization ([9]) continues
even on the negative side of u.

Next, try to limit u from above so that the monotonously decreasing upper bound
(31) gives the maximum F3 (= 2 (1 — b)). This, however, requires that F; is available
ie.b<Hh,

Suppose that 0 < b < % and consider those values of u for which

n-—~/~§-—b‘-§ <=-2(1-1b)

u< —10+24b 1552, (47)

For these values of u the discriminant of a, , «; is estimated:
e 1,4 24 2
20 (4-9b) + Zu<5 [1- 4(6-2))<0

for0<b<2—(\/7/2)=0.677.... Thus for 0 <b < % F} <O0. Because F; (- 2/3 b) =
= F} (- 2/3b), also F3 (— 2/3 ) <0,
The requirement
f<—1
holds if
u<—1-13»?

which, again, is true for (47). Altogether, the derivative of the upper bound in (31) is
negative and F3 (— 2 (1 — b)) the maximum.
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Result, In Sg (b) a4 + pa2 is maximized for the right radial-slit-mapping if

0< b= < —10+24b—15b?; (48)

5
max (a3 + pa)=—4+20b—30b%+ 140> —2(1 = b)u. (49)

If b > % the upper bound Fy is no more avaible. For these values of b the limitations
(16) hold in the whole coefficient body (a1, a3) (the upper limit a3 + b? lies in the

complement of (23, @3)). This means that both conditions (6) and (15) are avaible in the
wiiole (a3, a3). As mentioned above, these upper bounds are maximized on the paraboloe

1° and 2° as far as these lie in the corresponding algebraic part I and Ui of (a2, @5). Outside
these the maximum is to be found on the upper boundary arc of (a,, a3). This is seen by

considering the upper bounds as functions of as. By aid of lengthly numerical checking
we find:

If u<—2+8b—15b% thena, + pa, is maximized by the right radial-slit-mapping
in the interval % < b < 0.746 414  311. From this limit onwards our methods fails;
elliptic extremal functions are beyond the reach of our method, Similarly, the limit
—2+8b —15b?, obtained from our unsharp estimate, is not sharp either,

The functional a4 + pa; can be maximized by aid of (31) for all those values of u
which lead to algebraic extremal functions controlled by (38) and (39). The checking and
comparisonsinvolved can be passed on to computer. However, exact use of inequalities is
by no means excluded.

In Figure | therc is presented the distribution of the types of extremal functions in
the bu-plane. The letters 4, ..., E indicate the following types of functions and mappings:

A = left radial-slit mapping,

B = 2:2 with two-radial slits along the real axis,
C =23,
D =3:3o0r1:3,

E = right radialslit mapping,

The arcs on which the types of the extremal functions do change can be distinguished
by aid of the points

P = (05,-175),
Q = (0.718'782'448,—0.781 298 556).
R = (0.6,-0.28),

§ = .1,
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T =(1,0),

U = (0,-10),

V = (0.746 414 311, — 4.385 700 368).

The arc ST belongs to the parabola
p=M16=1)(—b)=—11*+12b—1.

The arc RS is obtained from F, (a,)=F, (8,) and reduces to the form
p=—8b+6b—1. (50)

On QR there holds &, =3 ==2/3 b, yielding

8
u=—-%’-b’+-§b. (1)

On this arc both types C and D exists as the same limit case. Thus, on OR the extremal
function is unique, whereas on RS there exist two different simultaneous extremal func-
tions.

Crossing the arc TQ means that the type D reduces to an elliptic case so that ¢ de-
creases below the limit b. Thus we read out from (38) that on .TQ

fa=0b,
L 80+(6a;—2)a°m —(9a, +6b)=0;
bllz_l

9bIE v 4
70} —4(4—9b)a, —4u=0:

.a,=a,=2

b)ll — l 2 __ 1

p 8b—8
6)+(1b )9

"‘-_-7( 9buz— b"’—6 L (52)

Crosing PQ means similarly that the type C is shifted on the elliptic region in such
a way that g, decreases below b. (Observe that the upper limit F, yielding C is defined
on — | €a; € — 2/3 b. This implies the order 0, < g3.) From (39) we see that on PQ
. 1—3a, Ja; +2b
b=g=(——y"+ ——,
1 =( 7 ) B
az = Ba;



174 0. Tammi

2-66,)* —(2b—38,) =0,

1 (53)
82 =—04~ /016 e

The range of B requires that

—2(1=-b)<'y; = _,/EL%:_E_ <-1.

The left equality case yields PU:

u=—10+24b—15b? (54)

and the right one gives FS:

u=-—1-35 (55)

As was mentioned above, the equation of PV follows from the condition that for

b > % the unsharp upper bound (31) lics below the limit belonging to the type E. Thus,
the question of the exact region of elliptic types requires more extended analyss of the
extremal elliptic cases and lies outside the scope of results availuble until now.

(1]
(2]

31
{41
15]
(el
7]

(8]
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Niech S (b) oznacza sodzing funkdi
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fiey=brvra, 2 +...,0<d<], 11 (2)I<]

holomorficznych i jednolistnych w kole |2 | < 1.
Autor rozwigzuje problem

sup {a, +ue,1 1ESB)]

dla rzeczywistych wartosci parametru .

PE3IOME
NMycre S (b) o6o3navaer K1ace Gynxuunf
f@)=bz+g, 2+ ..., 0<bH<I, 11 1<

MOIOMOPMDHMA H OOHHONHCTHEIX B Kpyre [2 | < 1.
ABTOp pelact pobnemy

\up g, ~ua,: fES(D)

IR BetNe CTUCHEBIX JMANCHAR NapaMeTpa y.
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