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1. Introduction. The class S (h) consistsof bounded univalent functions f defined in 
the unit dise U: 1 z | < 1 and normalized so that 

f (z) = b (z +a2zi + ...), |/(z)l<l, 0</»<l .

The information concerning the coefficient body (d2... an) applies also for functionals
of the coefficients involved. Thus, for sufficiently simple functionals extremal problems 
can be expected to be solvable.

Incomplete information is provided by Grunsky type inequalities, one form of which 
is the Power inequality (cf. e.g. [7] ). By aid of these some of the lower coefficients and 
functionals determined by them are maximized for certain values of b. Actually, only the 
first nontrivial coefficient body (d2, ai) (^) *s completely governed for each value 
of b 17]. This allows maximizing Re (d3 + Xd2) [2], [8] and Re(d3 + Xd2) [4] inS(Z>) 
for all values of the complex parameter X. In the real subclass Sr (b) of S (h) the algebraic 
part of the second coefficient body (d2, d3, d«) can be determined by aid of an extended 
inequality proved by Jokinen [1]. This recent development opens up possibilities in 
studying fourth order functionals in S/? (b). Until now all results for them have concerned 
homogeneous functionals and the information available has been based on the Power 
inequality [3].

In this paper some homogeneous and some linear functionals of fourth order will be 
considered in Sr (/»). The homogeneous combinations of the d„-coefficients can be traced 
back toa classic question concerning the /^-coefficients of the logarithmic derivative of f, 
introducing the expansion
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The a„- and /»„-coefficient are connected:

na„+,= 2û„_„+,b„ (fl, = 1; «= 1,2,...).

u

/
a

By using Lowner’s functions f (z, u) obtained from

du 1-Kf

generated by a step-function x (m) » e~<-u\ b<u< 1, one can construct examples of 
the a„- and /»„-coefficients. This allows estimating max 1 b„ | Irom below. In [5] the 
estimation is performed for the first indexes mainly for the purpose of showing that the 
bp-coefficients exceed the Koebe-function limit 2.

For the first /»„-coefficients we have

f*i = «J,
k, >•

< "2 bj — «3 — flj,

-bi = a4 - fljfl3 + yflj .

The coefficient b, is maximized with a3. Similarly, the relatively simple technique of 
maximizing a3 in S (b) can be applied to bj too [6]. The problem for higher indexes is 
open. For b3 in Sr (b) the maximum will be determined in this paper.

In [9] Zyskowska introduces a linear functional a3m + p«Jn t, and proves that in 
Sr (b), for n > 0 and fixed, there exists an interval (0, bM] where the functional is 
maximized by the left radial-slit-mapping. In [8] a complete solution in the case a3 + 
+ Xflj is presented (if n = X " 1 the result applies to the Zyskowska-functional). Let a : (3 
be the name of a slit-domain where a is the amount of starting points and d the amount 
of end-points of the slits. Then the list of extremal domains is

0<b<e-1 :
‘1:2 for | X | <4b,

J:1 for | X|>4b;
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{
2:2 for | X |< 4 b (1 + logft),
1:2 for 4 ft (1 + log ft) < | X | < 4ft, 
1:1 for 4 ft < 1 X |.

Here 1:1 means the left radial-slit-mapping.
In this paper we introduce the functional a4 + ga3 and maximize it in Sr (ft) for an 

extensive set of values of the ja-parameter. If appears that the Zyskowska-type extremal 
occurs even for some negative /r-parameters in the case where both coefficients are even.

2. Preliminaries. Let us collect here results concerning the two inequalities which 
determine the algebraic part of the coefficient body (a3, aJ( a4) inSj^ (ft). The first one 
follows from the Power inequality, mentioned above [7 J :

a4 ~ 2a2a3 + -jyaj + ^a\ - -j (1 - ft3) + 2X(a, - -|a3 + fta3) +

+ XJ [flj — 2 (1 — ft)] < 0 , 

\£R.

(I)

The equality function of this is defined by the generating function cos $ for which

-1, b<u<a,
COS I?

1.1—3» -j/j— + ---------  u
3 6

i<u<1 ;
(2)

(3)

The corresponding extremal function/has the first coefficients:

‘ flj » 2 (o —ft)— y(l — c) + j (1 ~ 3X) (1 — a 1/3 ),

a,«<d + | +ft’- y»!-f (1 -3X)(1 -o*/a)+ j(l-3X)’(l-<f>).

For / there hold the conditions obtained by integrating Lowner’s equation for Sr (ft) in 
two steps:

roM(/r-/;M) + (3X-i + o3/’X/o’ -/;*/î)=zî/J-z-3/J+3X(z,/î-z-,/J),

(4)

ftv5(/in _/-»«) = 0*'’(/y’ _/;*"). (5)
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The corresponding extremal domains are of the type 1:3 and 3:3.
The inequality (1) is sharp on a defined part of the boundary of the coefficient body

when optimized by choosing X so that the left side is maximized. This yields the estimate

aA <y(l -b3)-^bal + 2a,«, - |y af (a3 - % + ba2 Ÿ

2(1 -b)~a2
(6)

which is obtained for

_ a3-%a2 + ba2 
X “ 2(l-ft)-a,_ (7)

The right side of (6) can further be maximized in a3. This yields for a4 an estimate in 
a j and ft:

a4<--^-«J + j(4-9ft)«2+y(l-ftJ) = G,, |a,|<2(l—ft). (8)

This inequality is sharp on the parabob

1°:«3=-{ «2 +(2-3ft)«, . (9)

By substituting (9) in (7) we see that on 1° X = a2. The maximum of a4 thus gained is 
sharp so far as 1° remains in a defined subdomain I of the coefficient region (a2, a,) 
(cf. [8]). The extremal domains defined by (2)-(3) are of the type 1:3 or 3:3.

The second inequality is the one proved by Jokinen in [1]. It extends the Power 
inequality and reads

' a4 — 2a,a3 + a’— ft1«, + 2X(a3 —a, + l-ft’)< io + X)’.

(10)
-1<X<O.V»

For the extremal generating function there holds

r

cos iS =
— 1, ft<u<o( , 
1, o, <u<o, , (ID

1 — 3X 
6

-3VJ a2 < « < 1 ;u

foa=( -4^-14.1] ,

(12)
ft < o, < a, < 1 .
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The initial coefficients of the corresponding function f are in this case

| -2é + 4o, -4c, + |op.

(13)

Lowner’s equation when integrated in three steps for (11), yields for the extremal/:

oP <#’ -/a?J)-3 0^ (/„7 -/O;VI) =

= + (, -4oP)(?'5 _ 2-V1)

oP </„? + /;,,/J)= oP < + /c?’),

L oPfLp-/;/’).
The extremal domains are of the type 2:3.

The optimized form of (10) reads

(14)

<r« < dj +(3Z»J -2)flj +2(aj + 1)4- j x30 

obtained by choosing

0 < x0 = X + 1 = Vdj — a’ + 1 — l;

_ t/j F Z»1 — 1 < dj < dj + h? .

Again, when maximized in dj this gives the maximum of the right side in dj and b

(15)

(16)

oj+(3Z>’-2)«i + y(«i + 1)’“Gi for flj+l>0,

(17)

«Î + (3 Z>J -2)aa = G3 for aj + KO.

The maximizing choice of a} is such that x0 - a2 + 1 or x„ = 0 which, in view of (16) 
implies A =d2 or X = - 1. Front (10) we see that we have to restrict the use of (17) for 
the values d2 < 0. This guarantees the validity of (16).

The upper limit is sharp on
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2° : a3 = 2a2 + 2«j 4 b2 (18)

and G3 gives the sharp upper bound on

3° ■ a3 = a} - 1 + b2. (19)

So far as the parabolic arc 2° lies in the subdomain II (cf. [8]) of (a3, a3) the estimation 
(17) remains to be sharp (3° lies on the lower boundary arc cf II). The extremal domain 
connected with 2° is defined by (11) and is of the type 2:3. The extremal domain 2:2 
having two horizontal slits is connected with 3°.

3. The maximizing of b3 in Sr (b). Rewrite (6) for estimating the combination b3:

ftj-2(l- ft*)<- |ftaj+3a, fl3- |a?-3 (a3 — 44 a3 + t>a3 )2 

2(1 - b) — a3

= |(2-8h-2_—- [aj+(2Z,-l)ai- ]’<

< |(2 -8ft-a3)a2 .

Thus

j(l-ft3) + j ahjaM.fo) (20)

where the equality is reached for

a2
a3= (1—2ft)aa + — . (21)

The value of X in (7) for (21) is

(22)

Observe that we arrive at this choice also by starting from the unoptimized inequality 
(1) which for b3 implies

- fljflJ+2X(aJ- + fta,)+ + |aj- j (J — ft3) +

4- X2 (a, — 2(1 — ft)J<0.
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The choice (22) eliminates a3, yielding (20).
The sharpness of the estimate can be interpreted in terms of (21); the inequality (20)

is sharp as far as the parabola (21) lies in the subdomain I of (a3, a3) [8]. The equality 
conditions can also be expressed by aid of (3), (4) and (22): The existence of the equality 
function (2) is guaranteed by the existence of a and a3, such that

” 8o + (3aj — 2)a_*7î -6(aj + 6) = 0,

’ (23)

L b < a < 1 .

Next, rewrite (15) for b3 :

+ (2hJ-l)a, +(a,+2)x5- |xj (24)

where x0 includes a3 according to (16). When maximizing the right side inx0 we obtain 

-y< j + 2b2 a3 + + -1- al =M2 (a3) . (25)

The equality is reached for

X + 1 = x0 = Vflj — a’ + l — b2 = — + 1 (26)

i.e. the choice (22) remains to hold for X. As before, we arrive at the same result by start
ing from the unoptinnzed inequality (10), which for b3 yields

— <jj a3 + 2 X (fl} - a2 + 1 - b2) + j a2 — b2 a2 < j (1 + X)3,

and which by (22) reduces to the form (25).
The sharpness of (25), taken from (26), implies that the parabola

flj = b2 + a2 + (27)

lies in the subdomain II of (a2, a3) [8]. Similarly, from (12) and (13) we deduce that the 
equality function (11) exists provided that the numbers at and o2 can be determined 
to satisfy
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f 1 ~ % ai 13

a2 + Z>
< o, - a2 + —----- , (28)

b <o, <o2 < 1 .

We will apply (25) for - 2 (1 - b) < a2 < - b where a2/2 = X, X£ (I - b) , 
— b/2] C. [— 1,0]. (20) will be applied lor — b **a2 <2(1— b).

1 — 4bAM«,)« y(l~H) + 2 - -niai, - b<a2 <2(1 -b),

< F(«2)= < (29)

M2 (a2) = + 2 b1 a2 + ~a] + -jya2, - 2 (1 - Z»)<a2 <~ b.

This upper bound is differentiable even at the point a2 =- b. Observe that the order of 
Mi and M2 is changed at this point, because;

Af2 (a2)- Af, (a2) = y (a, + Z>)3.

The roots ofM'2 (a2) =0 are denoted by a and 0. Denote y -~b and let 6 be the non- 
-vanishing root of M\ (a2) = 0:

vT- ,oh'r ,

0 = - | + jvi _ ioz>1 (0<z><io-*7’),

7 = - b,

^6= y(l-4h).

The upper bound Fof(29)always has the local maximum

i\3/a

(30)

AM*) = ^-(1-lOh1)

The local nature of

r
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M, (5)= j(l-b3) + ^(1 — 4b)3

depends of the sign of 1 - 4 b as well as on the reality and order of the numbers (29). We 
omit the comparisons needed to check the following list of orders:

0 < b < 54: -2(1 -b) < a < 7 < fi < 0 < 6 < 2(1-b);

b = 54: -2(1 -b) < a < 7 < 0 < 6 = 0;

54 < b < )I3: - 2 (1 -b) < « < 7 < 3 <6 <0;

b = Vis: — 2 (1 —b) < a < fi =7 =6 <0;

%,< b < 10"V3:—2(1 -b)< a <p <6 < 7 < 0; 

b « 10~3/2: —2(1 — b)< a=/3<5<7<0;

10*1/3 < b: 6 <7.

From this list we read out the alternatives for the local maxima:

0 <b< 54: local maxima are A/j (a), A/t (6);

54 <b < 10_l/3: local maxima are A/j (a), (0);

10*1/5 < b < 1: the global maximum is M, (0) .

In order to distinguish between the two competing candidates we have to solve the 
inequalities A/1 (0)>A/} (a) and Afj (a)>A/, (6). This leads to the following:

Result.
1°. 0 < b <b = 0.077 428 918 

max-j- - A/, (6) = j(l — b3) + yjr(l -4 b)3 .

The extremal domain is of the type 1:3 and b € (0, 54) is the root of the equation 
A/j (a) = A/, (6^

2°. b < b < b = 0.302 279 250 

max ■— = Af2 (a) = - |b3 + -jy (1 - 10 b3)3'3 .

The type of the extremal domain is 2: 3 and be (10* 1/3,54) is the root of (0) = A/3(a). 
3°. b<b<l
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max /• = Af,(O)= |(1 — h3).

The extremal domain is 3:3 with thre£ straight radial slits.
Observe, that at the points b and b there exist two different extremal functions, — a 

phenomenon which holds in similar form also for a4 in Sjt(b ) [1J.
Especially in the real unbounded case Sr = Sr (0) we obtain 

max b3 (0) = -y- ■

a32
4. The functional a4 — ajfl3 +----- . Clearly, the above technique is applicable to the

two-parametric functional 4

B3 {p,q)~ fl4 + pai a3 + qal; p.q&R.

The results in p and would remain rather implicit. As a curious example we mention 
here only the result which concerns the case p = — 1, q - Vi.

Result.
l°.l/3<h<l

maxfl3 (-!,{)= jO"*3).

The extremal domain is 3:3.
2°. 0<b < 1/3

maxB3 (-!,{)= j - b2 + ~ (1 -8b3)*3.

The extremal domain is 2:3.
3°. b = 0.
There exists also the extremal domain 1:3 for which

max
1 ( 2 , (1 - 4 b)3 5

6‘

5. The linear combination a4 + paj. The inequalities (8) and (17) yield the correspond
ing estimates for a4 + pa2:

~^2al + |(4-9i)aJ +|(1 -b'y + pai =Fi.-jb<a2 <

<2(1 -b),

(3D

a4 + pa2 < • al + (3b3-2)ai + |(«j + I)3+/w,-Fj. -l<flj<-|h,

«a + (3b1 — 2)<j2 + pa2 = F3, — 2 (1 — b)<a3 < — 1; b ,
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Observe that for — 2 (1 — b)<at < — 2/3 b F3-and F3 are below Fx. Therefore, will 
be limited to the interval — 2/3 b < a2 < 2 (1 — b). Consider the derivatives.

1) -jfc<a,<2(l-&); F,’(aj) = -^+(A-9b)fll+/,

Denote the roots of F[ (a2 ) =■ 0 by

a,. tt2 = y (4 - 9 Z>) ± yA(4_9fc)2 + 4jl

At ft] Ft has a local maximum

F, (a,) = |(1 -b3) + (4 - 9 b? +|(4 - 9 [(4 - 9ft)1 + In]

2) —1 < flj <—Fj (flj) = 5 a’+ 4a3 + 3 b3 + m

The roots of F'i (o2) = 0 are

a a _ 2 /_43 b3 + g
0../»a = - y tx/yy-----------—

At 0} Fj has a local maximum

j(3ft3 +/i)+ [4-5(3i’+M)!*3.

(32)

(33)

(34)

(35)

3) -2(1 -b)< (h <- 1, b<y; Fi(aj) = 3a?+3b3-2 + g

Fi (a2) vanishes at

Ti (36)3 .

Thus, 7j gives a local maximum for F3 :

F,(7,)- 2(2—If-/3 v>a (37)

The upper bound in (31) is differentiable even at the points - 2/3 b and - 1. Clearly, 
it has the maximum for |a2 | < 2 (1 — ft).
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If the maximum is achieved at a, the sharpness is guaranteed, provided a and a, = 
= Oi = X can be determined according to (3) and (4) i.e.

{
8 a + (6a2 — 2) o'VJ — (9a2 + 66) = 0,

jo*’<«,<{ +jo"J, (38)

b< a <1 .

If the maximum is at 02 the sharpness requires, according to (12) and (U), the existence 
of c,, a2 and 02 =a2 = X such that

4

4 (39)

b < ot < 02 < 1 .

The sharpness at the maximizing point y2 requires only that - 2(1- 6) < >2 < - 1, 
0<2><J4.

As in Sections 3 and 4 also here the result depends on the order of the possible 
maximizing points - 2 (1 - b), h.fri, <*i and 2(1 - b) as well as on the order of the 
corresponding Fp-values. Clearly, a detailed treatment for all values of the parameters p 
and b is excessively involved. Therefore, we shall restrict ourselves to some special cases 
of the parameter p.

From the expressions of a„, y„ we see immediately that for a sufficiently large g 
the upper bound (31) is monotonously increasing and for n properly limited from above, 
monotonously decreasing. Consider the first alternative.

We obtain a lower limit for g by requiring that

which is equivalent to 

H >(116 - 1)(1 -6). 

Similarly we see that

02>—1 (41)

if

(40)
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д>—I—3ft1. (42)

For values (40) this requirement is automatically true.
If b < H we have to consider F3 for - 2 (1 - i) < аг < - 1. Because in this interval 

I aj | > 1 and (42) holds, we have

F3(a2)»3a2 + 3Z>J — 2 + д>3 + 3bJ — 2 + д> 1 + 3ftJ — 1 — 3ftl = 0 .

Altogether, if (40) is true the only competing maximizing points are (?j and 2(1- b). 
The former one of these exists so far as д < 4/5 — 3 bJ. Thus, the comparison is to be 
performed as far as

г, = (llh — 1)(1 —Ь)<д< j —3dJ = r2, b<|(l-s/0?) = 0.169.... (43)

For values b > % (1 — \/б7б) there holds 

|-ЗЬ’<(11Ь-1)(1-Ь)<д

which implies that is non-existent and F2 is monotonously increasing. Hence, for 
these values ofb

max (a4 + дa2) = F|(2(l -Z>)) = 4 - 20 b + 30 b1 — 14 b3 + 2 (1 - b) д .

It remains to compare the values F2 and Fj (2 (1 - b)) in the cases (43). The 
number F2 (fij) of (35) is maximized in д at the point д = because - д< —
Ft (2 (1 - />)) is minimized in д at the point Д = r, because rt < д. For these values 
we have finally:

maxFj (0a) = 4-(6.4 — 24 d + 16 b’) +(0.36 - 2.4 Z> + 1.6/>’)*’ < 

д 3 j

<2(1 -Z>)(1 +4h-4Z»’)= minF, (2(1 -b))

if 0 < b < ->» (1 — \/ССб ). Equality is reached only at b = 0, д = — 1. We thus have:
Result. In Sr (b) the linear combination a4 + дд2 is maximized by the left radial- 

-slit-mapping if

д>(11/»-!)(!- 2>); (44)

max (a« + д a2) = 4 - 20Ы- 30 b2 - 14Z»3 +2(1 -Л)д. (45)

In the case b = 0, д = — 1 there exists also another extremal function Fof the type 
2:2,
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The existence of the second extremal function follows from (39); b = 0, n = — 1; 
03 = - 1; o2 = 1, Oi = 54. Thus F is obtained from (14) as a limit case of

b(f+ f~l~2) = z + z’1 + 1.

From (40) we see that if p > 25/11 then a4 + na2 is maximized by the left radial- 
-slit-mapping on the whole interval 0 < b < 1. Similarly if 0 < pt < 25/11 the same 
radial-slit-maj>ping preserves its role for

0< b <
6- V2S — 11M 

11
and

6+ V25 - lip 

11
(46)< b< 1 .

If — 1 < n < 0 the former interval (45) preserves its meaning. Thus, in the present case 
of two even coefficients, the Zyskowska-type radial-slit maximization ([9]) continues 
even on the negative side of p.

Next, try to limit p from above so that the monotonously decreasing upper bound
(31) gives the maximum F3 (- 2 (1 - ft)). This, however, requires that F3 is available 
i.e.ft<H,

Suppose that 0 < b < H and consider those values of p for which 

~ 3 <~2(1 - h)

p < —10 + 246 — 15 b1. (47)

For these values of p the discriminant of at, a2 is estimated:

-A-(4-9Z»)’ + |p<-g-J7- 4(ft —2)J]<0

for 0 < b < 2 - (\/71 2) = 0.677.... Thus for 0 < b < H F', < 0. Because F2 (- 2/3 b) = 
= Ft (- 2/3 b), also Ft (- 2/3 b) < 0.

The requirement

02<“1

holds if

p<-l-3ft’

which, again, is true for (47). Altogether, the derivative of the upper bound in (31) is 
negative and F3 (-2(1 - b)) the maximum.
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Result. In S# (b) 04 + po2 is maximized for the right radial-slit-mapping if

u < - 10 + 24b - 15 b2-, (48)

max (a4 + P0z) = ~ 4 + 20 b - 30 b2 + 14 b3 - 2 (1 - d) p . (49)

If b > Yi the upper bound F3 is no more avaible. For these values oib the limitations 
(16) hold in the whole coefficient body (02. 03) (the upper limit a\ + 6s lies in the 
complement of (02, 03)). Tliis means that both conditions (6) and (15) are avaible in the 
whole (o2, ai)- As mentioned above, these upper bounds are maximized on the paraboloe 
1° and 2° as far as these lie in the corresponding algebraic part I and II of (a2, a3). Outside 
these the maximum is to be found on the upper boundary arc of (a2, a3). This is seen by 
considering the upper bounds as functions of 03. By aid of lengthly numerical checking 
we find:

If At < — 2 + 86 — 15 dJ then 04 + p02 is maximized by the right radial-slit-mapping 
in the interval % < b < 0.746 414 311. From this limit onwards our methods fails; 
elliptic extremal functions are beyond the reach of our method. Similarly, the limit 
— 2 + 86 — 15 b2, obtained from our unsharp estimate, is not sharp either.

The functional 04 + pa2 can be maximized by aid of (31) for all those values of p 
which lead to algebraic extremal functions controlled by (38) and (39). The checking and 
comparisons involved can be passed on to computer. However, exact use of inequalities is 
by no means excluded.

In Figure 1 there is presented the distribution of the types of extremal functions in 
the dp-plane. The letters/1..... E indicate the following types of functions and mappings:

A - left radial-slit mapping,

B ~ 2: 2 with two-radial slits along the real axis,

C = 2:3,

D » 3:3 or 1:3,

E = right radial-slit mapping,

The arcs on which the types of the extremal functions do change can be distinguished 
by aid of the points

P = (0.5 ,-1.75),

Q = (0.718 782 448,—0.781 298 556).

R = (0.6,-0.28),

= (0.-1),
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Figuie 1.
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T = (1,0), 

u = (o.-io),

V = (0.746 414 311, —4.385 700 368).

The arc ST belongs to the parabola 

H = (11Z>-1)(1- b) = - lib1 + 12 b-1.

The arc RS is obtained from F, (a,) = F2 (02) and reduces to the form 

p = —8 b3 + 6b — 1. (50)

On QR there holds a, =02 =- 2/3 b, yielding 

p = --£b3+jb. (51)

On this arc both types C and D exists as the same limit case. Thus, on QR the extremal 
function is unique, whereas on RS there exist two different simultaneous extremal func
tions.

Crossing the arc TQ means that the type D reduces to an elliptic case so that a de
creases below the limit b. Thus we read out from (38) that on TQ

a = b ,

8o + (6a2 — 2)o*WJ — (9a2 +6b) = 0;

b3'2 - 1
a, = a2 = 2 ------—------- ,

9bl/3—6

7 a3 — 4 (4 — 9 b) a, — 4 /2 = 0 :

P
3/3-1 

9bu2 -6
+ (186-8)

b3'2 - 1 

9bv3 -6
(52)

Crosing PQ means similarly that the type C is shifted on the elliptic region in such 
a way that ot decreases below b. (Observe that the upper limit F2 yielding Cis defined 
on — 1 < ai < — 2/3 b. This implies the order a, < o2.) From (39) we see that onPfi

b = Oj =( 44
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i (2 - 6 02)J -(2 b - 3 0,)’ = O .

02 =-0.4- >/o.l6- (53)
5

The range of B requires that

<- 1

The left equality case yields PU\

H = — 10 + 24h — 15 h’

and the right one gives PS\

H = -i-3b2.

(54)

(55)

As was mentioned above, the equation of PV follows from the condition that for 
b > 'A the unsharp upper bound (31) lies below the limit belonging to the type E. Thus, 
the question of the exact region of elliptic types requires more extended analyst! of the 
extremal elliptic cases and lies outside the scope of results available until now.
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STRESZCZENIE

Niech S (6) oznacza rodzinę funkcji
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= + «,*» + .... 0 <b < 1, |/(z)|< 1

holomorficznych i jednolistnych w kole 1z | < 1. 
Autor rozwiązuje problem

sup { «. + » /eS(Z»)J

dla rzeczyw istych wartości parametru

РЕЗЮМЕ

Пусть 5 (Ь) обозначает класс функций

/(-’) = *г + а, :> + .... О <Ь < 1, |/(г) | < 1

голоморфных и одинолнстных в круге I г I <1. 
Автор решает проблему

>ир а, * на, : /е5(б)

для вещественных значений параметра д.
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