ANNALES UNIVERSITATIS MARIAE CURIE•SKLODOWSKA

LUBLIN-POLONIA

VOL. XXXVI/XXXVII, 20
SECTIO A
1982/1983

Department of Mathematics
University of Helsink i, Finland

O.TAMMI

On Maximizing Certain Fourth-Order Functionals of Bounded Univalent Functions

O maksymalizacji pewnych funkcjonałów czwartego rzędu
 w klasie funkcji ograniczonych i jednolistnych

O6 отыскании такснмима некоторых функиионалов четвертого порядка а классе ограниченных однолнстных функциด

1. Introduction. The class $S(b)$ consistsof bounded univalent functions f defined in the unit disc $U:|z|<1$ and normalized so that
$f(z)=b\left(z+a_{2} z^{2}+\ldots\right),|f(z)|<1,0<b<1$.
The information concerning the coefficient body (a_{2}, \ldots, a_{n}) applies also for functionals of the coefficients involved. Thus, for sufficiently simple functionals extremal problems can be expected to be solvable.

Incomplete information is provided by Grunsky type inequalities, one form of which is the Power inequality (cf. e.g. [7]). By aid of these some of the lower coefficients and functionals determined by them are maximized for certain values of b. Actually, only the first nontrivial coefficient body $\left(a_{2}, a_{3}\right)$ of $S(b)$ is completely governed for each value of b [7]. This allows maximizing $\operatorname{Re}\left(a_{3}+\lambda a_{2}\right)$ [2], [8] and $\operatorname{Re}\left(a_{3}+\lambda a_{2}^{2}\right)$ [4] in $S(b)$ for all values of the complex parameter λ. In the real subclass $S_{R}(b)$ of $S(b)$ the algebraic part of the second coefficient body $\left(a_{2}, a_{3}, a_{4}\right)$ can be determined by aid of an extended inequality proved by Jokinen [1]. This recent development opens up possibilities in studying fourth order functionals in $S_{R}(b)$. Until now all results for them have concerned homogeneous functionals and the information available has been based on the Power inequality [3].

In this paper some homogeneous and some linear functionals of fourth order will be considered in $S_{R}(b)$. The homogeneous combinations of the a_{ν}-coefficients can be traced back toa classic question concerning the b_{ν}-coefficients of the logarithunic derivative of f. introducing the expansion
$z \frac{f^{\prime}(z)}{f(z)}=1+b_{1} z+b_{2} z^{2}+\ldots$.
The a_{ν} - and b_{ν}-coefficient are connected:
$n a_{n+1}=\sum_{1}^{\infty} a_{n-\nu+1} b_{\nu} \quad\left(a_{1}=1 ; n=1,2, \ldots\right)$.

By using Lōwner's functions $f(z, u)$ obtained from
$u \frac{d f}{d u}=f \frac{1+\kappa f}{1-k f}, f(z, 1)=z, \quad f(z, u) \in S(u)$.
generated by a step-function $k(u)=e^{-i 0(u)}, b \leqslant u<1$, one can construct examples of the a_{ν} - and b_{ν}-coefficients. This allows estimating $\max \left|b_{\boldsymbol{n}}\right|$ Irum below. In [5] the estimation is performed for the first indexes mainly for the purpose of showing that the b_{ν}-coefficients exceed the Koebe-function limit 2.

For the first b_{ν}-coefficients we have

$$
\left\{\begin{array}{l}
b_{1}=a_{2} \\
\frac{1}{2} b_{2}=a_{3}-\frac{1}{2} a_{2}^{2} \\
\frac{1}{3} b_{9}=a_{4}-a_{2} a_{3}+\frac{1}{3} a_{2}^{3}
\end{array}\right.
$$

The coefficient b_{1} is maximized with a_{2}. Similarly, the relatively simple technique of maximizing a_{3} in $S(b)$ can be applied to b_{2} too [6]. The problem for higher indexes is open. For b_{3} in $S_{R}(b)$ the maximum will be determincd in this paper.

In [9] Zyskowska introduces a linear functional $a_{2 m}+\mu a_{2 n+1}$ and proves that in $S_{R}(b)$, for $\mu>0$ and fixed, there exists an interval $\left(0, b_{\mu}\right]$ where the functional is maximized by the left radial-slit-mapping. In [8] a complete solution in the case $a_{3}+$ $+\lambda a_{2}$ is presented (if $\mu=\lambda^{-1}$ the result applies to the Zyskowska-functional). Let α : β be the name of a slit-domain where α is the amount of starting points and β the amount of end-points of the slits. Then the list of extremal domains is
$0<b<e^{-1}:\left\{\begin{array}{l}1: 2 \text { for }|\lambda|<4 b, \\ 1: 1 \text { for }|\lambda| \geqslant 4 b ;\end{array}\right.$

$$
e^{-1}<b<1:\left\{\begin{array}{l}
2: 2 \text { for }|\lambda|<4 b(1+\log b), \\
1: 2 \text { for } 4 b(1+\log b)<|\lambda|<4 b, \\
1: 1 \text { for } 4 b<|\lambda|
\end{array}\right.
$$

Here 1: 1 means the left radial-slit-mapping.
In this paper we introduce the functional $a_{4}+\mu a_{2}$ and maximize it in $S_{R}(b)$ for an extensive set of values of the μ-parameter. If appears that the Zyskowska-type extremal occurs even for some negative μ-parameters in the case where both coefficients are even.
2. Preliminaries. Let us collect here results concerning the two inequalities which determine the algebraic part of the coefficient body $\left(a_{2}, a_{3}, a_{4}\right)$ in S_{R} (b). The first one follows from the Pawer inequality, mentioned above [7]:

$$
\left\{\begin{array}{l}
a_{4}-2 a_{2} a_{3}+\frac{13}{12} a_{2}^{3}+\frac{b}{2} a_{2}^{2}-\frac{2}{3}\left(1-b^{3}\right)+2 \lambda\left(a_{3}-\frac{3}{4} a_{2}^{2}+b a_{2}\right)+ \tag{1}\\
+\lambda^{2}\left[a_{2}-2(1-b)\right]<0 \\
\lambda \in R .
\end{array}\right.
$$

The equality function of this is defined by the generating fupction $\cos v$ for which [1]. [8]
$\cos \theta=\left\{\begin{array}{l}-1, b<u<0, \\ \frac{1}{3}+\frac{1-3 \lambda}{6} u^{-3 / 2}, \quad(\quad<u<1 ;\end{array}\right.$
$\frac{1}{3}-\frac{4}{3} \sigma^{3 / 2}<\lambda<\frac{1}{3}+\frac{8}{3} \sigma^{3 / 2}$.
The corresponding extremal function f has the first coefficients:

$$
\left\{\begin{array}{l}
a_{2}=2(\sigma-b)-\frac{2}{3}(1-\sigma)+\frac{2}{3}(1-3 \lambda)\left(1-\sigma^{-1 / 2}\right) \tag{4}\\
a_{3}=a_{2}^{2}+\frac{7}{9}+b^{2}-\frac{16}{9} \sigma^{2}-\frac{8}{9}(1-3 \lambda)\left(1-\sigma^{1 / 2}\right)+\frac{1}{9}(1-3 \lambda)^{2}\left(1-\sigma^{-3}\right)
\end{array}\right.
$$

For f there hold the conditions obtained by integrating Löwner's equation for $S_{R}(b)$ in two steps:

$$
\left\{\begin{array}{l}
\sigma^{3 / 2}\left(f_{0}^{3 / 2}-f_{0}^{-3 / 2}\right)+\left(3 \lambda-1+o^{3 / 2}\right)\left(f_{0}^{1 / 2}-f_{0}^{-1 / 2}\right)=z^{3 / 2}-z^{-2 / 2}+3 \lambda\left(z^{1 / 2}-z^{-1 / 2}\right) \tag{5}\\
b^{1 / 2}\left(f^{1 / 2}-f^{-1 / 2}\right)=\sigma^{1 / 2}\left(f_{0}^{1 / 2}-f_{0}^{-1 / 2}\right)
\end{array}\right.
$$

The corresponding extremal domains are of the type $1: 3$ and $3: 3$.
The inequality (1) is sharp on a defined part of the boundary of the coefficient body when optimized by choosing λ so that the left side is maximized. This yields the estimate
$a_{4}<\frac{2}{3}\left(1-b^{3}\right)-\frac{1}{2} b a_{2}^{2}+2 a_{2} a_{3}-\frac{13}{12} a_{2}^{3}-\frac{\left(a_{3}-x_{1} a_{2}^{2}+b a_{2}\right)^{2}}{2(1-b)-a_{2}}$
which is obtained for

$$
\begin{equation*}
\lambda=\frac{a_{3}-3 / 4 a_{2}^{2}+b a_{2}}{2(1-b)-a_{2}} \tag{7}
\end{equation*}
$$

The right side of (6) can further be maximized in a_{3}. This yields for a_{4} an estimate in a_{2} and b :
$a_{4}<-\frac{7}{12} a_{2}^{3}+\frac{1}{2}(4-9 b) a_{2}^{2}+\frac{2}{3}\left(1-b^{3}\right)=G_{1}, \quad\left|a_{2}\right|<2(1-b)$.

This inequality is sharp on the parabola
$1^{\circ}: a_{3}=-\frac{1}{4} a_{2}^{2}+(2-3 b) a_{2}$.
By substituting (9) in (7) we see that on $1^{\circ} \lambda=a_{2}$. The maximum of a_{4} thus gained is sharp so far as 1° remains in a defined subdomain I of the cocfficient region (a_{2}, a_{3}) (cf. [8]). The extremal domains defined by (2)-(3) are of the type 1:3 or 3:3.

The second inequality is the one proved by Jokinen in [1]. It extends the Power inequality and reads

$$
\left\{\begin{array}{l}
a_{4}-2 a_{2} a_{3}+a_{2}^{3}-b^{2} a_{2}+2 \lambda\left(a_{3}-a_{2}^{2}+1-b^{2}\right)<\frac{2}{3}(1+\lambda)^{3} \tag{10}\\
-1<\lambda<0
\end{array}\right.
$$

For the extremal generating function there holds

$$
\begin{align*}
& \cos v=\left\{\begin{array}{l}
-1, b<u<\sigma_{1}, \\
1, \sigma_{1}<u<\sigma_{2}, \\
\frac{1}{3}+\frac{1-3 \lambda}{6} u^{-3 / 2}, \sigma_{2}<u<1 ;
\end{array}\right. \tag{11}\\
& \left\{\begin{array}{l}
\sigma_{2}=\left(\frac{1-3 \lambda}{4}\right)^{2 / 3} \in[b, 1], \\
b<\sigma_{1}<\sigma_{2}<1 .
\end{array}\right. \tag{12}
\end{align*}
$$

The initial coefficients of the corresponding function f are in this case

$$
\left\{\begin{array}{l}
a_{2}=-\frac{2}{3}-2 b+4 \sigma_{1}-4 \sigma_{2}+\frac{8}{3} \sigma_{6}^{3 / 2} \tag{13}\\
a_{3}=a_{2}^{2}+\frac{7}{9}+b^{2}-\frac{32}{9} \sigma_{2}^{3 / 2}+\frac{16}{9} \sigma_{3}^{3}
\end{array}\right.
$$

Lowner's equation, when integrated in three steps for (11), yields for the extremal f :

$$
\left\{\begin{array}{l}
o_{2}^{2 / 2}\left(\int_{\sigma_{2}}^{3 / 2}-f_{\sigma_{2}}^{-3 / 2}\right)-3 o_{2}^{1 / 2}\left(U_{\sigma_{2}}^{1 / 2}-f_{\sigma_{2}}^{-1 / 2}\right)= \tag{14}\\
=z^{3 / 2}-z^{-3 / 2}+\left(1-4 \sigma_{2}^{3 / 2}\right)\left(z^{1 / 2}-z^{-1 / 2}\right) \\
\sigma_{1}^{1 / 2}\left(\delta_{\sigma_{1}}^{1 / 2}+f_{\sigma_{1}}^{-1 / 2}\right)=o_{2}^{1 / 2}\left(f_{\sigma_{2}}^{1 / 2}+f_{\sigma_{2}}^{-1 / 2}\right) \\
b^{1 / 2}\left(f^{1 / 2}-f^{-1 / 2}\right)=\sigma_{1}^{1 / 2}\left(f_{0_{1}}^{1 / 2}-f_{\sigma_{1}}^{-1 / 2}\right)
\end{array}\right.
$$

The extremal domains are of the type 2:3.
The optinized form of (10) reads
$a_{4}<a_{2}^{3}+\left(3 b^{2}-2\right) a_{2}+2\left(a_{2}+1\right) x_{0}^{2}-\frac{4}{3} x_{0}^{3}$
obtained by chousing

$$
\left\{\begin{array}{l}
0<x_{0}=\lambda+1=\sqrt{a_{3}-a_{2}^{2}+1-b^{2}}<1 \tag{16}\\
a_{2}^{2}+b^{2}-1<a_{3}<a_{2}^{2}+b_{3}^{2}
\end{array}\right.
$$

Again, when muximized in a_{3} this gives the maximum of the right side in a_{2} and b :
$a_{4}=\left\{\begin{array}{l}a_{2}^{3}+\left(3 b^{2}-2\right) a_{2}+\frac{2}{3}\left(a_{2}+1\right)^{3}=G_{2} \text { for } a_{2}+1 \geqslant 0, \\ a_{2}^{3}+\left(3 b^{2}-2\right) u_{2}=G_{3} \text { for } a_{2}+1<0 .\end{array}\right.$
The naximizing choice of a_{3} is such that $x_{0}=u_{2}+1$ or $x_{0}=0$ which, in view of (16) implies $\lambda=a_{2}$ or $\lambda=-1$. From (10) we see that we have to restrict the use of (17) for the values $\alpha_{2}<0$. This guarantees the validity of (10).

The upper limit G_{2} is sharp on
$2^{\circ}: a_{3}=2 a_{2}^{2}+2 u_{2}+b^{2}$
and G_{3} gives the sharp upper bound on
$3^{\circ}: a_{3}=a_{2}^{2}-1+b^{2}$.
So far as the parabolic arc 2° lies in the subdomain II (cf. [8]) of $\left(a_{2}, a_{3}\right)$ the estimation (17) remains to be sharp (3° lies on the lower boundary arc of II). The extremal domain connected with 2° is defined by (11) and is of the type $2: 3$. The extremal domain $2: 2$ having two horizontal slits is connected with 3°.
3. The maximizing of b_{3} in $S_{R}(b)$. Rewrite (6) for estimating the combination b_{3} :
$b_{3}-2\left(1-b^{3}\right)<-\frac{3}{2} b a_{2}^{2}+3 a_{2} a_{3}-\frac{9}{4} a_{2}^{3}-3 \frac{\left(a_{3}-y_{4} a_{2}^{2}+b a_{2}\right)^{2}}{2(1-b)-a_{2}}=$
$=\frac{3}{4}\left(2-8 b-a_{2}\right) a_{2}^{2}-\frac{3}{2(1-b)-a_{2}}\left[a_{3}+(2 b-1) a_{2}-\frac{a_{2}^{2}}{4}\right]^{2}<$
$<\frac{3}{4}\left(2-8 b-a_{2}\right) a_{2}^{2}$.
Thus
$\frac{D_{3}}{3}<\frac{2}{3}\left(1-b^{3}\right)+\frac{1-4 b}{2} a_{2}^{2}-\frac{1}{4} a_{2}^{3}=M_{1}\left(a_{2}\right)$
where the equality is reached for
$a_{3}=(1-2 b) a_{2}+\frac{a_{2}^{2}}{4}$.

The value of λ in (7) for (21) is
$\lambda=\frac{a_{2}}{2}$.

Ohserve that we arrive at this choice also by starting from the unoptinized inequality (d) which for b_{3} implies
$\frac{b_{3}}{3}-a_{2} a_{3}+2 \lambda\left(a_{3}-\frac{3}{4} a_{2}^{2}+b a_{2}\right)+\frac{3}{4} a_{2}^{3}+\frac{b}{2} a_{2}^{2}-\frac{2}{3}\left(1-b^{3}\right)+$
$+\lambda^{2}\left\{a_{2}-2(1-b)\right] \leqslant 0$.

The choice (22) eliminates a_{3}, yielding (20).
The sharpness of the estimate can be interpreted in terms of (21); the inequality (20) is sharp as far as the parabola (21) lies in the subdomain I of $\left(a_{2}, a_{3}\right)$ [8]. The equality conditions can also be expressed by aid of (3), (4) and (22): The existence of the equality function (2) is guaranteed by the existence of σ and a_{2}, such that
$\left\{\begin{array}{l}8 \sigma+\left(3 a_{2}-2\right) \sigma^{-2 / 2}-6\left(a_{2}+b\right)=0, \\ \frac{2}{3}-\frac{8}{3} a^{3 / 2}<a_{2}<\frac{2}{3}+\frac{16}{3} a^{3 / 2}, \\ b<a<1 .\end{array}\right.$

Next, rewrite (15) for b_{3} :
$\frac{1}{3} b_{3}<\frac{1}{3} a_{2}^{3}+\left(2 b^{2}-1\right) a_{2}+\left(a_{2}+2\right) x_{0}^{2}-\frac{4}{3} x_{0}^{3}$
where x_{0} includes a_{3} according to (16). When maximizing the right side in x_{0} we obtain $\frac{b_{3}}{3}<\frac{2}{3}+2 b^{2} a_{2}+\frac{1}{2} a_{2}^{2}+\frac{5}{12} a_{2}^{3}=M_{2}\left(a_{2}\right)$.

The equality is reached for
$\lambda+1=x_{0}=\sqrt{a_{3}-a_{2}^{2}+1-b^{2}}=\frac{a_{2}}{2}+1$
i.e. the choice (22) remains to hold for λ. As before, we arrive at the same result by starting from the unoptimized inequality (10), which for b_{3} yields
$\frac{b_{3}}{3}-a_{2} a_{3}+2 \lambda\left(a_{3}-a_{2}^{2}+1-b^{2}\right)+\frac{2}{3} a_{2}^{3}-b^{2} a_{2}<\frac{2}{3}(1+\lambda)^{3}$,
and which by (22) reduces to the form (25).
The sharpness of (25), taken from (26), implies that the parabola
$a_{3}=b^{2}+a_{2}+\frac{5}{4} a_{2}^{2}$
lies in the subdomain II of $\left(a_{2}, a_{3}\right)$ [8]. Similarly, from (12) and (13) we deduce that the cquality function (11) exists provided that the numbers σ_{1} and σ_{2} can be determined to satisfy

$$
\left\{\begin{array}{l}
\sigma_{2}=\frac{1-3 / 2 a_{2}}{4} \tag{28}\\
\sigma_{1}=\sigma_{2}+\frac{a_{2}+b}{2} \\
b<\sigma_{1}<\sigma_{2}<1 .
\end{array}\right.
$$

We will apply (25) for $-2(1-b) \leqslant a_{2} \leqslant-b$ where $a_{2} / 2=\lambda, \lambda \in(-(1-b)$, $-b / 2] \subset[-1,0]$. (20) will be applied for $-b \leqslant a_{2} \leqslant 2(1-b)$.

$$
\frac{b_{3}}{3} \leqslant F\left(a_{2}\right)=\left\{\begin{array}{l}
M_{1}\left(a_{2}\right)=\frac{2}{3}\left(1-b_{3}^{3}\right)+\frac{1-4 b}{2} a_{2}^{2}-\frac{1}{4} a_{2}^{3},-b<a_{2}<2(1-b), \\
M_{2}\left(a_{2}\right)=\frac{2}{3}+2 b^{2} a_{2}+\frac{1}{2} a_{2}^{2}+\frac{5}{12} a_{2}^{3},-2(1-b)<a_{2}<-b
\end{array}\right.
$$

This upper bound is differentiable even at the point $a_{2}=-b$. Observe that the order of M_{1} and M_{2} is changed at this point, because:
$M_{2}\left(a_{2}\right)-M_{1}\left(a_{2}\right)=\frac{2}{3}\left(a_{2}+b\right)^{3}$.
The routs of $M_{2}^{\prime}\left(a_{2}\right)=0$ are denoted by α and β. Denote $\gamma=-b$ and let δ be the non. -vanishing root of $M_{1}^{\prime}\left(a_{2}\right)=0$:

$$
\left\{\begin{array}{l}
\alpha=-\frac{2}{5}-\frac{2}{5} \sqrt{1-10 b^{2}} \tag{30}\\
\beta=-\frac{2}{5}+\frac{2}{5} \sqrt{1-10 b^{2}} \quad\left(0<b<10^{-2 / 2}\right) \\
\gamma=-b \\
\delta=\frac{4}{3}(1-4 b)
\end{array}\right.
$$

The upper bound F of(9 9)always has the local maximum
$M_{2}(\alpha)=\frac{18}{25}-\frac{4}{5} b^{2}+\frac{4}{75}\left(1-10 b^{2}\right)^{3 / 2}$.
The local nature of
$M_{1}(\delta)=\frac{2}{3}\left(1-b_{3}\right)+\frac{8}{27}(1-4 b)^{3}$
depends of the sign of $1-4 b$ as well as on the reality and order of the numbers (29). We omit the comparisons needed to check the following list of orders:

$$
\begin{gathered}
0<b<1 / 4:-2(1-b)<\alpha<\gamma<\beta<0<\delta<2(1-b) \\
b=1 / 4:-2(1-b)<\alpha<\gamma<\beta<\delta=0 \\
3 / 6<b<1 / 13:-2(1-b)<\alpha<\gamma<\beta<\delta<0 \\
b=1 / 13:-2(1-b)<\alpha<\beta=\gamma=\delta<0 \\
1 / 13<b<10^{-1 / 2}:-2(1-b)<\alpha<\beta<\delta<\gamma<0 \\
b=10^{-1 / 2}:-2(1-b)<\alpha=\beta<\delta<\gamma<0 \\
10^{-1 / 2}<b: \delta<\gamma .
\end{gathered}
$$

From this list we read out the alternatives for the local maxima:
$0<b<y_{1}$: local maxima are $M_{2}(\alpha), M_{1}(\delta)$;
$y_{4}<b \leqslant 10^{-1 / 2}$: local maxima are $M_{2}(\alpha), M_{1}(0)$;
$10^{-1 / 2}<b<1$: the global maximum is $M_{1}(0)$.
In order to distinguish between the two competing candidates we have to solve the inequalities $M_{1}(0) \geqslant M_{2}(\alpha)$ and $M_{2}(\alpha) \geqslant M_{1}(\delta)$. This leads to the following:

Result.
$1^{\circ} .0<b<\tilde{b}=0.077^{\circ} 428^{\circ} 918$

$$
\max \frac{b_{3}}{3}=M_{1}(\delta)=\frac{2}{3}\left(1-b^{3}\right)+\frac{8}{27}(1-4 b)^{3}
$$

The extremal domain is of the type $1: 3$ and $\widetilde{b} \in\left(0, x_{1}\right)$ is the root of the equation $M_{2}(\alpha) \equiv M_{1}(\delta)$
2°. $\tilde{b}<b<\tilde{b}=0.302^{\circ} 279^{\circ} 250$
$\max \frac{b_{3}}{3}=M_{2}(\alpha)=\frac{18}{25}-\frac{4}{5} b^{2}+\frac{4}{75}\left(1-10 b^{2}\right)^{3 / 2}$.
The type of the extremal domain is $2: 3$ and $\tilde{b} \in\left(10^{-1 / 2}, 1 / 4\right)$ is the root of $M_{1}(0)=M_{2}(\alpha)$. $3^{\circ} . b<b<1$
$\max \frac{b_{3}}{3}=M_{1}(0)=\frac{2}{3}\left(1-b^{3}\right)$.

The extremal donain is $3: 3$ with three straight radial slits.
Observe, that at the points \widetilde{b} and \widetilde{b} there exist twu different extremal functions, $-a$ phenomenon which holds in similar form also for a_{4} in $S_{R}(b)$ [1].
F.specially in the real unbounded case $S_{R}=S_{R}(0)$ we obtain
$\max b_{3}(0)=\frac{26}{9}$.
4. The functional $a_{4}-a_{2} a_{3}+\frac{a_{2}^{3}}{4}$. Clearly, the above technique is applicable to the
iwo-parametric functional
$B_{3}(p, q)=a_{4}+p a_{2} a_{3}+q a_{2}^{3} ; \quad p, q \in R$.
The results in p and q would remain rather implicit. As a curious example we mention here only the result which concerns the case $p=-1, q=1 / 4$.

Result.

$1^{\circ} .1 / 3<b<1$
$\max B_{3}\left(-1, \frac{1}{4}\right)=\frac{2}{3}\left(1-b^{3}\right)$.
The extremal domain is $3: 3$.
$2^{\circ} .0<b<1 / 3$
$\max B_{3}\left(-1, \frac{1}{4}\right)=\frac{3}{4}-b^{2}+\frac{1}{12}\left(1-8 b^{2}\right)^{3 / 2}$.
The extremal domain is $2: 3$.
$3^{\circ} . b=0$.
There exists also the extremal domain 1:3 for which
$\max B_{3}\left(-1, \frac{1}{4}\right)=\left(\frac{2}{3}\left(1-b^{3}\right)+\frac{(1-4 b)^{3}}{6}\right)_{b=0}=\frac{5}{6}$.
5. The linear combination $a_{4}+\mu a_{2}$. The inequalities (8) and (17) yield the corresponding estimates for $a_{4}+\mu a_{2}$:
$a_{4}+\mu a_{2}<\left\{\begin{array}{l}-\frac{7}{12} a_{2}^{3}+\frac{1}{2}(4-9 b) a_{2}^{2}+\frac{2}{3}\left(1-b^{3}\right)+\mu a_{3}=F_{1},-\frac{2}{3} b<a_{2}< \\ <2(1-b), \\ a_{2}^{3}+\left(3 b^{2}-2\right) a_{2}+\frac{2}{3}\left(a_{2}+1\right)^{3}+\mu a_{2}=F_{2},-1<a_{2}<-\frac{2}{3} b_{1} \\ a_{2}^{3}+\left(3 b^{2}-2\right) a_{2}+\mu a_{2}=F_{3}-2(1-b)<a_{2}<-1 ; b<\frac{1}{2} .\end{array}\right.$

Observe that for $-2(1-b)<a_{2} \leqslant-2 / 3 b F_{3}$ and F_{2} are below F_{1}. Therefore, F_{1} will be limited to the interval $-2 / 3 b<a_{2}<2(1-b)$. Consider the derivatives.

1) $\quad-\frac{2}{3} b<a_{2}<2(1-b) ; \quad F_{1}^{\prime}\left(a_{2}\right)=-\frac{7}{4} a_{2}^{2}+(4-9 b) a_{2}+\mu$

Denote the roots of $F_{1}^{\prime}\left(a_{2}\right)=0$ by
$\alpha_{1}, \alpha_{2}=\frac{2}{7}(4-9 b) \pm \sqrt{\frac{4}{49}(4-9 b)^{2}+\frac{4 \mu}{7}}$.

At $\alpha_{1} F_{1}$ has a local maximum
$F_{1}\left(\alpha_{1}\right)=\frac{2}{3}\left(1-b^{3}\right)+\frac{4}{147}(4-9 b)^{3}+\frac{2}{7}(4-9 b) \mu+\frac{4}{147}\left[(4-9 b)^{2}+7 \mu\right]^{3 / 2}$.
2) $\quad-1<a_{2}<-\frac{2}{3} b ; \quad F_{2}^{\prime}\left(a_{2}\right)=5 a_{2}^{2}+4 a_{2}+3 b^{2}+\mu$

The roots of $F_{2}^{\prime}\left(a_{2}\right)=0$ are
$\beta_{1}, \beta_{2}=-\frac{2}{5} \pm \sqrt{\frac{4}{25}-\frac{3 b^{2}+\mu}{5}}$.

At $\beta_{2} F_{2}$ has a local maximum
$F_{2}\left(\beta_{2}\right)=\frac{22}{25}-\frac{2}{5}\left(3 b^{2}+\mu\right)+\frac{2}{75}\left[4-5\left(3 b^{2}+\mu\right)\right]^{3 / 2}$.
3) $-2(1-b)<a_{2}<-1, b<\frac{1}{2} ; \quad F_{3}^{\prime}\left(a_{2}\right)=3 a_{2}^{2}+3 b^{2}-2+\mu$
$F_{3}^{\prime}\left(a_{2}\right)$ vanishes at
$\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}= \pm \sqrt{\frac{2-3 b^{2}-\mu}{3}}$.
Thus, $\boldsymbol{\gamma}_{\mathbf{2}}$ gives a local maximum for F_{3} :

$$
\begin{equation*}
F_{3}\left(\gamma_{2} j=2\left(\frac{2-3 b^{2}-\mu}{3}\right)^{3 / 2}\right. \tag{37}
\end{equation*}
$$

The upper bound in (31) is differentiable even at the points $-2 / 3 b$ and -1 . Clearly, it has :he maximum for $\left|a_{2}\right|<2(1-b)$.

If the maximum is achieved at α_{1} the sharpness is guaranteed, provided σ and $\alpha_{1}=$ $=a_{2}=\lambda$ can be determined according to (3) and (4) i.e.

$$
\left\{\begin{array}{l}
8 \sigma+\left(6 a_{2}-2\right) \sigma^{-2 / 2}-\left(9 a_{2}+6 b\right)=0 \tag{38}\\
\frac{1}{3}-\frac{4}{3} \sigma^{3 / 2}<a_{2}<\frac{1}{3}+\frac{8}{3} \sigma^{3 / 2} \\
b<a<1
\end{array}\right.
$$

\mathbf{K} the maximum is at β_{2} the sharpness requires, according to (12) and (13), the existence of c_{1}, σ_{2} and $\beta_{2}=a_{2}=\lambda$ such that

$$
\left\{\begin{array}{l}
\sigma_{2}=\left(\frac{1-3 a_{2}}{4}\right)^{2 / 3}, \tag{39}\\
\sigma_{1}=\sigma_{2}+\frac{3 a_{2}+2 b}{4}, \\
b<\sigma_{1}<\sigma_{2}<1 .
\end{array}\right.
$$

The sharpness at the maximizing point γ_{2} requires only that $-2(1-b) \leqslant \gamma_{2} \leqslant-1$, $0<b \leqslant 1 / 2$.

As in Sections 3 and 4 also here the result depends on the order of the possible maximizing points $-2(1-b), \gamma_{2}, \beta_{2}, \alpha_{1}$ and $2(1-b)$ as well as on the order of the corresponding F_{ν}-values. Clearly, a detailed treatment for all values of the parameters μ and b is excessively involved. Therefore, we shall restrict ourselves to some special cases of the parameter μ.

From the expressions of $\alpha_{\nu}, \beta_{\nu}, \gamma_{\nu}$ we see immediately that for a sufficiently large μ the upper bound (31) is monotonously increasing and for μ properly limited from above, monotonously decreasing. Consider the first alternative.

We obtain a lower limit for μ by requiring that
$2(1-b) \leqslant \alpha_{4}=\frac{2}{7}(4-9 b)+\sqrt{\frac{4}{49}(4-9 b)^{2}+\frac{4 \mu}{7}}$
which is equivalent to

$$
\begin{equation*}
\mu>(11 b-1)(1-b) \tag{40}
\end{equation*}
$$

Similarly we see that

$$
\begin{equation*}
\beta_{2}>-1 \tag{4I}
\end{equation*}
$$

if
$\mu>-1-3 b^{2}$.
For values (40) this requirement is automatically true.
If $b<\not / 2$ we have to consider F_{3} for $-2(1-b)<a_{2}<-1$. Because in this interval $\left|a_{2}\right|>1$ and (42) holds, we have
$F_{3}^{\prime}\left(a_{2}\right)=3 a_{2}^{2}+3 b^{2}-2+\mu>3+3 b^{2}-2+\mu>1+3 b^{2}-1-3 b^{2}=0$.
Alogether, if (40) is true the only competing maximizing points are β_{2} and $2(1-b)$. The former one of these exists so far as $\mu<4 / 5-3 b^{2}$. Thus, the comparison is to be performed as far as
$r_{1}=(11 b-1)(1-b)<\mu<\frac{4}{5}-3 b^{2}=r_{2}, \quad b<\frac{3}{4}(1-\sqrt{0.6})=0.169 \ldots$.
For values $b>*(1-\sqrt{0.6})$ there holds
$\frac{4}{5}-3 b^{2}<(11 b-1)(1-b)<\mu$
which implies that β_{2} is non-existent and F_{2} is monotonously increasing. Hence, for these values of b
$\max \left(a_{4}+\mu a_{2}\right)=F_{1}(2(1-b))=4-20 b+30 b^{2}-14 b^{3}+2(1-b) \mu$.
It remains to compare the values $F_{2}\left(\beta_{2}\right)$ and $F_{1}(2(1-b))$ in the cases (43). The number $F_{2}\left(\beta_{3}\right)$ of (35) is maximized in μ at the point $\mu=r_{1}$ because $-\mu \leqslant-r_{1}$. $F_{1}(2(1-b))$ is minimized in μ at the point $\mu=r_{1}$ because $r_{1} \leqslant \mu$. For these values we have finally:
$\max _{\mu} F_{2}\left(\beta_{2}\right)=\frac{1}{5}\left(6.4-24 b+16 b^{2}\right)+\frac{10}{3}\left(0.36-2.4 b+1.6 b^{2}\right)^{3 / 2}<$
$<2(1-b)\left(1+4 b-4 b^{2}\right)=\min _{\mu} F_{1}(2(1-b))$
if $0<b<\pi(1-\sqrt{0.6})$. Equality is reached only at $b=0, \mu=-1$. We thus have:
Result. In $S_{R}(b)$ the linear combination $a_{4}+\mu a_{2}$ is maximized by the left radial--slit-mapping if
$\mu>(11 b-1)(1-b) ;$
$\max \left(a_{4}+\mu a_{2}\right)=4-20 b+30 b^{2}-14 b^{3}+2(1-b) \mu$.
In the case $b=0, \mu=-1$ there exists also another extremal function F of the type 2:2,
$F(z)=\frac{z}{1+z+z^{2}}$.

The existence of the second extremal function follows from (39); $b=0, \mu=-1$; $\beta_{2}=-1 ; \sigma_{2}=1, \sigma_{1}=1 / 4$. Thus F is obtained from (14) as a limit case of
$b\left(f+f^{-1}-2\right)=z+z^{-1}+1$.
From (40) we see that if $\mu \geqslant 25 / 11$ then $a_{4}+\mu a_{2}$ is maximized by the left radial--slit-mapping on the whole interval $0<b<1$. Similarly if $0<\mu<25 / 11$ the same radial-slit-mapping preserves its role for
$0<b<\frac{6-\sqrt{25-11 \mu}}{11}$ and $\frac{6+\sqrt{25-11 \mu}}{11}<b<1$.
If $-1<\mu<0$ the former interval (45) preserves its meaning. Thus, in the present case of two even coefficients, the Zyskowska-type radial-slit maximization ([9]) continues even on the negative side of μ.

Next, try to limit μ from above so that the monotonously decreasing upper bound (31) gives the maximum $F_{3}(-2(1-b))$. This, however, requires that F_{3} is available i.c. $b<1 / 2$.

Suppose that $0<b<1 / 2$ and consider those values of μ for which

$$
\gamma_{2}=-\sqrt{\frac{2}{3}-b^{2}-\frac{\mu}{3}} \leqslant-2(1-b)
$$

$$
\begin{equation*}
\mu<-10+24 b-15 b^{2} \tag{47}
\end{equation*}
$$

For these values of μ the discriminant of α_{1}, α_{2} is estimated:
$\frac{4}{49}(4-9 b)^{2}+\frac{4}{7} \mu<\frac{24}{49}\left[7-4(b-2)^{2}\right]<0$
for $0<b<2-(\sqrt{7} / 2)=0.677 \ldots$. Thus for $0<b<\not / 2 F_{1}^{\prime}<0$. Because $F_{2}^{\prime}(-2 / 3 b)=$ $=F_{1}^{\prime}(-2 / 3 b)$, also $F_{2}^{\prime}(-2 / 3 b)<0$.

The requirement
$\beta_{2}<-1$
holds if
$\mu<-1-3 b^{2}$
which, again, is true for (47). Altogether, the derivative of the upper bound in (31) is negative and $F_{3}(-2(1-b))$ the maximum.

Result. In $S_{R}(b) a_{4}+\mu a_{2}$ is maximized for the right radial-slit-mapping if
$0<b \leqslant \frac{1}{2}, \quad \mu \leqslant-10+24 b-15 b^{2}$;
$\max \left(a_{4}+\mu a_{2}\right)=-4+20 b-30 b^{2}+14 b^{3}-2(1-b) \mu$.
If $b>1 / 2$ the upper bound F_{3} is no more avaible. For these values of b the limitations (16) hold in the whole coefficient body (a_{2}, a_{3}) (the upper limit $a_{2}^{2}+b^{2}$ lies in the complement of (a_{2}, a_{3})). This means that both conditions (6) and (15) are avaible in the wiole (a_{2}, a_{3}). As mentioned above, these upper bounds are maximized on the paraboloe 1° and 2° as far as these lie in the corresponding algebraic part I and II of (a_{2}, a_{3}). Outside these the maximum is to be found on the upper boundary arc of $\left(a_{2}, a_{3}\right)$. This is seen by considering the upper bounds as functions of a_{3}. By aid of lengthly numerical checking we find:

If $\mu<-2+8 b-15 b^{2}$ then $a_{4}+\mu a_{2}$ is maximized by the right radial-slit-mapping in the interval $1 / 2<b<0.746^{\circ} 414^{\circ} 311$. From this limit onwards our methods fails; elliptic extrental functions are beyond the reach of our method, Similarly, the limit $-2+8 b-15 b^{2}$, obtained from our unsharp estimate, is not sharp either.

The functional $a_{4}+\mu a_{2}$ can be maximized by aid of (31) for all those values of μ which lead to algebraic extremal functions controlled by (38) and (39). The checking and comparisons involved can be passed on to computer. However, exact use of inequalities is by no means excluded.

In Figure 1 there is presented the distribution of the types of extremal functions in the $b \mu$-plane. The letters A, \ldots, E indicate the following types of functions and mappings:

```
A= left radial-slit mappling,
B = 2:2 with tworradial slits along the real axis,
C=2:3.
D=3:3 or 1:3,
E = right radial-slit mapping,
```

The arcs on which the types of the extremal functions do change can be distinguished by aid of the points

$$
\begin{aligned}
& P=(0.5,-1.75) \\
& Q=\left(0.718^{\prime} 782^{\circ} 448,-0.781^{\prime} 298^{\circ} 556\right) \\
& R=(0.6,-0.28) \\
& S=(0,-1)
\end{aligned}
$$

Figure 1.

$$
\begin{aligned}
& T=(1,0), \\
& U=(0,-10), \\
& V=\left(0.746^{\circ} 414311,-4.385^{\circ} 700^{\circ} 368\right) .
\end{aligned}
$$

The arc ST belongs to the parabola
$\mu=(11 b-1)(1-b)=-11 b^{2}+12 b-1$.
The arc $R S$ is obtained from $F_{1}\left(\alpha_{1}\right)=F_{2}\left(\beta_{2}\right)$ and reduces to the form
$\mu=-8 b^{2}+6 b-1$.
On $Q R$ there holds $\alpha_{1}=\beta_{2}=-2 / 3 b$, yielding
$\mu=-\frac{47}{9} b^{2}+\frac{8}{3} b$.

On this arc both types C and D exists as the same limit case. Thus, on $Q R$ the extremal function is unique, whereas on $R S$:here exist two different simultaneous extremal functions.

Crossing the arc $T Q$ means that the type D reduces to an elliptic case so that σ decreases below the limit b. Thus we read out from (38) that on TQ

$$
\begin{align*}
& \left\{\begin{array}{l}
\sigma=b, \\
8 a+\left(6 a_{2}-2\right) a^{-L / 2}-\left(9 a_{2}+6 b\right)=0 ;
\end{array}\right. \\
& \left\{\begin{array}{l}
\alpha_{1}=a_{2}=2 \frac{b^{3 / 2}-1}{9 b^{1 / 2}-6}, \\
7 a_{1}^{2}-4(4-9 b) a_{1}-4 \mu=0:
\end{array}\right. \\
& \mu=7\left(\frac{b^{3 / 2}-1}{9 b^{1 / 2}-6}\right)^{2}+(18 b-8) \frac{b^{3 / 2}-1}{9 b^{1 / 2}-6} . \tag{52}
\end{align*}
$$

Crosing $P Q$ means similarly that the type C is shifted on the elliptic region in such a way that σ_{1} decreases below b. (Observe that the upper limit F_{2} yielding C is defined on $-1<a_{2}<-2 / 3 b$. This implies the order $\sigma_{1}<\sigma_{2}$.) From (39) we see that on $P Q$

$$
\left\{\begin{array}{l}
b=o_{1}=\left(\frac{1-3 a_{2}}{4}\right)^{2 / 3}+\frac{3 a_{2}+2 b}{4}, \\
a_{2}=\beta_{2} ;
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\left(2-6 \beta_{2}\right)^{2}-\left(2 b-3 \beta_{2}\right)^{3}=0 \tag{53}\\
\beta_{2}=-0.4-\sqrt{0.16-\frac{3 b^{2}+\mu}{5}} .
\end{array}\right.
$$

The range of B requires that
$-2(1-b) \leqslant \gamma_{2}=-\sqrt{\frac{2-3 b^{2}-\mu}{3}} \leqslant-1$.

The left equality case yields PU:
$\mu=-10+24 b-15 b^{2}$
and the right one gives PS:
$\mu=-1-3 b^{2}$.
As was mentioned above, the equation of PV follows from the condition that for $b>1 / 2$ the unsharp upper bound (31) Lies below the limit belonging to the type E. Thus, the question of the exact region of elliptic types requires more extended analyss of the extremal elliptic cases and lies outside the scope of results available until now.

REFERENCES

[1] Jokinen, O., On the use of Lôwner identities for bounded univalent functions. To appear.
[2] Kortram, R., Tammi, O., Non-homogeneous combinations of reefficients of univalent functions. Ann. Acad. Scl. Fenn. Ser. A I Math., 5 (1980), 131-144.
[3] Lawrynowicz, J., Tammi, O., On estimating a fourth order functional for bounded untualent funcrions. Ann. Acad. Sci. Fenn. Ser. A I 481 (1971), 18.
[4] Sjejka, H., Tammi, O., On maximizing a homogeneous functional in the class of bounded univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math., 6 (1981), 273-288.
[5] Tammi, O., On the maximalization of the coeffictents of schlicht and related functions. Ann. Acad. Scl. Fenn. Ser. A 1114 (1952), SI.
[6] Tammi, O., On the maximalization of the coefficient a, of bounded schlicht functions. Ann. Acad. Scl. Fenn. Ser. A $1 / 49$ (1953), 14.
[7] Tammi, O., Extremum Problems for Bounded Univalent Functlons, Lecture Notes in Mathematics 646, Springer-Verlag, Berlin-Ileidelberg-New York, 1978, 131.
[8] Tammi, O., Extremum Problems for Bounded Untvalent Functions II. Ibid. 913, 1982, 168.
[9] Zyskowska, K., On general estimations of coesficients of bounded symmerric univalent funcslons. To appear.

STRESZCZENIE

Niech $S(b)$ oznacza sodzine funkcji
$f(z)=b z+a_{1} z^{2}+\ldots 0<b<1,|f(z)|<1$
holomorficznych i jednolistnych w kole 1 : $1<1$.
Autor rozwinzuje problem
$\sup \left\{a_{0}+\mu a_{2}: f \in S(b)\right\}$
dia reeczyuristych wartoici parametru μ.

PE310ME

Пусть S (b) обозмачает кіасе функшия
$f(z)=b:+a_{2} z^{2}+\ldots, 0<b<1,|f(z)|<1$
голоморфных н одиналистных в кругі|z| < 1 .
Аатор решаст ириблему
$\sup \quad a_{4}-\mu a_{2}: f \in S(b)$
:лля всшасттиснных значсння парамстра μ.

aNNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

Nakiad 725 egz. +25 nadbitek. Ark. wyd. 10,5 , ark. druk. $11+1$ wklejka. Papier offset., 11 kL spec., B1, 70 g . Oddano do ak tadu w kwiotniu 1983 roku, powiolono w maju 1985 roku. Cena 170,- zk

Skład wykonano w Zakładzie Poligrafii UMCS na IBM Composer 82

ANNALES

UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLIN - POLONIA

VOL. XXXIV
SECTIO A
1980

1. W. Cieslak, A. Kieres: Some Complemented Group of the Isotropy Group.
2. M. Fail, E. 2lotkiewicz: A Variational Method for Grunsky Functions.
3. H. Felińska: Sur quelques problemes d'invariance.
4. M. Franke, D. Szynal: Fixed Points Theorems for Continuous Mappings on Complete, Normed in Probability Spaces.
5. J. Godula: Some Remarks on Bazilevic Functions.
6. Z. Grudzient, D. Szynal: On Distributions and Moments of Order Statistics for Randoin Sample Size.
7. A. Kieres: A Pseudo-Group of Motions of a Certain Pseudo-Riemanian Space.
8. d. G. Krzyz: Coefficient wstimates for Powers of Univalent Functions and Their Inverses.
9. K. W. Morris, D. Szynal: Convergence in Distribution of Multiply-Indexed Arrays, with Applications in MANOVA.
10. A. Wolinska: On a Problem of Dugue for Generalized Characteristic Functions.
11. S. Yamashita: On Quasiconfurinal Extention.

Adresse:

UNIWERSYTET MARII CURIE-SKLODOWSKIEJ

BIURO WYDAWNICTW

Plac Marll
Curio-Sklodowsklej 5. 20.031 LUBLIN
POLOGNE

Cena zil 170, -

