ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

Department of Mathematics
University of Kentucky
Lexington, Kentucky, USA

T.J.SUFFRIDGE

Analytic Functions with Univalent Derivatives

Funkcje analityczne z pochodnymi jednolistnymi

Аналитическве функиии с одноли стными прои эдодныеки

1. Introduction. Let D be the unit disk $\{z:|z|<1\}$ and let E be the family of
 $f^{(n)}(z)$ is univalent in $D, n=0,1,2, \ldots, f^{(0)}(z)=f(z)$. This famuly was studied extensively by Shah and Trimble [3]-[8].

Let $\alpha=\sup \left\{\left|a_{2}\right|: f \in E\right\}$. Shah and Trimble showed that if $f \in E$ then f is entire and $|f(z)|<\left(e^{2 \alpha|z|}-1\right) /(2 \alpha)$ for all z. When $f \in E$, it follows that $\left[f^{(n)}(z)-\right.$ $-n!a_{n} \mid /\left((n+1)!a_{n+1}\right) \in E$ so that $\left|(n+2) a_{n+2} /\left(2 a_{n+1}\right)\right|<\alpha$. By induction, it therefore follows that $\left|a_{n}\right|<(2 \alpha)^{n-1} / n!$. The above inequalities lead one to ask whether
$f_{a}(z)=\sum_{n=1} \frac{(2 \alpha)^{n-1}}{n!} z^{n}=\left(e^{2 \alpha z}-1\right) /(2 \alpha) \in E$.

If so, $\alpha=\pi / 2$ (the largest value of α that makes f univalent in the unit disk) and this led Shah and Trimble to conjecture that $\alpha=\pi / 2$. However, M. Lachance [1] showod that $\alpha>1.5910>\pi / 2+.02$ by showing that $\left(c^{n 2}-1+a\left(z+b z^{2}\right)\right) /(\pi+a) \in E$ where $a=\pi e^{-\pi} / 35$ and $b=18$,

A somewhat simpler counterexample is obtained as follows. Let $h(z)=e^{n^{2}}+c e^{-n^{2}}$ where c is real. Suppose $|z|<1,|w|<1$ and $h(z)=h(w)$. Then $e^{w^{2}}-e^{n w}=c\left(e^{n z}-\right.$ $\left.-e^{m w}\right) e^{-\equiv(z+w)}$ so that $c=e^{\approx(z+w)}$. Hence it follows that h is univalent if $-e^{-2 \pi}<$ $\leqslant c \leqslant e^{-2 \boldsymbol{2}}$. Further, after nornalizing, we conclude that
$h_{c}(z)=\frac{1}{\pi} \sinh \pi z+\frac{1+c}{1-c} \cdot \frac{1}{\pi}(\cosh \pi z-1) \in E$
when $-e^{-2 \pi} \leqslant c \leqslant e^{-2 \pi}$. Selting $c=e^{-2 \pi}$ yields the result
$\max _{f \in E}\left|a_{2 k}\right| \geqslant\left(\pi^{2 k-1} /(2 k)!\right) \operatorname{coth} \pi>\left(\pi^{2 k-1} /(2 k)!\right)(1.0037)$.
In view of these examples, it is somewhat surprising that if $f(z)=z+a_{2} z^{2}+\ldots$ has real coefficients with $a_{2} k+1>0 ; \mathbb{k}=1,2, \ldots$ and if $f \in E$ then $a_{2} k+1 \leqslant \pi^{2 k} /(2 k+1)$! with equality for each of the functions h_{c} given by (1), $-e^{-2 \pi}<c<e^{-2 \pi}$. Similar methods yield' the result: If $f(z)=z+a_{2} z^{2}+\ldots \in E$ has positive coefficients and $f^{(n)}(D)$ is convex for $n=0,1,2, \ldots$ then $a_{k} \leqslant 1 / k!, k=2,3, \ldots$ with equality when $f(z)=e^{2}-1$.
2. Proofs. It is convenient wo write $f(z)=\sum_{k=1}^{\infty} \frac{1}{k!} b_{k} z^{k}$ so that $a_{k}=b_{k} / k!$ and to let E_{p} denote the collection of f in E so that $a_{k}>0$ for each k. We require the following results of PSlya [2].

Lemma 1. Let $f(z)=e^{-c z} f_{1}(z)$ where $c \geqslant 0$, and f_{1} entire of genus zero having only positive zeros with γ the first zero of f. If
$\frac{-z f^{\prime}(z)}{f(z)}=s_{2} z+s_{z} z^{2}+\ldots$
anct
$\frac{1}{f(z)}=v_{0}+t_{1} z+\ldots$
then
$\frac{t_{0}}{t_{1}} \leqslant \frac{t_{1}}{t_{2}} \leqslant \frac{t_{2}}{t_{3}} \leqslant \ldots \leqslant \gamma \leqslant \ldots \leqslant \frac{s_{2}}{s_{3}} \leqslant \frac{s_{1}}{s_{2}}$.
The foffowing lemma is the principal result required to obtain the coefficient bound for the odd coefficients of functions in the class E_{p}.

Lempa 2. If $g(z)=\sum_{k=0} \frac{1}{(2 k+1)!} b_{2 k+1} z^{2 k+1}$ has positive coefficients and $g^{(2 n)}(z)$ is typically real for $n=0,1, \ldots$ then $b_{2} k+1<\pi^{2 k}, k=1,2, \ldots$ with equality if and only if $g(z)=(1 / \pi) \sinh \pi z$.

Proof. First note that $(1 / \pi) \sinh \pi z$ satisfies the hypotheses of the lemma since $\operatorname{lm}\left(\sinh \left(\pi r e^{i \theta}\right)\right)=\cosh (\pi r \cos \theta) \sin (\pi r \sin \theta)$ and the even derivatives of $\sinh z$ are again \sinh 2. Further, it is sufficient to prove $b_{3} \leqslant \pi^{2}$ to obtain $b_{2 k+1} \leqslant \pi^{2 k}$ by induction.

We have the system of inequalities
$\operatorname{lm}\left(g^{(2 n)}(i)\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)!} b_{2(k+n)+1} \geqslant 0$.

Each of the series converges because g is typically real and hence $(1 / 6) \cdot b_{3}<3$. By induction, $b_{2} k+1<(18)^{k}$. We wish to eliminate all the coefficients except b_{3} from the system (2). That is, we wish to chnose $t_{0}=1$ and find $t_{1}, t_{2}, \ldots>0$ (if possible) so that

$$
\begin{equation*}
\sum_{\varepsilon=0} \sum_{k=0}(-1)^{k} t_{\ell} \frac{b_{2(k+\varepsilon)+1}}{(2 k+1)!}=1-\left(\frac{1}{6}-t_{1}\right) b_{3}>0 \tag{3}
\end{equation*}
$$

The coefficient of $b_{2 k+1}, k \geqslant 2$ on the left side of (3) is $t_{k}-(1 / 3!) t_{k-1}+\ldots+$ $+(-1)^{k} \frac{1}{(2 k+1)!}$. Thus, in matrix form we want $A T=t_{1} B+C$ where A is lower triangular with elements $A_{k, 1}=A_{k}-1+1,1=(-1)^{k-j} \frac{1}{(2(k-j)+1)!}$ if $k \geqslant j$, $T=\left[\begin{array}{c}t_{2} \\ t_{3} \\ \vdots\end{array}\right], B$ and C are column vectors with elements $B_{f}=(-1)^{\nu-1} \frac{1}{(2 j+1)!}$ and $C_{j}=B_{j} \cdot 1$. If follows that A^{-1} is lower triangular with equal elements along diagonals. Write $\left(\beta_{j, k}\right)=A^{-1}$ and we then have $\beta_{j+\varepsilon, k+1}=\beta_{j, 1}=\beta_{j-1}$ where $\frac{\sqrt{z}}{\sin \sqrt{z}}=\sum_{j=0}^{\infty} \beta_{j} z^{\prime}$ (because $\frac{\sin \sqrt{2}}{\sqrt{z}}=\sum_{j=1}^{\infty} A_{f, 1} z^{f-1}$). Therefore, the equation $T=A^{-1} B t_{1}+A^{-1} C$ is

$$
\begin{aligned}
& \sum_{k=0} t_{k+2} z^{k}=\frac{\sqrt{z}}{\sin \sqrt{2}}\left[\frac{\sqrt{2}-\sin \sqrt{z}}{z^{2 / 3}} t_{1}-\frac{\sin \sqrt{2}-\sqrt{2}+\frac{z^{3 / 2}}{6}}{z^{5 / 2}}\right]= \\
& =\sum_{k=0}\left(\beta_{k+1}\left(t_{1}-\frac{1}{6}\right)+\beta_{k+2}\right) z^{k}
\end{aligned}
$$

so that $t_{k+2}=\beta_{k+1}\left(t_{1}-\frac{1}{6}\right)+\beta_{k+2}$. We require $t_{k+2} \geq 0, k=0,1, \ldots$ and hence $\frac{\beta_{k+2}}{\beta_{k+1}}>\frac{1}{6}-t_{1}$

By Lemma $1 \frac{\beta_{k+2}}{\beta_{k+1}}$ decreases and has limit $1 / \pi^{2}$ as $k \rightarrow \infty$. Therefore $t_{1}=\frac{1}{6}-\frac{1}{\pi^{2}}$ will imply $t_{k}>0$ for $k=2,3, \ldots$. It remains to show that the scries on the left side of (3) converges for then we have $0<1-\left(\frac{1}{6}-t_{1}\right) b_{3}=1-\frac{1}{\pi^{2}} b_{3}$ with equality if and only if $\operatorname{lm}\left(g^{(2 n)}(i)\right)=0$ for $n=0,1,2, \ldots$. Thus, equality implies $b_{2 k+1}=\pi^{2 k}$ so $g(z)=$ $=\frac{1}{\pi} \sinh \pi z$.

As we have shown, the choice $t_{0}=1, t_{1}=\frac{1}{6}-\frac{1}{\pi^{2}}, \ell_{k}=\beta_{k}-\frac{1}{\pi^{2}} \beta_{k-1}, k \geqslant 2$ will
yield
$0 \leqslant \sum_{R=0}^{N} t_{\ell} \operatorname{lm}\left(g^{(2 \ell)}(i)\right)=$
$=1-\frac{1}{\pi^{2}} b_{3}+\sum_{Q=0}^{N} \sum_{k=N+1}^{\infty}(-1)^{k+\ell} t_{R} \frac{1}{(2(k-\ell)+1)!} b_{2 k+1}$,
$a<1-\frac{1}{\pi^{2}} b_{3}-\sum_{k=N+1}^{\sum_{\ell=N+1}^{k}}(-1)^{k+\ell} t_{\ell} \frac{1}{(2(k-l)+1)!} b_{2 k+1}$.
Now suppose $\beta^{2}=\sup b_{3}$ such that $g(z)=z+\frac{b_{3}}{3!} z^{3}+\ldots$ has the property $g^{(2 n)}(z)$ is typically real for each $n=0,1, \ldots$. Assume $\beta>\pi$ and assume g is chosen so that $b_{3}=\theta^{2}$. Chouse $e>0$ so that $1 / r g(r z)+e z^{3}=g_{p}(z)$ is typically real whenever $r \leqslant \pi / \beta$. Then $g_{e}^{(2 n)}(z)$ is sypically real for each $n=0,1, \ldots$. Applying (4) $10 g_{e}$ with $r<\pi / \beta$ rixed yields
$0<1-\frac{1}{\pi^{2}}\left(b_{3} r^{2}+e\right)-\sum_{k=N+1} \sum_{e=N+1}^{k}(-1)^{k+k} \frac{1}{(2(k-l)+1)!} t_{k} b_{2 k+1} r^{2 k}$
Since $b_{2 k+1} \leqslant \beta^{2 k}$, we have
$\left|\sum_{k=N+1} \sum_{R=N+1}^{k}(-1)^{k+k} \frac{1}{(2(k-\ell)+1)!} t_{k} b_{2 k+1} r^{2 k}\right| \leqslant$

Since $\left((\beta r)^{2 Q} t_{\ell}\right)^{1 / \ell}=(\beta r)^{2} t_{\ell}^{\prime / \ell}=(\beta r)^{2}\left(\beta_{\ell}\right)^{1 / \ell}\left(1-\frac{1}{\pi^{2}} \frac{\beta_{Q}-1}{\beta_{Q}}\right)^{1 / \ell}$ while $(\beta r)^{2}<\pi^{2}$, $1-\frac{1}{\pi^{2}} \frac{\beta_{Q}-\mathbb{Q}}{\beta_{Q}} \rightarrow 0$ and $\lim \sup \left(\beta_{Q}\right)^{1 / R}=\frac{1}{\pi^{2}}$ we conclude $\sum_{\mathbb{Q}=0}(\beta r)^{2 \mathbb{R}} \ell_{Q}$ is convergent so $\sum_{\Omega=N=1}^{\infty}(\beta r)^{2 \ell} t_{\ell} \rightarrow 0$ as $N \rightarrow \infty$. From (5), we now conclude $b_{3} r^{2}+\epsilon<\pi^{2}$ when $r<\pi / \beta$.
Since $b_{3}=\beta^{2}$, letting $r \rightarrow \pi / \beta$ we obtain $\pi^{2}+\epsilon \leqslant \pi^{2}$ which is a contradiction. Hence we must have $\beta=\pi$ and the proof is complete.

We can now easily prove the following theorem.
Theorem 1. If $f(z)=z+a_{2} z^{2}+\ldots$ has the property $f^{(2 n)}(z)$ is typically real for $n=0,1, \ldots$ and $a_{2 k+1}>0, k=1,2, \ldots$, then $a_{2 k+1} \leqslant \pi^{2 k} /(2 k+1)!. f_{j}$ $a_{2 k}>0$ for $k=1,2, \ldots$ and $f^{(2 n+1)}(z)$ is typically real for $n=0,1, \ldots$ then $a_{2} k \leqslant$
$\leqslant 2 a_{2} \pi^{2(k-1)} /(2 k)$!. The inequalities are sharp with equality iff $f(z)=h_{c}(z)$, $c=e^{-2 \pi}$.

Proof. Apply Lemma 2 to $1 / 2(f(z)-f(-z))$ and $\frac{1}{4 a_{2}}\left(f^{\prime}(z)-f^{\prime}(-z)\right)$.
Note that we have not used the full strength of the hypotheses. In Lemma 2, we only require that $b_{2 k+1} \leqslant \beta^{2 k}$ for some β and that $\operatorname{Im}\left(g^{(2 n)}(i)\right) \geqslant 0$.

Now assume $f(z)=z+\frac{b_{2}}{2} z^{2}+\frac{b_{3}}{3!} z^{3}+\ldots$ is in the family E_{p} and that $f^{(k)}(|z|<1)$ is convex for $k=0,1, \ldots$. We know that $z f^{(k)}(z)$ is starlike so $\left|f^{(k)}(z)\right|>$ $>\left|b_{k}\right| / 4$. Therefore, since $f^{(k)}(-r)=b_{k}-r b_{k+1}+\ldots>0$ for small r, we know $f^{k}(-r)>0$ when $0<r<1$. By convexity and the fact that f is entire (so $f^{(k)}(-1)$ exists) we have $\operatorname{Re}\left(z f^{(n+1)}(z) / f^{(n)}(z)+1\right) \geqslant 0, n=1,2, \ldots,|z|<1$ and $-f^{(n+1)}(-1) / f^{(n)}(-1)+1 \geqslant 0$. Multiplying by $f^{(n)}(-1)$ yields $f^{(n)}(-1)-$ $-f^{(n+1)}(-1)>0$. That is,

$$
\begin{equation*}
\bar{\sum}_{k=0}(-1)^{k} \frac{b_{k+n}}{k!}+\frac{k b_{k+n}}{k!} \geqslant 0 \tag{6}
\end{equation*}
$$

This is a system of inequalities and as before, we wish to find $t_{l}>0, t_{1}=1$ so that $0<1-\left(2-t_{2}\right) b_{2}=\sum_{\ell=1} t_{\ell}\left(f^{(\Omega)}(-1)-f^{(\ell+1)}(-1)\right)$.

Since the technique is identical to that used before, we omit the details. We only remark that in the application of Polya's Theorem (Lemma 1), the function $\frac{\sin \sqrt{2}}{\sqrt{2}}$ of the previous proof is replaced by $e^{-z}(1-z)$ Then $t_{2}=1$ and we obtain $0<1-b_{2}$. The final result is the following theorem.

Theorem 2. If $f(z)=z+a_{2} z^{2}+\ldots \in E_{p}$ has the property $f^{(n)}(|z|<1)$ is convex for $n=0,1, \ldots$ then $a_{k} \leqslant 1 / k!$ for $k=2,3, \ldots$ with equality if and only if $f(z)=e^{2}-1$.

Again, we have not used the full strength of the hypotheses. We have only used $f^{(n)}(-1)>0$ for each $n=1,2, \ldots$ and $\operatorname{Re}\left(2 f^{(n+1)}(z) / f^{(n)}(z)+1\right)>0$ when $z=-1$ for each $n=1 ; 2, \ldots$.

REFERENCES

[1] Lachance, M., Remark on funcrions with all derivatives univalent, Internat. J. Math., Math. Sci. 3 (1980). 193-196.
$|2|$ Pdlya, G., Remarks on power series, Acta Sci. Math. (Szeged), 12B (1950), 199-203,
(3) Shah, S. M., Trimble, S. Y., Univalent functions with unlvalens derivarives, Bull. Amer. Math. Soc., 75 (1969), 153 -157; I:rratum, ibid. 75 (1969), 888.
(4) Suffiridge, 1., Univalent functions with univalent derivatives, II, Trans. Amer. Math. Soc., 144 (1969), 313-320.
[S] Suffridge, T., Univalent functions with univalent derivatives, III, J. Math. Mech., 19 (1969), 451-460.
[0] Suffridge, T., Entire functions with univalent derivarives, J. Math. Anal. Appl. 33 (1971), 220-229; Errata, tbld. 35 (1971), 692.
[7] Suffridge, T., Entite functions with some derivatives untwalent, J. Math. Anal. Appl., 46 (1974), 395 - 409.

18] Suffridge, T., Analytic functions with untuatent derivatives, Indian J. Math., 20 (1978), 265-299.

STRESZCZENIE

Załózmy, ie E jest klasq funkgi

$$
f(z)=8+\sum_{k=2}^{\sum} a_{k} z^{k}
$$

jednolistnych w kole $|z|<1$ itakich, te $f^{(n)}(z), n=1,2, \ldots$ sq funkcjami jednolistnymi.
Dowodzi sị, te jezeli
$f(z)=\overline{f(\bar{z})}, a_{2 k+1}>0, k=1,2, \ldots$, to $a_{2 k+1}<2 k /(2 k+1) t$.
Jezeli $f \in E, a_{k}(f)>0$ if $(|z|<1)$ jest obszarem wypuk łym, to $a_{k} \leqslant 1 / k$!.

PEЗIOME

Пусть E' класс функции $^{\text {к }}$
$f(z)=z+\sum_{k=a}^{\sum_{0}} a_{k} z^{k}$
однотистных в круге $|z|<1$ к таких что $f^{(n)}(z), n=1,2, \ldots$, идлолистные фуккиим. Доказывается, что если
$f(z)=\overline{f(\Sigma)}, a_{2 k, 1}>0, k=1,2,3, \ldots$, то $a_{2 k}, 1<2 k /(2 k+1)!$.
Если $f \in E^{\prime}, a_{k}(f)>0$ н $f(|z|<1)$ винукиих область, то $a_{k} \leqslant 1 / k \mid$.

