ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN-POLONIA

VOL. XXXVI/XXXVII, 18

SECTIO A

1982/1983

Department of Mathematics University of Kentucky Lexington, Kentucky, USA

T.J.SUFFRIDGE

Analytic Functions with Univalent Derivatives

Funkcje analityczne z pochodnymi jednolistnymi

Аналитические функции с однолистными производными

1. Introduction. Let D be the unit disk $\{z : |z| < 1\}$ and let E be the family of functions $f(z) = z + a_2 z^2 + ...$ that are analytic in D and such that the n^{th} derivative $f^{(n)}(z)$ is univalent in D, $n = 0, 1, 2, ..., f^{(0)}(z) = f(z)$. This family was studied extensively by Shah and Trimble [3] - [8].

Let $\alpha = \sup \{|a_2| : f \in E\}$. Shah and Trimble showed that if $f \in E$ then f is entire and $|f(z)| \leq (e^{2\alpha |z|} - 1) / (2 \alpha)$ for all z. When $f \in E$, it follows that $[f^{(n)}(z) - n! a_n] / ((n + 1)! a_{n+1}) \in E$ so that $|(n + 2)a_{n+2} / (2a_{n+1})| \leq \alpha$. By induction, it therefore follows that $|a_n| \leq (2\alpha)^{n-1} / n!$. The above inequalities lead one to ask whether

 $f_{\alpha}(z) = \sum_{n=1}^{\infty} \frac{(2\alpha)^{n-1}}{n!} z^n = (e^{2\alpha z} - 1) / (2\alpha) \in E.$

If so, $\alpha = \pi/2$ (the largest value of α that makes f univalent in the unit disk) and this led Shah and Trimble to conjecture that $\alpha = \pi/2$. However, M. Lachance [1] showed that $\alpha > 1.5910 > \pi/2 + .02$ by showing that $(e^{\pi z} - 1 + a(z + bz^2))/(\pi + a) \in E$ where $a = \pi e^{-\pi}/35$ and b = 18,

A somewhat simpler counterexample is obtained as follows. Let $h(z) = e^{\pi z} + ce^{-\pi z}$ where c is real. Suppose |z| < 1, |w| < 1 and h(z) = h(w). Then $e^{\pi z} - e^{\pi w} = c(e^{\pi z} - e^{\pi w})e^{-\pi(z+w)}$ so that $c = e^{\pi(z+w)}$. Hence it follows that h is univalent if $-e^{-2\pi} \le \le c \le e^{-2\pi}$. Further, after normalizing, we conclude that

$$h_{c}(z) = \frac{1}{\pi} \sinh \pi z + \frac{1+c}{1-c} \cdot \frac{1}{\pi} (\cosh \pi z - 1) \in E$$
(1)

when $-e^{-2\pi} \le c \le e^{-2\pi}$. Setting $c = e^{-2\pi}$ yields the result

 $\max_{f \in E} |a_{2k}| \ge (\pi^{2k-1}/(2k)!) \coth \pi \ge (\pi^{2k-1}/(2k)!) (1.0037).$

In view of these examples, it is somewhat surprising that if $f(z) = z + a_2 z^2 + ...$ has real coefficients with $a_{2,k+1} > 0$; k = 1, 2, ... and if $f \in E$ then $a_{2,k+1} \leq \pi^{2,k} / (2, k+1)!$ with equality for each of the functions h_c given by $(1), -e^{-2\pi} \leq c \leq e^{-2\pi}$. Similar methods yield the result: If $f(z) = z + a_2 z^2 + ... \in E$ has positive coefficients and $f^{(n)}(D)$ is convex for n = 0, 1, 2, ... then $a_k \leq 1/k!, k = 2, 3, ...$ with equality when $f(z) = e^{z} - 1$.

2. Proofs. It is convenient to write $f(z) = \sum_{k=1}^{\infty} \frac{1}{k!} b_k z^k$ so that $a_k = b_k/k!$ and to

let E_p denote the collection of f in E so that $a_k > 0$ for each k. We require the following results of Pólya [2].

Lemma 1. Let $f(z) = e^{-cz} f_1(z)$ where $c \ge 0$, and f_1 entire of genus zero having only positive zeros with γ the first zero of f. If

$$\frac{-zf'(z)}{f(z)} = s_1 z + s_2 z^2 + \dots$$

and

$$\frac{1}{f(z)} = t_0 + t_1 z +$$

then

$$\frac{t_0}{t_1} \leq \frac{t_1}{t_2} \leq \frac{t_2}{t_3} \leq \dots \leq \gamma \leq \dots \leq \frac{s_2}{s_3} \leq \frac{s_{\nu}}{s_2}$$

The following lemma is the principal result required to obtain the coefficient bound for the odd coefficients of functions in the class E_p .

Lemma 2. If $g(z) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} b_{2k+1} z^{2k+1}$ has positive coefficients and

 $g^{(2n)}(z)$ is typically real for n = 0, 1, ... then $b_{2k+1} \leq \pi^{2k}$, k = 1, 2, ... with equality if and only if $g(z) = (1/\pi) \sinh \pi z$.

Proof. First note that $(1/\pi) \sinh \pi z$ satisfies the hypotheses of the lemma since $\operatorname{Im}(\sinh(\pi r e^{i\theta})) = \cosh(\pi r \cos\theta) \sin(\pi r \sin\theta)$ and the even derivatives of $\sinh z$ are again $\sinh z$. Further, it is sufficient to prove $b_3 \leq \pi^2$ to obtain $b_{2k+1} \leq \pi^{2k}$ by induction.

We have the system of inequalities

$$\operatorname{Im}\left(g^{(2n)}(i)\right) = \sum_{k=0}^{\infty} (-1)^{k} \frac{1}{(2k+1)!} \ b_{2(k+n)+1} \ge 0.$$
⁽²⁾

Each of the series converges because g is typically real and hence $(1/6) \cdot b_3 \leq 3$. By induction, $b_{2k+1} \leq (18)^k$. We wish to eliminate all the coefficients except b_3 from the system (2). That is, we wish to choose $t_0 = 1$ and find $t_1, t_2, ... \geq 0$ (if possible) so that

$$\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} (-1)^{k} t_{k} \frac{b_{2}(k+2)+1}{(2k+1)!} = 1 - (\frac{1}{6} - t_{1}) b_{3} \ge 0$$
(3)

The coefficient of b_{2k+1} , $k \ge 2$ on the left side of (3) is $t_k - (1/3!) t_{k-1} + \dots + \dots$

+ $(-1)^k \frac{1}{(2k+1)!}$. Thus, in matrix form we want $AT = t_1B + C$ where A is lower triangular with elements $A_{k, j} = A_{k-j+1, 1} = (-1)^{k-j} \frac{1}{(2(k-j)+1)!}$ if $k \ge j$, $T = \begin{pmatrix} t_2 \\ t_3 \\ \vdots \end{pmatrix}$, B and C are column vectors with elements $B_j = (-1)^{j-1} \frac{1}{(2j+1)!}$ and $C_j = B_{j+1}$. If follows that A^{-1} is lower triangular with equal elements along diagonals. Write $(\beta_{j, k}) = A^{-1}$ and we then have $\beta_{j+k, k+1} = \beta_{j, 1} = \beta_{j-1}$ where $\frac{\sqrt{z}}{\sin\sqrt{z}} = \sum_{j=0}^{\infty} \beta_j z^j$ (because $\frac{\sin\sqrt{z}}{\sqrt{z}} = \sum_{j=1}^{\infty} A_{j, 1} z^{j-1}$). Therefore, the equation $T = A^{-1} Bt_1 + A^{-1} C$ is equivalent to

$$\sum_{k=0}^{\infty} t_{k+2} z^k = \frac{\sqrt{z}}{\sin\sqrt{z}} \left[\frac{\sqrt{z} - \sin\sqrt{z}}{z^{2/3}} t_1 - \frac{\sin\sqrt{z} - \sqrt{z} + \frac{z^{3/2}}{6}}{z^{5/2}} \right] = \sum_{k=0}^{\infty} \left(\beta_{k+1} \left(t_1 - \frac{1}{6}\right) + \beta_{k+2}\right) z^k$$

so that $t_{k+2} = \beta_{k+1} (t_1 - \frac{1}{6}) + \beta_{k+2}$. We require $t_{k+2} \ge 0, k = 0, 1, ...$ and hence $\frac{\beta_{k+2}}{\beta_{k+1}} \ge \frac{1}{6} - t_1.$

By Lemma 1 $\frac{\beta_{k+2}}{\beta_{k+1}}$ decreases and has limit $1/\pi^2$ as $k \to \infty$. Therefore $t_1 = \frac{1}{6} - \frac{1}{\pi^2}$ will imply $t_k > 0$ for k = 2, 3, It remains to show that the series on the left side of (3) converges for then we have $0 \le 1 - (\frac{1}{6} - t_1)b_3 = 1 - \frac{1}{\pi^2}b_3$ with equality if and only if Im $(g^{(2n)}(i)) = 0$ for n = 0, 1, 2, Thus, equality implies $b_{2k+1} = \pi^{2k} \operatorname{so} g(z) =$ $= \frac{1}{4} - \frac{1}{2} \sinh \pi z$. As we have shown, the choice $t_0 = 1$, $t_1 = \frac{1}{6} - \frac{1}{\pi^2}$, $t_k = \beta_k - \frac{1}{\pi^2}\beta_{k-1}$, $k \ge 2$ will yield

$$0 \leq \sum_{k=0}^{N} t_{k} \ln (g^{(2k)}(i)) =$$

= $1 - \frac{1}{\pi^{2}} b_{3} + \sum_{k=0}^{N} \sum_{k=N+1}^{\infty} (-1)^{k+k} t_{k} \frac{1}{(2(k-k)+1)!} b_{2k+1},$

$$0 \le 1 - \frac{1}{\pi^2} b_3 - \sum_{k=N+1}^{\infty} \sum_{\substack{\ell=N+1\\ \ell = N+1}}^{k} (-1)^{k+\ell} t_{\ell} \frac{1}{(2(k-\ell)+1)!} b_{2k+1}.$$
(4)

Now suppose $\beta^2 = \sup b_3$ such that $g(z) = z + \frac{b_3}{3!} z^3 + ...$ has the property $g^{(2n)}(z)$ is

typically real for each n = 0, 1, Assume $\beta > \pi$ and assume g is chosen so that $b_3 = \beta^2$. Choose e > 0 so that $1/r g(rz) + ez^3 = g_e(z)$ is typically real whenever $r \le \pi / \beta$. Then $g_e^{(2n)}(z)$ is typically real for each n = 0, 1, Applying (4) to g_e with $r \le \pi/\beta$ fixed yields

$$0 \le 1 - \frac{1}{n^2} (b_3 r^2 + e) - \sum_{k=N+1}^{\infty} \sum_{\varrho=N+1}^{k} (-1)^{k+\varrho} \frac{1}{(2(k-\varrho)+1)!} \iota_{\varrho} b_{2k+1} r^{2k}$$
(5)

Since $b_{2k+1} \leq \beta^{2k}$, we have

$$\Big|\sum_{k=N+1}^{\infty}\sum_{\substack{\varrho=N+1}}^{k} (-1)^{k+\varrho} \frac{1}{(2(k-\varrho)+1)!} t_{\varrho} b_{2k+1} r^{2k}\Big| \leq$$

$$\leq \sum_{\varrho=N+1}^{\Sigma} \sum_{k=\varrho}^{\Sigma} (\beta r)^{2k} t_{\varrho} \frac{1}{(2(k-\varrho)+1)!} = \sum_{\varrho=N+1}^{\Sigma} (\beta r)^{2\varrho} t_{\varrho} \frac{\sinh\beta r}{\beta r}$$

Since $((\beta r)^{2\varrho} t_{\varrho})^{1/\varrho} = (\beta r)^2 t_{\varrho}^{1/\varrho} = (\beta r)^2 (\beta_{\varrho})^{1/\varrho} (1 - \frac{1}{\pi^2} \frac{\beta_{\varrho-1}}{\beta_{\varrho}})^{1/\varrho}$ while $(\beta r)^2 < \pi^2$. $1 - \frac{1}{\pi^2} \frac{\beta_{\varrho-1}}{\beta_{\varrho}} \to 0$ and $\lim \sup (\beta_{\varrho})^{1/\varrho} = \frac{1}{\pi^2}$ we conclude $\sum_{\varrho=0}^{\overline{\nu}} (\beta r)^{2\varrho} t_{\varrho}$ is convergent so $\sum_{\varrho=N+1}^{\overline{\nu}} (\beta r)^{2\varrho} t_{\varrho} \to 0$ as $N \to \infty$. From (5), we now conclude $b_3 r^2 + e \le \pi^2$ when $r < \pi/\beta$. Since $b_3 = \beta^2$, letting $r \to \pi/\beta$ we obtain $\pi^2 + e \le \pi^2$ which is a contradiction. Hence we must have $\beta = \pi$ and the proof is complete.

We can now easily prove the following theorem.

Theorem 1. If $f(z) = z + a_2 z^2 + ...$ has the property $f^{(2n)}(z)$ is typically real for n = 0, 1, ... and $a_{2k+1} > 0$, k = 1, 2, ..., then $a_{2k+1} \le \pi^{2k} / (2k+1)! J_j$ $a_{2k} > 0$ for k = 1, 2, ... and $f^{(2n+1)}(z)$ is typically real for n = 0, 1, ... then $a_{2k} \le \pi^{2k}$ $\leq 2a_2 \pi^{2(k-1)} / (2k)!$. The inequalities are sharp with equality iff $f(z) = h_c(z)$, $c = e^{-2\pi}$.

Proof. Apply Lemma 2 to $\frac{1}{2}(f(z) - f(-z))$ and $\frac{1}{4a_2}(f'(z) - f'(-z))$.

Note that we have not used the full strength of the hypotheses. In Lemma 2, we only require that $b_{2k+1} \leq \beta^{2k}$ for some β and that $\operatorname{Im}(g^{(2n)}(i)) \geq 0$.

Now assume $f(z) = z + \frac{b_2}{2}z^2 + \frac{b_3}{3!}z^3 + \dots$ is in the family E_p and that

 $f^{(k)}(|z| < 1)$ is convex for k = 0, 1, We know that $zf^{(k)}(z)$ is starlike so $|f^{(k)}(z)| \ge |b_k|| / 4$. Therefore, since $f^{(k)}(-r) = b_k - rb_{k+1} + ... > 0$ for small r, we know $f^k(-r) > 0$ when $0 \le r \le 1$. By convexity and the fact that f is entire (so $f^{(k)}(-1)$ exists) we have Re $(z f^{(n+1)}(z) / f^{(n)}(z) + 1) \ge 0, n = 1, 2, ..., |z| \le 1$ and $-f^{(n+1)}(-1) / f^{(n)}(-1) + 1 \ge 0$. Multiplying by $f^{(n)}(-1)$ yields $f^{(n)}(-1) - f^{(n+1)}(-1) \ge 0$. That is,

$$\sum_{k=0}^{\infty} (-1)^k \frac{b_{k+n}}{k!} + \frac{kb_{k+n}}{k!} \ge 0.$$
 (6)

This is a system of inequalities and as before, we wish to find $t_g \ge 0$, $t_1 = 1$ so that

$$0 \le 1 - (2 - t_2) b_2 = \sum_{\ell=1}^{\infty} t_{\ell} \left(f^{(\ell)} \left(-1 \right) - f^{(\ell+1)} \left(-1 \right) \right)$$

Since the technique is identical to that used before, we omit the details. We only remark

that in the application of Pólya's Theorem (Lemma 1), the function $\frac{\sin \sqrt{z}}{\sqrt{z}}$ of the

previous proof is replaced by $e^{-z}(1-z)$ Then $t_2 = 1$ and we obtain $0 \le 1 - b_2$. The final result is the following theorem.

Theorem 2. If $f(z) = z + a_1 z^2 + ... \in E_p$ has the property $f^{(n)}(|z| < 1)$ is convex for n = 0, 1, ... then $a_k \le 1/k!$ for k = 2, 3, ... with equality if and only if $f(z) = e^2 - 1$.

Again, we have not used the full strength of the hypotheses. We have only used $f^{(n)}(-1) > 0$ for each n = 1, 2, ... and Re $(zf^{(n+1)}(z) / f^{(n)}(z) + 1) > 0$ when z = -1 for each n = 1, 2, ...

REFERENCES

- Lachance, M., Remark on functions with all derivatives univalent, Internat. J. Math., Math. Sci. 3 (1980), 193-196.
- [2] Polya, G., Remarks on power series, Acta Sci. Math. (Szeged), 12B (1950), 199-203,
- [3] Shah, S. M., Trimble, S. Y., Univalent functions with univalent derivatives, Bull. Amer. Math. Soc., 75 (1969), 153-157; Erratum, Ibid. 75 (1969), 888.
- [4] Suffridge, T., Univalent functions with univalent derivatives, II, Trans. Amer. Math. Soc., 144 (1969), 313-320.

- [5] Suffridge, T., Univalent functions with univalent derivatives, III, J. Math. Mech., 19 (1969), 451-460.
- [6] Suffridge, T., Entire functions with univalent derivatives, J. Math. Anal. Appl. 33 (1971), 220-229; Errata, ibid. 35 (1971), 692.
- [7] Suffridge, T., Entire functions with some derivatives univalent, J. Math. Anal. Appl., 46 (1974), 395-409.
- [8] Suffridge, T., Analytic functions with univalent derivatives, Indian J. Math., 20 (1978), 265-299.

STRESZCZENIE

Załóżmy, że E jest klasą funkcji

 $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$

jednolistnych w kole | z | < 1 i takich, że f⁽ⁿ⁾(z), n = 1, 2, ... są funkcjami jednolistnymi. Dowodzi się, że jeżeli

$$f(z) = f(\overline{z}), a_{2k+1} > 0, k = 1, 2, ..., \text{ to } a_{2k+1} \le 2k/(2k+1)!$$

Jeżeli $f \in E$, $a_k(f) > 0$ i f(|z| < 1) jest obszarem wypukłym, to $a_k < 1/k!$.

PESIOME

Пусть Е класс функция

 $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$

однолистных в круге |z| < 1 и таких что $f^{(n)}(z)$, n = 1, 2, ..., однолистные функции. Доказывается, что если

$$f(z) = f(\overline{z}), a_{2k+1} > 0, k = 1, 2, 3, ..., \text{ to } a_{2k+1} < 2k/(2k+1)!.$$

Если $f \in E$, $a_k(f) > 0$ и f(|z| < 1) вылуклая область, то $a_k < 1/k!$.