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Analytic Functions with Univalent Derivatives
Funkcje analityczne z pochodnymi jednolistnymi

AHanHTHYECKYE QYHKUMI C OLHONH CTHBIMIt NPOK 2RO AH VK

1. Introduction, Let D be the unit disk {z 1z1< 1} and let £ be the family of
functions f (z) = z + a; z* + ... that are analytic in B apd such that the n™ derivative
£ ™(2) is univalent in D, n = 0, 1, 2, L ON2) = £(2). This family was studied ex-
tensively by Shah and Trimble [3] — [8].

leta=sup {la, |:f€E].Shahand Trimble showed that if f€ K then f is entire
and | £(z) | < (€22~ 1) / (2 a) for all z. When f€ E, it follows that [ f{"z)—
—n'ay) | ((n+1)ay,,)EEsothat|(n+2)an,,/(2ay,,)|<a.Byinduction,
it therefore follows that | @, | < (2a)" ™ ' / n!. The above inequalities lead one to ask
whether

- (2a)n =1
fa@= 3 — "=(**-1)/Qa)EE

ney n!

If so, a = n/2 (the largest value of a that makes f univalent in the unit disk) and this led
Shah and Trimble to conjecture that a = ®/2. However, M. Lachance [1] showed that
a>1.5910 > n/2 + .02 by showing that (¢"* — | +a (z + bz*) )/ (n + a) E E where
a=mne "/35and b =18,

A somewhat simpler counterexample is obtained as follows. Let & (2) =" + ce”
where c is real. Suppose | z | < 1,|w|<1andh(z)=h (w). Then et —e™ =c(e” —
—e™)e "W o that ¢ = ¢* @ * %), Hence it follows that h is univalent if —¢~ 2* <
< c < e~ 2" Further, after normalizing, we conclude that

| I+ ¢ |
he (2)= ; sinh nz + Yy . ;(coshnz-l)EE 1)

when —e™ 2" <c<e™ 2" Settingc = e~ " yields the result
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max lagx |3 (% =1/ (2k)!) coth n > (n**~ 1/ (2k)!) (1.0037) .
€

In view of these examples, it is somewhat surprising that if f(z) =z +a; 2> + ... has
real coefficientswith-ay . y >0:k=1,2, ... and if fE E thena,k,; < ik [k +1)
with equality for each of the functicns h¢ given by (1), — e~ ** K c < e~ ", Similar
methods yield' the result: If f (z) = z + a; z* + ... € E has positive coefficients and
i (")(D) is convex forn =0, 1, 2, ... then ax < 1/k!, k = 2, 3, ... with equality when
f(z)=e*—1. - 1

2. Proofs. It is convenicntio write f (2) = kE ) ;T b z* 5o that ay = by [k! and to
let Ep denote the collection of fin £ so that ax > O for each k. We require the féllowing
results of Pélya [2].

Lemma 1. Let f(z) = e~ €% f, (z) where ¢ > 0, and f, entire of genus zero having only
positive zeros with 7y the first zero of f. If

—zf' () iR 2
@ SNz+tnz' +
and
STy Y.
@y hard W
then

t 4 4 s &
i B B i b i iy
t 123 t3 $3 $3

The feflowing lemma is the principal result required to ebtain the coefficient bound
for the odd coefficients of functions in the class £p.

Lemma 2. If g (2) = *E . Z2k-l+_l)' brke s 8 K+t pgg positive coefficients and
83")(z) is typically real forn =0, 1, ... then byg , , < n"‘, k = 1,2, ... with equality
if and only if g (z) = (1/7) sinh nz.

Proof. First note that (1/7) sinh 7z satisfies the hypotheses of the lemma since
Im (sinh (irre“’) ) = cosh (ar cos @) sin (7 sin 8) and the even derivatives of sinh z are
again sinh z. Further, it is sufficient to prove by < a” to obtain byx 4 ; < nk by in-
duction.

We have the system of inequalities

Im (@™ ()= (-1} bakenyey >0. @)

2k + 1)
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Each of the series converges because g is typically real and hence (1/6) « by < 3.By

induction, b,k + , < (18)k. We wish to eliminate all the coefficients except by from the
system (2). That is,we wish to choose o = 1 and find t,, f3, ... 2 O (if possible) so that

- - b k.
T T (—)fy, et

I b
=0 k=0 (2k+l)' =l_(.6'-t|)b)>0 (3)

The coefficient of b,k , ,, kK > 2 on the left side of (3)istg — (1/3) tx-y + .. +

+ (- l)‘-t -(m . Thus, in matrix form we want AT = ¢, B + C where A is lower

1
triangular with elements A = A - ==k itk > ,
iangula kJ=Ak - jer1, 2= 1) Ck—p+ 1 j

/
T= ri , B and C are column vectors with elements By = (— 1y-! ——— and
: 27+ 10!

C= /: .. If follows that 47 ! is lower triangular with equal elements along  diagonals.

»

Write (8; k) =A™ "' and we then have fj. ¢, ¢+ =B,  =Bj-, where ——— = I ﬂiz/
s sinv/z J=0
. sin /2 = .
(because ———— = T A4, , 2/~ '). Therefore, the equation T=A"" Br, + A~ Cis
Ve Jor

equivalent to

~ g vz [ Vz = sinVz - sin\/;_\/;_’_%lf!‘,

L lkerz = ) Y

kao sm\/?

z

]
= X (Brey (0= =) +Breq) 2k
ke=o 6

l
sothat fx o 3 = Bre, () — g)+Bk.z,Wcrequiretk,,>0,k=0,l,...andhcnce

B 1
HD S = i
Bk o 1 6
ﬁk | . 2 ] 1
By Lemma | decreases and has limit 1/a* as k = ¢, Therefore ¢, = E - =
k e 1 n

will imply rx > 0 for k = 2, 3,... . It remains to show that the scries on the left side of
1 |

(3) converges  for then we have 0< l—(g —1)by=1 —;;b’ with equality if and only

if Im (g®")(i))=0forn=0,1,2,....Thus, equality impliesb, 5, , = nk sog(2)=

|
— sinh nz.
n
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1 1 1
As we have shown, the choice tp = 1,#; = — — = otk =Bk — —7Bk-y k> 2 will
yield 6 Lt G-

N
0<n£ 1 Im g9 i))=
=0

I N ol ke
=l——b+ 2 I (=1)**%, ———— bykes
T eeokaNei QK- +1)
0<1— ~ b o £ rery : b ()
0 kANe1 dsNod U TR B i

b
Now suppose f* = sup b, such that g (z) =z + ?::-z’ + ... has the property g®™)(z) is

typically real for each n =0, 1, ... . Assume § > m and assume g is chosen so that by = 8%,
Choause e > 0 so that 1/r g (rz) + ez® = g, (2) is typically real whenever r < n / . Then
gﬁ’")(z) is typically real for each n = 0, |, ... . Applying (4) to g, with r < n/g fixed
yields

1
01— — (bs PP +e)— % & — ket ————— bk P
n’(’ ) k-N+|9-N+l( ) Q-+ 1y rke )

Since bk + ; <%, we have

- & - l
z z —lt'g_____.___._..' b L
k-Nvlﬂ-Nu( 2 Quk—o+1p aken t I
> p> z sinh fr
< 2z T rzkl e = 3 TR E
- k'“(p) Cek-n+y Q-Nol(a) B

| -
Since ( (Br)** 1) = (Br)* of* = @r)* (Be)"* (1 - = ﬂ"T'— )€ while (Br)® < x?
b fe-y ’

I -
- - =0 and lim sup (B)"* = — weconclude T (Br)" r¢ is convergent so
m Re0

By

QEN 1 ®Br)** 1 + 0as N+, From (5), we now conclude by r* + e < n? whenr < n/B.
a/N4
Since by = B2, letting r -» n/B we obtain 7 4 € < #* which is a contradiction. Hence
we must have § = m and the proof is complete.

We can now easily prove the following theorem.

Theorem 1. If f (z) =z + a; z* + ... has the property f3")(z) is typically real
Jor n=0,1,.. and a36,,>0, k=1,2, .. then ax,, <m*X [ Qk + 1).4
Gk >0 for k=1,2,.. and fG"* 1)z) istypically real for n=0,1,... then a,x <
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<2a PPV y (2k)!. The inequalities are sharp with equality iff f(2) = he (2),
c=e %",
|
Proof. Apply Lemma 2to % (f(z)—f(—2))and 2
a;

(f'@)=f'(2)).

Note that we have not used the full strength of the hypotheses. In Lemma 2, we only
require that b, , y < B*¥ for some f and that Im (g2")(i))> 0.

z* + .. isin the family Ep and that

Ay i
Now assume f(z) =z + 2,

2 3!
S®(1z1<1)is convex fork =0, 1, ... . We know that zf *)(z) is starlike so | f*)(z) | >
> | b | / 4. Therefore, since £ ¥)(—r) = bx — rby ,  + .. >0 for small r, we know
¥ (=r)>0when 0< r <1.By convexity and the fact that £ is entire (so f ¥)(— 1)
exists) we have Re  f@* 1V @)/ f™ @)+ 1)>0,n=1,2,.., |z|<1and
— WD 1) (= 1) + 1 > 0. Multiplying by £ (= 1) yields £(—1)—
—f?"* 1) (—1)>0. That is,

- bkon kbkoll
T (—Dk + >0. 6
k-o( ) k! k! (©)

This is a system of inequalities and as before, we wish 10 find 2, 2 0,7, = 1 so that

0<I-Q=t)by= £ to(fPDH—rE*V=1n).
1

Q=

Since the technique is identical to that used before, we omit the details. We only remark

sin vz
that in the application of Pblya's Theorem (Lemma 1), the function —7__— of the

previous proof is replaced by ¢ % (1 —z) Then 73 = 1 and we obtain 0 < | —b,. The
final result is the following theorem.
Theorem 2. If f(z)=z2+a; 2 + .. € Ey has the property f(")( |z | <1)is convex
forn=0,1,.. thenay < 1[k! fork = 2,3, ... with equality if and only’if f (z) = & — 1.
Again, we have not used she full sirength of the hypotheses. We have only used
f™ (=1)>0foreachn=12,.. and Re@f®*" @2)/f™ (z) +1)> 0 when
z=—1foreachn=1,2,...
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STRESZCZENIE
Zatéimy, ie E jost kiasq funkdi

f@=z2+ T n,‘zk
k=2

jednolistnych w kole | z | < 1 i takich, Ze f(")(z). n=1,2,.. sqfunkgamijednolistnymi.
Dowodzi sig, 2e jedeli
r@= 10, ks >0, k=1,2,..,, 0 ay,, < 2k/Qk + 1),

JedelifEE, ap (f)>0 1 f (12| <1)jest obszarem wypuktym, toag <1 /k!.

PE3IOME
Mycms £ knace pynxunt
= T k
f@=1z+ k!-:aa"z
ONHONKCTHLIX B Kpyre |2 | < ] K TAKKX 4TO !"') (2),n = 1,2, ., ovusnonuctiiue Qynxuun.

Ioka3bsaeTca, Y10 ecu
f@=f(T), a5 ,, >0,k=1,2,3,..10 a5 ,, <2k/ @k + D).

Ecnu f€ E,ap (f)>0nf(12|<])sruywius obnacte, 10 a4 < 1/k1.



