ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

SECTIO A
1982/1983

Department of Mathematica
University of Michigan
Ann Arbor, Michigan, USA
Deparment of Mathematica
College of Charleston
Charleston, South Carolina, USA

M.O.READE, H.SILVERMAN*

Univalent Taylor Series with Integral Coefficients
Jednolistne szeregi Taylora o współczynnikach całkowitych
Однолнстнше ряди Те月лора с иельми козффишнентами

Let S denote the class of functions of the form $f(z)=z+\ldots$ that are analytic and univalent in the unit disk $\Delta=\{z:|z|<1\}$. The Koebe functions $z /(1 \pm z)^{2}$ are extremal for many problems in S as are the functions $2 /(1 \pm 2)$ for the subfamily of S consisting of convex functions. The Taylor expansions for these four functions have integral coefficients. The question arises as to what other functions in S have only integral coefficients in their Taylor expansions. To find all such functions, we will make use of the following version of the classical

Area Theorem. If $f(z) \in S$, then $\frac{1}{f(z)}=\frac{1}{z}+\sum_{n=0} b_{n} 2^{n}$ satisfies the coefficient inecyuality

$$
\begin{equation*}
\sum_{n} n\left|b_{n}\right|^{2}<1 \tag{I}
\end{equation*}
$$

We now prove our
Theorem. If $\int(z)=z+\sum_{n=2}^{\stackrel{m}{n}} a_{n} z^{n} \in S$ and a_{n} is an integer for every n_{0} then $f(z)$ must have one of the forms

[^0]$2, \frac{z}{1 \pm z} \cdot \frac{z}{(1 \pm z)^{2}} \cdot \frac{z}{1 \pm z^{2}} \cdot \frac{z}{1 \pm z+z^{2}}$.
Proof. Upon writing
$\frac{1}{f(z)}=\frac{1}{z+\sum_{n=1}^{\infty} a_{n} z^{n}}=\frac{1}{z}+\sum_{n=0}^{\infty} b_{n} z^{n}$,
we note that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy the relations
$b_{0}+a_{2}=0$,
$b_{1}+b_{0} a_{2}+a_{3}=0$,
and, more generally,
$b_{n}+b_{n-1} a_{2}+b_{n-2} a_{3}+\cdots+b_{0} a_{n+1}+a_{n+2}=0(n>2)$.
Since the $\left\{a_{n}\right\}$ are integers, it follows inductively from (3) that the $\left\{b_{n}\right\}$ are also integers. Hence, (1) implies that
$\left|b_{1}\right|<1$
and that $b_{n}=0$ for $n=2,3, \ldots$. Thus, $\frac{1}{f(z)}=\frac{1}{z}+b_{0}+b_{1} z$ or, equivalently, $f(z)$
must have the form
$f(z)=\frac{z}{1+b_{0} z+b_{1} z^{2}}$.
Now from (4) we know that the possible values for b_{1} are $b_{1}=0,1,-1$. Our result will follow from a consideration of these three cases.

Case (i): $b_{1}=0$. Then $f(z)=z /\left(1+b_{0} z\right)$ and since $f(z)$ is analytic in Δ, we must have $\left|b_{0}\right|<1$, which yields the three possible values $b_{0}=0,1,-1$. Thus, $f(z)$ has one of the forms
$2, \frac{2}{1+2}, \frac{2}{1-2}$.

Case (ii): $b_{1}=1$. From the wellknown bound $\left|a_{2}\right|<2$ for functions in S, we see from (2) that the possible values for $b_{0}=-a_{2}$ are $b_{0}=0, \pm 1, \pm 2$.

This generates the five functions
$\frac{z}{1+z^{2}}, \frac{z}{1+z+z^{2}}, \frac{2}{1-z+z^{2}}, \frac{2}{(1+z)^{2}}, \frac{2}{(1-z)^{2}}$.
each of which is univalent in Δ.
Case (iii): $b_{1}=-1$. Since the denominator of $2 /\left(1+b_{0} 8-z^{2}\right)$ has its zeros at $z=\left(-b_{0} \pm \sqrt{b_{0}^{z}+4}\right) / 2$, of the five possible values $0, \pm 1, \pm 2$ for b_{0}, only the case $b_{0}=$ $=0$ will produce a function anylytic in Δ. Consequently, our final case supplies us with the univalent functions $z /\left(1-z^{2}\right)$.

Combining the three cases, we obtain the nine univalent functions whose Taylor series have integral coefficients. This completes the proof.

Note that the only functions in S with integral coefficients are rational (and starlike). This leads to the following questions:
(i) If $f(z)$ is in S and assumes rational values for z rational in Δ, must $f(z)$ be a rational function?
(ii) What can we say about rational functions in S ?

Mitrinovič has some partial results [1] as do Reade and Todorov [2].

REFERENCES

[1] Mitrinoviě, D. S., On the untualence of rational functions, Univ. Boograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz, 634 - 677. (1979), 221-227.
[2] Reade, M. O., Todorov, P. G., The radil of stardikeness and convexdry of order alphe of a retional funcrion of Koebe iype, (submitted).

STRESZCZENIE

2nalezione zoataly wsaystkie funk cie klasy So wspóiczynnikach catkowhych.

PE31OME

[^0]: 1980 Mathematical subject classification. Primary 30 C45.

 - This work was compleied while the second author was on sabbatical leave from the College of Charleston as a Visiting Scholar at the University of Michigan.

