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1. Introduction. This paper contains two distinct application of the value region 
technique commonly associated with continued fractions. The first application is the 
determination of the radius of starlikeness of order a, 0 < a < 1, of a class of analytic 
functions in the unit disk D, each member of which has a certain S'-fraction expansion. 
The aecond is the derivation of zero-free regions for certain classes of polynomials. The 
proofs herein for these applications are dependent on a pair of interrelated lemmas.

If {<(„} n - j is a sequence of complex numbers in the disk | w | < 54, where aTO ♦/ = 0 

( / = 1,2,...) when am = 0, then the S-fraction

/(z) =
i a,z atz- + + _L_
1 1 1

0)

converges in D to an analytic function. Let IV be the class of analytic functions / in D 
that have a representation (1), where | a„ | < 54 (n = 1,2,...). Some years ago, Thale [6] 
proved that if f & IV, then f is univalent for I z j < 12 >/2 — 16 and Perron [4] proved 
this result is sharp in the classIV. F. V. Atkinson [1] showed by a formidable computa­
tional method that the radius of univalence for the class IV is indeed the radius of starlike­
ness of the class. We present here a simpler method to verify this fact along with some 
extensions.

Theorem 1. Iff 6 IV then for | z | < 4 r (1 — r), 0 < r < 1 — 1 /3/3, the expression 
w = zf I f is in the intersection of the regions
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/(I-/) , (1-/)» ~ l-2r-P
--------------- <-------------- , Re w > ---------------------------- .1-2/ * 1 1-2/ (1+/)(!—2/) (2)

In particular, each f € W is univalent and starlike of order a, 0 < a < 1, for | z | < 
<4/a(l -ra), where

= 2(1-a)
a 2 — a + \Z9oi1 — 16a + 8

The function fo(z) - 2 z / [3 — \fl + z ] Is in W and is starlike of exact order a. in 
| z | < 4 ra (1 — ra) and is not univalent in any disk | z \<pwhen p> 4/0 (1 — /0) = 
= 12\/2 -16.

The method for the proof of Theorem 1 was suggested by the argument used to.verify 
the following generalization of the work of Saff and Varga [5] (see also [2]).

Theorem 2. Let the sequence of polynomials n. i be defined by p., (z) = 0,
Po(z)= I, and

PnW = (P„+ z)P„-l(z) ~e„z p„-t(z) (4)

where e„ ♦ i > 0 and sn = min Re 0/ > 0 (n = 1,2,...). If for a fixed positive 
i < / < n

integer n we select an a e (0, s„ ] such that

c = max ---------------
i <7 < n Re 0/ ~ a

if finite, then the polynomials [pj J | have no zeros in the region containing the origin
given by

c |z |-(1 — c) Rez < a, z =£ —a . (6)

The region (6) is hyperbolic when c < 54 (the right-half), parabolic when c — 'A (see 
[21, [5 J), and elliptic when c > A. In each case, z = — a is a vertex of this conic.

2. Preliminaries. Our first lemma can be shown to be a special case of a general value 
region result of Lane [3]. Since the proof is short and requires less effort than establisliing 
the relation to previous work, it is included.

Lemma 1. Let c and d be real numbers, d> 0. Let E be the disc {f 6C: If —ci<dj. 
For a>0,we have Re w > 1 — a, where w = 1 + f z, for all^&E if and only if

d | z | — c Re z < a . (7) ,

Furthermore, Re w> I — a for all $ G E, the closure of E, if and ally if (7) holds.
Proof. Let f = c + dte1# and z — p e‘°, where 0 < / < 1, p > 0, and <p, 8 are in the 

interval ( — it, rr]. Then

/
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Re w = 1 + Re (£z) = 1 + c p cos 0 + dt p cos (0 + <t>) > I + c p cos 6 —dt p>

> 1 + c p cos 6 —d p = 1 + cRez—d|z|.

Therefore (7) implies Re w> > 1 — a. For the converse, let <t> = it — 9 and we have Re w = 
= 1 + c Re z — dt | z | > 1 — a for all 16 [0,1). Let t -*■ 1 to obtain (7). The second part 
of the lemma is an obvious consequence of what has been proved.

Tliis lemma is adequate to prove Theorem 2. Our second lemma .uses this result and 
is the essence of our proof of Theorem 1.

Lemma 2. Let r be a real number Q<r< 1 - For each f in | f — rJ /(1 — r1)! <
< r /(1 — r1) and for each z in

'(1-Q | (1 ~ 'Ÿ

l-2r I l-2r (8)

we have w = 1 + f z is in the intersection of the regions of (2)
Proof. By Lemma 1, we have Re iv > 1 — r (1 — r) /[(1 + r)(l — 2 r)] if and only if

z is in or on the ellipse (with eccentricity r)

|z|- rRez = (l — r)’/(l — 2r).

The circle of curvature at the right end point of the majors axis for this ellipse is the 
boundary of the disk (8). Therefore, the points of (8) are in or on the ellipse and the last 
inequality of (2) lias been established.

Since w = 1 + f z and f is in a given disk, we have

|w — 1 — raz/(l — r3)|<r|z|/(l — r’).

The point h- of (9) are in the disk (8) if the distance between the centers of these disks 
plus the radius of the smaller does not exceed the radius of the larger. Thus, the condition

1 +
1-r3

'0-')

1 - 2r

r \z\ (1 - r)1 

l — 2r
(10)

implies the disc (9) is contained in the disk (8). Tliis inequality is satisfied if it is valid 
for z = c + del't>, where <j> £ ( - nr, n] and c, dare respectively the center, radius of the 
disk (8). For this choice of z, we rewrite (10) as

W(0) = |r(l- r)el,»-A\ + |r + (l- r)e'*l < (1 — r)a (1 + r)/r,

where for brevity we have set A = 1 — (1 — 0(1 ~ For a fixed r, the derivative

//' (0) is zero when sin 0 = 0 or when
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________________ A____________________________________ 1_______________
(A2 + r2 (1 -,r)’ - 2^r(l - r) cos 0)V2 ” (r1 + (1 - r)’ + 2r(l - r) cos

This condition implies A > 0 and 

2 A2 + r (1 - r)

The latter cannot occur for <p & 0 if 2 A2 + r (1 — r)> 2 A (1 + A), that is, if 2 - 4r - 
— 3l* + 3P = (1 + /•) (2 — hr2 + 3/4) > 0. This inequality implies r < 1 — 1 /\/$ . 
Since H - (1 — r)2 (1 +r)/ r, we conclude that (10) holds for all z in the disc
(8) and, hence, the disk (9) is a subset of the disk (8). This completes the proof of the 
lemma.

There is a minimal subset V of the region defined by (2) such that w = l+ fzeK 
for all z e V and f in the disk of Lemma 2. This value region is closed, symmetric relative 
to the real axis, and the interval (1 - 2r -r1)/(l —r - 2/J)<x <(1 -r)/(1 — 2r) is 
in V. If we could explicitly identify F, we would locate the region of values of w = zf / f 
when 12 \ <p< 1.

3. Proof of Theorem 1. For a given function (1) in If and a fixed positive integer/!, de­
fine /0(z) = z and

fp* »(*)
1 + -pfp(?)

(p = 0,l,2......n - 1) ,

where a/ is the coefficient of the j + 1st partial numerator of (1). Each /p is in № By a 
formal computation,

»♦ 1

“n-pfp zfp

1 + an-pfp fp
(xeD). (11)i -

It is known that for f& W we have | /(z) 1 < 4r when | z | < 4r (1 -r),0<z< Vi [7, 
p. 105]. For this choice of z,

f - 1-r1 1-r1 ’

where f =/(1 + a„-p fp). I °n-P | < H. By (11) op. , » l + fop, where
ap = zfP I fP (p = 0, 1, 2...... n). Since a0 = 1 is in the disk (8), it follows by Lemma 2
and induction that the nth approximant f„ of f is in (2). Since fn -*■ f uniformly on 
compact subsets of D [7, p. 42], we conclude w = zf'/ f is in the intersection of the 
regions (2) For a given a 6 [0, 1), the condition Re w > a that/be starlike of order a in 
| z | < 4r (1 - r) requires 1 - a - (2 - a) r + (2a -1) r1 > 0. The positive zero of this 
quadratic isro given in (3). The function
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z

1
Zo(z) =

Wz 54z ... 5<iz
— + — + + — + 

L 1 1

is clearly in W and for this function

2/0(2) _ 1 -2r~?

/0(2) x--«r(i-r) l-r-2r3

This proves the order of starlikeness is exact for each choice of a e [0,1). Since/o’ (z) = 0 
when r = \/2 - 1, we conclude that the radius of starlikeness (a = 0) is also the radius of 
univalence for the class IV. This completes the proof.

4. Proof of Theorem 2 and Applications. The sequence (4) is the sequence of de­
nominators of the continued fraction

Ci- _ e„z
3t +2- 0j + z - - $„ +: -

If , is the sequence of numerators of this continued fraction, then the approxi-

ntants are

w», = — = J, • z, • ... • z„(z) (n =1.2,3....)
Pn

where

*/ (»') = -’(1- ) (7 = 1.2....)
jJy +V

By the determinant formula [7, p. 16)

<6.-1 <in

Ph-i Ph
Ci ej ... e„ z" *0 for z #=0

and we conclude q„.Pn have no common zero. Indeed,p„(0) = 0,0, ...0„ =£ 0 by (4) 
and the hypothesis.

If Re * > — a, then f “ 1 - e/ / (0/ + v) is in the disk

|f-l + c7
2(Refy-a) I 2(Re0/-a)

(/ — 2,3,.... n),

where a € (0, s„] has been selected such that (S) is finite. This disk is contained in the 
disk | f — 1 + c | < c, where c is defined by (5), provided the distance between the centers
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of these disks plus the radius of the smaller does not exceed the radius of the larger. That 
is, the condition

b--------------2-----------1 +---------2---------<c
1 2(Refy-a) 1

is sufficient for the proposed inclusion. By (5) the last condition is obviously the case for
/ = 2,3......n. Thus, Re s/(v)> — a for Re v> — a (/ = 2,3,....ri) by Lemma 1 whenever
a is in the region c | z | — (1 — c) Re z < a.

Let a be in the region (6). Since z #= — a, we have Re z > — a.Thus, Re jy(z)> — a 
( j =2,3,.... n) by what has already been proved. Using induction and Lemma 1, we con­
clude that Ref (z)> — a, where f (z) =Sj «ij •... • s/(z). It follows that Re(/Jt + f(z))> 
> Re/3, — a > 0 and, in particular, + f (z) =# Oforz in the region (6). This proves the 
/th approximant

rw-z + ——------- (/ = 2,3,...,«)

is analytic for z in the region (6). In particular, the denominator p/ of this/thaproximant 
is not zero for such z. Since Re pt (z) = Re /3, + Re z > Re — a > 0, we have proved 
the theorem.

For applications of this theorem, let / (z) = 1 + 2 a/ z^, at & 0 (/ = 1,2,...), be
/•*_

a formal power series. The partial sums t„ (z) = 1 + 2 a/ if satisfy the identity of
Euler *

0i(z) , an-i , x f«-l(z) an-j bi-i(2) , , „ x
--------- = (--------- + g)------------------------------z ---------------- («=1.2,...),

an an an-i an-i an-i

where we set t-, = 0,«-, = a0 = t0 -1. Thus, the polynomials p„ = t„/ an are generated 

by a recurrence formula (4), where = a„ . J an and e„ = a„ _ t/a„ . ,. If a/ > 0 (/ =

= 1,2.......« - 1) and s„ = min {l/tf,, aj at, ...,a„. t/a„ . ,, Re (tfn-*/«„)}> 0,

the hypothesis of Theorem 2 is satisfied and there is a choice ofa>0 such that (5)is finite.

The polynomials p/} , are therefore not zero in the region containing the origin given

by (6), where c is defined for the particular a by (5).

In particular, if/(z) = e*, then a„ = l/«!,0n =«,«n = « - !,•»« = min (1,2......«) =
= 1, and for a = 1

H(/- 1)
c = max ---------------

l <i <n j - 1
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The region (6) is the parabolic region | z | — Re 2 < 2, z ¥= — 1, of Saff and Varga [5]. 
Unfortunately we have not improved the known result in this case. However, if 

r„(2)= l+z + 21/2! + ... + z"-I/(n-l)! + fl?,/n!,

where a is complex such that | a - Vi I < then t„ ¥= 0 for z in this parabolic region. 
For a new application, consider the hypergeometric function

,F0(a;z) = 1 + az +
a (a 4-1) 

2!
Z2 +

a(a+l)(a + 2) 

3!
z3 +

where a > 1. We have

— J ft
= --------- = —---------  = «„♦, (n = 1,2,...)

a„ a + n — 1

and we can choose a = 1/a. Thenc = Vi (a + 1) / (a — l)and the partial sums of iF0 are 

not zero in the elliptical region

3 —a
12 | + ---------  Re z <

a + 1

2(a~l) 

a (a + 1)

Next, consider for a > 0

,F,(l,a;2)= 1 + - z +
__1____

a (a + 1)
+ ... .

We have = a + n — 1 > a > 0, a = a, and c = a / 2 provided a > 1. The partial sums are 
not zero in |z | + (1 - 2/a) Rez < 2,2 #—a. This region is elliptic fora> 1. If 0 <a <1, 
then c - (n + a —2) / 2 (n — 1) and the partial sums are not zero in the hyperbolic region 
(right-half).

ai — n 

a + n — 2
|z| + Rez<

2a (n — J) 

a + n-2
2*—a.

This region contains the parabolic region | 2 | — Re z < 2 a, z & — a. There are other 
applications suggested by those in [5].
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STRESZCZENIE

Wykorzystuje się obszary zmienności pewnych funkcjonałów oraz technikę ułamków ciągłych 
do wyznaczania promieni gwiaidzistoid pewnych rodzin funktji holomorficznych w kok 
jednostkowym.

РЕЗЮМЕ

Используются мажорантные области некоторых функционалов и техника непрерывных 
дробей для получения радиусов звеэдообраэносп некоторых классов функций голоморфных 
в единичном круге.


