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1. Introduction. This paper contains two distinct application of the value region
technique commonly associated with continued fractions. The first application is the
determination of the radius of starlikeness of order a, 0 € a <1, of a class of analytic
functions in the unit disk D, each member of which has a certain S-fraction expansion.
The second is the derivation of zero-free regions for certain classes of polynomials. The
proofs herein for these applications are dependent on a pair of interrelated lemmas.

If {a,.} ey is a sequence of complex numbers in the disk | w | K %, where ay =0

(/=1,2,..)whenan, =0, then the S-fraction

a3Z =T anz

+7 4

f@= { + 22, + )

1 1

converges ~in D to an analytic function. Let I¥ be the class of analytic functions f in D
that have a representation (1), where |a, | <% (1 = 1,2, ...). Some years ago, Thale [6]
proved that if f € W, then f is univalent for | z | < 12 /2 — 16 and Perron (4] proved
this result is sharp in the classl. F. V. Atkinson [1] showed by a formidable computa-
tional method that the radius of univalence for the class I is indecd the radius of starlike-
ness of the class. We present here a simpler method to verify this fact along with some
extensions.

Theorem 1. If fE W then for |z | < 4r (1 —r),0 <7 < | — 1 A/3, the expression
w =2f" [ fis in the intersection of the regions
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-— — 2 — —
,w-— r(1-r) I (1-r) Rew'S 1=-2r-1

1-2r | 1-2r"° +n@-20 " @

In particular, each f € W is univalent and starlike of order a, 0 K a < 1, for|z | <
<4r,(1 —ry), where

B 2(1 -a) 3
T T A+ —16a +8 (

The function fo(z) = 2 z [ (3 —«/1 +z ] is in W and is starlike of exact order a in
|21 <4rq (1 —ry)and is not univalent in any disk | z | <pwhenp>4ry (1 —ro)=
=122 —16.

The method for the proof of Theorem 1 was suggested by the argument used to.verify
the following generalization of the work of Saff and Varga [5] (see also [2]).

Theorem 2. Let the sequence of polynomials [p,.} ne bedefined by p_, (2)=0,
Po (Z) L ’ and

Pn(@)=(Bn +2)Pn-1(2) — €4 2 Pn-2(2) 4)

where €n oy > 0and sy = ém)n< Refy>0(n=1,2,..). If for a fixed positive
1 n

integer n we select an a € (0, s,,] such that

]
c = max S
1</<n Refj~«

is finite, then the polynomials { p/} ?_ , have no zeros in the region containing the origin
gilven by

clzl—(1—¢c)Rez € a, z#—a. (6)

The region (6) is hyperbolic when ¢ < % (the right-half), parabolic when ¢ = % (see
[2], [5)). and elliptic when ¢ > %. In each case.z = —a is a vertex of this conic.

2. Preliminarics. Our first lemuna can be shown to be a special case of a general value
region result of Lane [3]. Since the proof is short and requires less effort than establishing
the relation to previous work, it is included.

Lemma 1. Let c and d be real numbers, d > 0, Let E be the disc {{ €C: If—ci(d] :
For a>0,we have Rew > 1 —a, where w = | + { z, forall { € E if and only if

d|z|—cRez € «, @)

Furthermore, Re w > 1 —a for all t € E, the closure of E, if andonly if (7) holds.

Proof. Let { =c + dre’® andz = p e®®, where 0 < t < 1, p > 0,and ¢, 8 are in the
interval ( — m, 7). Then
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Rew = ]+ Re(§z)=1+cpcosf +dtpcos(6+¢) > L +cpoosf—dtp>
>l+cpeosbd—dp = 1+cRez—4d|z].

Therefore (7) implies Re w > 1 — a. For the converse, let ¢ =7 — 6 and we have Rew =
=1+cRez—dr|z|>1—aforaliz€ [0,1). Let £~ 1 to obtain (7). The second part
of the lemma is an obvious consequence of what has been proved.

This lemma is adequate to prove Theorem 2. Our second lemma .uses this result and
is the essence of our proof of Theorem 1.

Lemma 2. Let r be a real number 0<r<1—1A/3. Foreach{in |t —r* [(1—P)|<
<r /(1 —r*)and for each z in

oy - p\3
1-2r 1-2r

we have w = 1 + { z is in the intersection of the regions of (2)
Proof. By Lemma 1, we have Rew > 1 —r (1 —7) /[(! +7)(1 —27)] if and only if
z is in or on the ellipse (with eccentricity r)

lz]—rRez=(1—r)*/(1 = 27).

The circle of curvature at the right end point of the majors axis for this ellipse is the
boundary of the disk (8). Therefore, the points of (8) are in or on the ellipse and the last
inequality of (2) has been established.

Sincew =1 +¢{ z and ¢ is in a given disk, we have

Iw=—1—rz/(0=r})I<rlzl/(1—1?).

The point w of (9) are in the disk (8) if the distance between the centers of these disks
plus the radius of the smaller does not exceed the radius of the larger. Thus, the condition

rizl a-r

£z r(t=r)
<
1-2 1-2r

Ao -2 1-2r |+

(10)

implies the disc (9) is contained in the disk (8). This inequality is satisfied = if it is valid
for z = ¢ + de'®, where ¢ € ( = n, n} and c,dare respectively the center, radius of the
disk (8). For this choice of z, we rewrite (10) as

H@)=lr(l—ne®—4| + lr+(Q—ne® | <U=r*a+rn/r,

where for brevity we have set 4 = 1 —(1 —=r)(1 =2 r’)/r. For a fixed r, the derivative

H' (¢) is zero when sin ¢ = 0 or when
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A 1

A+ P(1—r) —24r(1 —r) cos p)V? = P +QA=r*+2r(1 —r) cos$)V?

This condition .implies 4 > 0 and

242+ r(1—1r)
24(1+4)

cosp =

The latter cannot occur for ¢ # 0if 2 A +r (1 =r)22A4 (1 + A),thatis,if 2 — 4r —
—3P2 +3° =(1 +r)(2-6r* +37°)> 0. This inequality implies r <1 —-1/v3 .
Since H (1) <H (0) = (1 —r)* (1 +r)/r, we conclude that (10) holds for all z in the disc
(8) and, hence, the disk (9) is a subset of the disk (8). This completes the proof of the
lemma.

There is a minimal subset ¥ of the region defined by (2) suchthat w=]1+{z€EV
for all z € V and { in the disk of Lemma 2. This value region is closed, symmetric relative
to the real axis, and the interval (1 =27 =) /(1 =r =22)<x<(1 =r) /(1 = 2r)is
in V. If we could explicitly identify ¥, we would locate the region of valuesof w =zf '/ f
when|z|<p<l1.

3. Proof of Theorem 1, For a given function (1) in W and a fixed positive integer n, de-
fine fo(z)=2z and

z
Jper @) = m (r=0,1,2,..,n-1),

where g; is the coefficient of the j + st partial numerator of (1). Each Jp is in W. By a
formal computation,
zf;;n ﬂn-pfp Zf;:

=] — €D). 11
fpu 1+ an-pfp fp - ) (M)

It is known that for f€ W we have | f(z) | K 4r when |2 | 47 (1 —1),0<r<}% [7,
p. 105} . For this choice of z,

r

1-7"'

rt
I‘_ l_,’l‘

where § = ~an-p fp /(1 +an-pfp)lan-p | <%.By(11)0p,, = 1 +{ap, where

op=2fp[fp (P=0,1,2, .., n). Since 0o =1 isin the disk (8), it follows by Lemma 2
and induction that the nth approximant f, of f is in (2). Since f, - f uniformly on
compact subsets of D (7, p. 42], we conclude w = zf '/ f is in the intersection of the
regions (2) For a given a € {0, 1), the condition Re w 3 a that f be starlike of order a in
[z]<4r(1 —r)requires] —a — (2 —a)r+(2a —1)7* > 0. The positive zero of this
quadratic is 7, given in (3). The function
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1) z %z+%z+...+%z+... 2z
)= — — — — — B e————
4 baty v Kewr g 1 3—V1-z

is clearly in W and for this function

2/6(2) 1-2r-°

fo(2) x--u(l-r)_ 1-r-27°

This proves the order of starlikeness is exact for each choice of a € [0, 1). Since fy (2) =0
when r =+/2 — 1, we conclude that the radius of starlikeness (@ = 0) is also the radius of
univalence for the class W. This completes the proot.

4. Proof of Theorem 2 and Applications. The sequence (4) is the sequence of de-
nominators of the continued fraction

€2 €32 €2
By+z—pgy+z — —fBp+z -

If :'_q,«} Ja- 1 is the sequence of numerators of this continued fraction, then the approxi-

mants are
Wp = - 48 $1°851° . *8p(2) (n=1,2,3,..) !
Pn
where
yO)=s(- ——) (j=12.)
Jl+ i~ o &y aee

By the determinant formula [?, p. 16]

9a-1 4n

= €€ ..€2"#0 for z#0
Pn-1 Pn

and we conclude g, . pp have no common zero. Indeed, py(0) = 8,8, ...8, # 0 by (4)
and the hypothesis,
IfRe v>—a,then{=1—¢/(f+ v)isin the disk

t—1+ —2 | < . (j=2,3,...n),
2(Refj—a)! 2(Refj—a)

where a € (0, s,] has been selected such that (S) is finite. This disk i3 contained in the
disk |t — 1 + ¢ | <c¢, where ¢ is defined by (S), provided the distance between the centers
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of these disks plus the radius of the smaller does not exceed the radjus of the larger. That
is, the condition

|c— ° |+ 4 <c
2 (Refj—a) 2(Refy—a)

is sufficient for the proposed inclugion. By (5) the last condition is obviously the case for
] =2,3,...,n. Thus,Re y(v) > —afor Rev>~a(j=2,3,..,n) by Lemma 1 whenever
zisintheregionc|z|—(1 —c)Rez<Ka.

Let z be in the region (6). Since z # — «, we have Re z > — a. Thus, Re ;(z) > —«a
(/ =2,3,...,n) by what has already been proved. Using induction and Lemma 1, we con-
clude that Re{ (z)> —a, where §(z) = 83 *33 * ... *$;(2). It follows that Re (8, + §(2))>
> Ref; — a> 0 and, in particular, f; + ¢ (z) # 0for z in the region (6). This proves the
Jth approximant

€z

wi=z + —————
. By + §(@)

(J=2,3,..,n)

is analytic for z in the region (6). In particular, the denominator p; of this fth aproximant

is not zero for such z. Since Re p,(z) = Re f; + Rez> Re §; —a > 0, we have proved
the theorem. -

For applications of this theorem, let f(z) = 1 + 12 a z’, a#0(/j=1,2,..),be
=]

a formal power series. The partial sums t,(z) =1 + IE q J satisy the identity of
Euler i

n(z) o G-y +3) In-1(2) _ an-y R tn-3(2)
L] an Qn-, Gn-y 8n-3

(n=12.),

where we set f_, =0,a, =ao = tp = 1. Thus, the polynomials p, = t, / a, are generated
by a recurrence formula (4), where fy =an- ,/anand ey =ap-3/an-,.Ugy>0. (j=
=1,2,.,n—-1)and s, = min {_l/a,,a./a,, ws8n-3/Gn-4.Re (a,._,/a,.)}> 0,
the hypothesis of Theorem 2 is satisfied and there is a choice of a> 0 such that (5) s finite.

The polynomials {t/} }'_ , are therefore not zero in the region containing the origin given
by (6), where ¢ is defined for the particular a by (S).

In particular, if f(z) = e*, thenag, = 1/n!,fy =n,ep =n—1,8y, =min(1,2,..,n)=
=],and fora=1

-1
c= max ———— =4,
1<j<n J—1
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The region (6) is the parabolic region | z | — Re 2 € 2,z # —'1, of Saff and Varga [5].
Unfortunately we have not improved the known result in this case. However, if

th@)=1+z+22/21+ . +2" Y (n— 1) +a/n!,

where a is complex such that | @ — % | < %, then £, # 0 for z in this parabolic region,
For a new application, consider the hypergeometric function

a@+1) RN a@+1)@+?2) eyt

1Fo(@;z)=1+az+ > Py ey

wherea > 1. We have

- =l - 1245
Bn = e atn—1 €ney (N RIS

and we can choose @ = 1/a. Thenc =% (a + 1) / (@ — 1)and the partial sums of ,Fp are

not zero in the elliptical region

© 3-a 2@—1
lz|+ —— Rez <—(—)—,z igsid]
a+1l a(@+1) a

Next, consider fora > 0

1

1
WFr(la)=1+ -2 + ——

a a(@+1)
We havefi, =a+n—-1>a>0,a=a,and c =a /2 provided a » 1. The partial sums are
not zero in [z |+ (1 —2/a) Re 2 € 2,z # —a. This region is elliptic fora > 1. If 0 <a <1,
thenc =(n+a —2)/2(n —1)and the partial sums are not zero in the hyperbolic region
(right-half).

a—n 2a(n—1)

lzi+ Rez< , 2#+—a.
a+n-—2 a+n—2

This region contains the parabolic region | z | — Re 2 € 2 a, z # — a. There are other
applications suggested by those in [S].
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