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1Introduction. Let F« denote the set of all functions/(z) = z + ... that are analytic 
in the unit disc A, with/'(z) =#= 0 there, and with boundary rotation at most 2nK, K> 1. 
i.e., each/G l\- satisfies

-/"(-)

/'(-’)
/"l Re(l + ) I <70 < 2 nA, z = re'0, (0

for all r, 0 < r < 1.
The class I\-, introduced by Lowncr, was the subject of a detailed study by Paatero 

who established some of the basic properties of that class, including a determination of 
its radius of convexity [4]

*a(1) = A — v/A—T .

In this note we generalize Paatero's result by determining the radius A*- (/If) of boundary 
rotation at most 2irA/ lot the class F^, I <A/<A, that is, we determine (implicitly) the 
largest value of r such that for/G l'K,

*/”(-’)J "l Re(l + 
о /’(2)

) I JO < 2лЛ/, z = re“>, (2)

holds lor all | z | < (Af). Our method depends on the determination of the extreme
values of a particular continuous convex functional defined on a set 7/jf of Radon
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measures p def ined on the unit circle 3A (or, equivalently, on a certain set /i* of harmonic 
functions), and these extreme values depend on the determination of the extreme points 

of (or h*) after (or ti^) has been endowed with a particular topology.

We call attention to papers [5] and [6] that contain results comparable to those 
contained here; there is some overlapping of results, but our technique is different. We 
also call attention to the extreme points of the ‘space’ V* found in [1 J; the ‘space’ VK 
there is not used here.

The “well-known’ result concerning Banach spaces of measures and of harmonic 
functions may be found in references (2], [5] and [6].

2. Results. Each/€ may be associated with a unique real function

z/'(z)
h(z)=Re(l + )=1+ ... (3)

J

that is harmonic in the unit disc A and has the Herglotz representation

1 j, l+ze_<*

where p is a Radon measure with /r/p = 1 and total variation at most 2nK. 
ba

denotes the Poisson integral of p.
The functional

«!>(*>- — /”| h(z) \d0, z—rei0,
2it o

is defined for all real /i(z) that ate harmonic in A. A subset of the set of all real harmonic 
functions defined in A is the set

/l‘(A)s[/,| sup 4>r(/i)<»J,
‘o < r < 1

which is well-known as a subset of a Banach space with II h || — If /r ||, = sup
o < r < |

It is also known that each h 6 /i* (A) has the form h - P./ (n), where p is a real Radon 
measure defined on dA. If we let H denote the set of all real measures p on dA and if
we consider // as a Banach space on dA, with || p || = / | i/p | <“, then the one-to-one

»A

correspondence between /i’(A) and //given by the Herglotz representation is an isometry, 
that is, if p is ‘associated’ with h = then II p II = II It ||. Moreover, a sequence of
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Radon measures 4 P„"^ in H converges to the Radon measure p in H if and only if 
the sequence 3 in h1 (A) converges uniformly to Zr in

A1 (A) on compact subset of A [2].
From the preceding remarks we can easily obtain the following results.
Lemma 1. If r is fixed, 0 < r < 1, then 4>r(p) = >!> (P.l. (p)) is a continuous and convex

function on H.
Lemma 2. For each K, F> 1, the sets

Hg = Hg(dX) = [p\peH, f Up=l, llMlKA'l,
9A

/'1 3 ^r(A) = [hN»e/?(A),/i(O)= 1. sup 4>r(/t)<A) 
o < e < t

are compact convex subsets of Hand It1 (A), respectively; moreover, the mapping p~PI. (p) 
is an isometry between Hg and llg.

Lemma 3. *l>,(p) attains its maximum on //a at an extreme point of Hg and ^(li) 
attains its maximum on li'K at an extreme point ofhg.

We now use the preceding results to establish the following propositions.
Lenuna 4. For each K, A > 1. the set of extreme points o f Hg is the set

F(//a)sj^-1-L 8(, )_ ——~ I 0<f, <2n], (4)

where 8 (t) denotes a unit point measure at e‘r ,0<l < 2n.
Proof. The result is a classic one for K = 1. Hence we shall consider only A > 1.

Il p € llg. !| p |1 < A. A > 1, then we can find a unit Radon measure v on 3A such
I hat || y || = A — !| p || and { dv = 0, and hence such I hat !d(p + f) and ‘/i(p— p) 

3A
are unit Radon measures on 3A. Since p = Vs (p + p) + !4 (p — p), it follows that p is not 
an extreme point of Hg.

Since the extreme points of lf\i occur only among those p for which II p II = A, we 
considei pu e F(lly), with p0 = p‘o — p‘„ as is its canonical decomposition into its 
positive and negative parts. We shall show pi and p0 are point measures. Suppose Po is 
not a point measure Then pj = 'o(p + p) where p and q are positive measures satisfying 
P • Mo. d • Mo such that

/ <f/’ = llpl! = llpll = f Up = llpj H, Hp-poll<A. Up—pill < A. 
dA

Ilence ~ Mi ) G Wa . (</ “ Mo) €= Hg. But

Mo • Mo Mo < (P + p) ~Mo * (P _ Mo ) + & (P ~ Mo ).

winch implies p0 F(Ug). This contradicts our assumption p0 £ E(Hg) so that pj is 
indeed a point measure. •
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In a similar way, we can show that po i* a point measure too, so that each pe G.E(Hg) 
can be written in the form p, sa6(/,)—/56 (fj),O*;z, ^Zj <2tr. Because p, isa unit

K + 1
Randon measure, and because II Pe II - A > 1, we find l, tJt a = -------- , and

A-l 2
0 = —— • l*encc eac*> element inA(/fc) has the form (4) for A > 1 too.

Remark 1. If A — 1, then //jf =//| consists of all probability measures on 3A and 
E(llt) is the set of all point measures on 3A. If A > 1, then E(Hg) is not even closed in 
llg, indeed we find

E(HK)- £’(//*• I = 16 (z) | 0< t < 2rrJ.

Lemma S. If K > 1, then the set of extreme points of h# is the set

E(hlK)^
A+ 1 _______ 1 -rl________

1 + r1 — 2r cos(0 ~ti)

A-t__________ 1 -?_______

2 I + r2 — 2r cos (0 — Zs)

(5)

0 Z| ** Z j 2rr

Proof. The result (S) follows from Lemma 2 and 4, and (4). ___
Lemma 6. If A > I, then there is a (best) constant Rg(\)-K — V A1 — 1 such that

each h 6 hg is non-negative for | z \<Rg(\). Moreover, Rg(\)~ 1 if and only if K - 1. 
Proof. This is Paatero’s famous result |4].
Theorem 1. Let R and K be fixed Ajf (1) < A < 1, A’ > I. Then the maximum oj 
(h) over h* is attained only for functions of the form

A+l I -r1 A-I 1 -r1
------------------.---------------------------------------------- ----------------------- , 0 < z < 2ir, (6)

2 1+/■’— 2rcos(0 — z) 2 1 + r2 + 2r cos (0 — z)

or equivalently, the maximum of <t>/j(p) over Hg is attained only for measures of the form

A - 1 

2

A 4- 1

2
6(f)- 6(z + tr) 0<z<2rr (7)

Proof. If A = I, then the result is a well-known one in the study of non-negative 
harmonic functions defined in the unit disc A.

For A > I, we appeal to Lemmas 2 and 5 to conclude we need but study functions of 
the form (5) to obtain the maximum of •bp(h) over h*. Since the functions (5)and the 
measures (4) are ‘rotation invariant', it follows that we need but study functions measures 
of the form
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K + 1 
7G (r, 8;t) =

1 -r2
I +r2 —2r cos 0

Æ-1 _________1 — r2

2 1 + r2 — 2r cos (0 — t)
(8)

R + 1 K - 1Mr 3 ___ 6(0)--------6(z)

where 0 < t < 2it. \(G(R, 0; r) > 0 holds for all t. 0 < t < 2rr, that is, if P./.(p,) > O-for 
I z 1 = /?, then P./.He = 0 holds for all extreme points ;rt, for | : | < R. Hence each It G lt'K 
is non-negative for 1 z | < R. But this is valid for all /r G It'^ if and only if R - /Jjv(l). But 
1 > R > Rk (1). Hence there is at least one value z = Zi, 0 < z, < 2rr, for which G(R, 0; Zj) 
changes sign on 0 < 9 < 2n. This implies that at least for Z = Zj we have F(tt) > 1 where

F(z)= — I \ G ( R, (p; tx)d<p . (9)
2rr o

Hence the maximum of <h/{ (It) for It G h‘K is greater that unity.
Since F(t) in (9) is a continuously differentiable function of Z, and since F(Z,)> 1,

it follows that the maximum of F(Z) occurs at some z0,0 < Zo < 2n, where F(t0)> 1 and 
1' (G>) = 0. Hence

„ I J- G(R,0,zo) 3 A'-l l~/iJ (10)
/• (z0) =--------f ------- ------------------------------------------ ----------------------- d<t> = o

2it o |G’(R, £>;z0)| 3z 2 1 + R2 — 2Rcos(0 — z0)

If G(R, 0. Zo) does not change sign for 0 < 0 < 2n. then F(r0) = 1. This is a contradic­
tion ol F(ta)> I. Hence G (R, 0, z0) does change sign in 0 < 0 < 2it. We shall now show 
that G (R, <p. t0, changes sign twice for 0 < 0 < 2rr, that is, G (R, 0, Z„) = 0 has solutions 
only lor 0 = 0|, 02, where 0 < 0( < 02 <2it. The equation G (R, 0,ZO) = Ocan be written 

(I + R1) + R ((A' — J) - (K + 1) cos t0 J cos 0 — [(A' + 1) sin Zo J sin 0 = 0.

Hence it G (R, 0. zo) = 0 vanishes for more than two distinct values of 0, 0 < 0 < 2rr, 
then G (R, 0,- z0) vanishes identically for 0 < 0 < 2rr. Since G docs change sign, it follows 
that G (R, 0, z0) = 0 has exactly two solutions, 0 < 0, < 02 < 2rr.

It we make use of the relations G (R, tpx; z0) = G (R. 02; t0) — 0 and (10), we find

/''Vo I
dt

K -1

2 I + R 2 — 2R cos (0 — Zo)
I -R2

dtp =

«= ± 1 — R1
H R2 — 2R cos (02 —10)

_____ 1 — R1
1 + R2 -2R eos(0, -Zo)

r -v -1
0
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(1 -Re'1»») 

(1 + Re '»’)

JGl

which imp lies cos(0, ~t0) = cos(02 -10 )• This last along wit h G(R, 02; ru) = G(R, 0,, t0) = 
= 0 yield the additional relation cos 0, = cos 02 ■ with 0 < <p2 < 02 < 2». We obtain at 
once that (sin 02 — sin 0,) sin t0 = 0. Since 0 < 0, < <t>2 < 2it, we conclude that sin 02 -
— sin 0i = Oandcos02 = cos0, cannot hold simultaneously. Hence sin02—sin0, ^0, 
and consequently sin t0 = 0. Now t0 =Oisruledout because G (R, <t>. f0) is not of constant 
sing on 0 < 0 < 2rr. Hence t0 = ir. Thus we have shown that the maximum of 4>« (/r) for 
h £h'K is attained by (8) and hence only by functions (6). This yields (7) too.

Remark 2. We showed that if K and R are fixed, K > 1 and R% (1) < R < 1, then the 
function G (R, </>; n) vanishes on 0 < 0 < 2ir only for 0! and 2ir - 0,, where cos 0, = 
= — (1 + R2) / 2AR, rr/2<0, <n.

Theorem 2. // K > 1 and ifQ<,R<\, then

roax(*ji(*)|A6*ij»l, 0<.R<RK(l),

1
max f (Zi) | h £ h^ J = — , 2 0, — rr + ARG 

H

</?<!,

where cos 0t = — (1 + R1) I 2KR, n/2 < 0! < ir, — n/2 < ARG (1 — Re < n/2.
Proof. If 0 < R < = A — V Kl — 1 . then each h £ h'^ is non-negative for

1 z | <R and hence the result (11) is valid.
Similarly, if A = l.then each/rE/r^- is non-negative, so that (11) and (12) are valid 

for this case.
Now let R/((1) < R < I and K > 1 both hold. Then it follows from Theorem I that 

the maximum we want is attained only for functions of the form (8) and hence, because 
of the rotational invariance of the extremal result, we need but consider the function 
G(R. 6; ir) given in (8). Since, as noted in Remark 2, G (R, 0, n) in non-negative for 2ir -
— 0; < 0 < 0|, and non-positive for 0i <0<2n—0t where cos0, = — (I + Rl)/2KR,
— n/2 <0i < 7t, we find

(ID

(12)

<t>K (G (R, 0; n)) = — /| G (R. 0, rr) | <70 = 
2n o

Re
I + Re'^ 
1 -Re^

1 1-Re"'»
— Re

1 + Re'*»
t/0 =

= | [20, - n
+ ARG

(1 -Re"'»«)

(1 + Re

1 «, R + 1
Sn ' 

o

1
/0./-’ J’

where — n/2 < ARG (1 ± Re ' '») < n/2, 0 < 0 < 2n. This completes our proof of 
Theorem 2.

The preceding result leads to the raison d’etre of this note.
Theorem 3. Let K> 1, and let M be fixed, 1 < M < K. Then each f £ f'jf has houn. lary
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rotation at most 2itM for \ z \ < R^ (M), where R* (A/) = Xis the unique solution in the 
interval (1) < X < 1 to the equation

A ♦ i

2ф + ARG --------------- - = it (Af + 1) ,
(1 + Afe’**)

(13)

where cos 0 = - (1 + J’) / 2XX. — ir/2 < < it. — rr/2 < ARC (1 ± Xe~ *♦) < ir/2.
Proof. Since the boundary rotation of /on | z | = r is given in (1) or (2) and this in 

turn is given by 2n*l>r(/i), where h is defined in terms of/in (3), then the result (13) 
follows immediately from Theorem 2.

Remark 3. If M = 1 and X = RK(\) = X-\/x2 - I , then <f> = it in (F)and thus 
we are able to verify Paatero’s result.

3. Conclusion. It would be of interest to determine whether or not the radius of unival­
ence of the class Pjf may be obtained from (13) by setting M = 2. Kirwan has shown that 
the radius of univalence of Kjf isthenrr/2A [3J,K > 1.
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