ANNALES UNIVERSITATIS MARIAECURIE-SK\&ODOWSKA LUBLIN-POLONIA

VOL. XXXVI/XXXVII, 2
SECTIO A
1982/1983

University of Michigan
Ann Asbor, Michigan, USA

T. E. ARMSTRONG, M.O.READE

On Functions of Bounded Boundary Rotation

O Sunkcjach zograniczony'm obrotem na brzegu

О функшиях ограннчениого вращенни на берегу

1: Introduction. Let V_{K}^{\prime} denote the set of all functions $f(z)=z+\ldots$ that are analytic in the unit disc Δ, with $f^{\prime \prime}(z) \neq 0$ there, and with boundary rotation at most $2 \pi K, K \geqslant 1$. i.e., each $f \in V^{\prime} K$ satisfies
$\int_{0}^{2 \pi}\left|\operatorname{Rc}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime \prime}(z)}\right)\right| d 0<2 \pi K_{1} z=r c^{i 0}$.
for all $r, 0<r<1$.
The class V^{\prime}, introduced by Lowner, was the subject of a detailed study by Patero who established some of the basic properties of that class, including a determination of its radius of convexity |4|
$R_{K}(1)=K-\sqrt{K^{2}-1}$.

In this note we generalize Paatero's result by determining the radius $R_{K}(M)$ of boundary rotation at most $2 \pi M$ for the class $V_{K}, 1 \leqslant M \leqslant K$, that is, we determine (implicitly) the largest value of r such that for $f \in V_{K}^{\prime}$.
$\int_{0}^{2 n}\left|\operatorname{Rc}\left(1+\frac{2 f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right| d \theta \leqslant 2 \pi M, z=r e^{i \theta}$.
holds for all $|z|<R_{K}$ (M). Our method depends on the determination of the extreme values of a particular continuous convex functional defined on a set H_{K} of Radon
measures μ defined on the unit circle $\partial \Delta$ (or, equivalently, on a certain set h_{X}^{1} of harmonic functions), and these extreme values depend on the determination of the extreme points of $H_{K}\left(\right.$ or $\left.h_{K}^{1}\right)$ after $H_{K}\left(\right.$ or $\left.h_{K}^{1}\right)$ has been endowed with a particular topology.

We call attention to papers [5] and [6] that contain results comparable to those contained here; there is some overlapping of results, but our technique is different. We also call attention to the extreme points of the 'space' $V_{\boldsymbol{K}}$ found in [1]; the 'space' $\boldsymbol{V}_{\boldsymbol{K}}$ there is not used here.

The 'well'known' result concerning Banach spaces of measures and of harmonic functions may be found in references [2], [5] and [6].
2. Results. Each $f \in V_{K}$ may be associated with a unique real function
$h(z)=\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{j^{\prime}(z)}\right)=1+\ldots$
that is harmonic in the unit disc Δ and has the Herglotz representation
$h(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{1+z e^{-i \phi}}{1+z e^{-i \phi}} d \mu(\phi) \equiv P . I .(\mu)\left(r e^{i \theta}\right)$,
where μ is a Radon measure with $\int_{\partial \Delta} d \mu=1$ and total variation at noost $2 \pi \mathcal{R}^{R}$. Here P.I. (μ) denotes the Poisson integral of μ.

The functional
$J_{r}(h) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi}|h(z)| d \theta, z=r e^{i \theta}$,
is defined for all real $h(z)$ that ate harnonic in Δ. A subset of the set of all real harmonic functions defined in Δ is the set
$h^{\prime}(\Delta) \equiv\left[\left.h\right|_{0<r<1} \sup _{r}(h)<\infty\right]$.
which is well-known as a subset of a Banach space with $\|h\| \equiv\|h\|_{1} \equiv \sup _{0<r<1} \Phi_{r}(h)$.
It is also known that each $h \in h^{1}(\Delta)$ has the form $h=P . I(\mu)$, where μ is a teal Raslon measure defined on $\partial \Delta$. If we let H denote the set of all real measures μ on $\partial \Delta$ and if we consider $\|$ as a Banach space on $\partial \Delta$, with $\|\mu\| \equiv \int_{\partial \Delta}|d \mu|<\infty$, then the one-toone correspondence between $h^{1}(\Delta)$ and H given by the Herglote representation is an isometry, that is, if μ is 'associated' with $h \equiv P . I$. (μ), then $\|\mu\|=\|h\|$. Moreover, a sequence of

Radon measures $\left\{\mu_{n}\right\}$ in H converges to the Radon measure μ in H if and only if the sequence $\left\{h_{n}\right\}^{n} \equiv\left\{P . I .\left(\mu_{n}\right)\right\}$ in $h^{\prime}(د)$ converges uniformly to $h \equiv P . I .(\mu)$ in $h^{\prime}(\Delta)$ on compact subset of Δ [2].

From the preceding remarks we can easily obtain the following results.
Lemma 1. If r is fixed, $0 \leqslant r<1$, then $\Phi_{r}(\mu) \equiv \phi_{r}(P .1 .(\mu)$ is a continuous and convex function on H.

Lemma 2. For cach $\mathbb{K}, \boldsymbol{N} \geqslant 1$, the sets

$$
\begin{aligned}
& \left.H_{K} \equiv H_{K}(\partial \Delta) \equiv|\mu| \mu \in H, \quad \int_{\partial \Delta} d \mu=1,\|\mu\| \leqslant K\right\} \\
& h_{K} \equiv h_{\mathcal{K}^{\prime}}^{\prime}(\Delta) \equiv\left\{h \mid h \in h^{\prime}(\Delta), h(0)=1, \sup _{0<r<1} \Phi_{r}(h) \leqslant \mathbb{K}\right\}
\end{aligned}
$$

are compact consex subsets of H and $h^{1}(\lambda)$, respectivel!; morevier, the mapping $\mu \nrightarrow$ P.I. (μ) is an isometr! berwecon $\|_{K}$ and h_{K}^{1}.

Lemma 3. $\psi_{r}(\mu)$ antains its neximurn on $\|_{\mathcal{K}}$ at an cextreme point of $\|_{K}$ and $\$_{r}\left(h_{1}\right)$ urtains its maximum onl $h_{K^{\prime}}^{1}$ at an extreme point of h_{K}^{1}

We now use the preceding results to establish the following propositions.
Lenuma 4 . For each $\boldsymbol{K}, \boldsymbol{\alpha} \geqslant 1$, the set of extreme points of $\Pi_{\mathcal{K}}$ is the set
$E\left(H_{K}\right) \equiv\left\{\left.\frac{\kappa+1}{2} \delta\left(t_{1}\right)-\frac{K-1}{2} \delta\left(t_{2}\right) \right\rvert\, 0 \leqslant t_{1} \leqslant t_{2}<2 \pi\right]$,
Where $\delta(8)$ denotes a unit point measure at eit, $0 \leqslant 1<2 \pi$.
Proof. The result is a classic one for $\boldsymbol{K}=1$. Hence we shall consider only $K>1$.
If $\bar{\mu} \in\left\|_{\mathcal{R}}.\right\| \bar{\mu} \|_{i}<\hat{\kappa}, \hat{\kappa}>1$, then we can find a unit Radon measure \boldsymbol{v} on $\partial \Delta$ such that $\|r\|_{i}=\boldsymbol{K}-\|\bar{\mu}\|$ and $\int_{\partial s} d=0$, and hence such that $1 / 2(\bar{\mu}+v)$ and $1 / 2(\bar{\mu}-v)$ are unit Radon measures un $\partial \Delta$. Since $\bar{\mu} \equiv 1 / 2(\bar{\mu}+\nu)+1 / 2(\bar{\mu}-v)$, it follows that $\bar{\mu}$ is not an extreme point of $\|_{R^{\prime}}$.

Since the extreme faints of H_{M} ocecur only among those μ for which $\|\mu\|=K$, we constder $\mu_{0} \in \mathbb{C}\left(\|_{M}\right)$, with $\mu_{0} \equiv \mu_{0}^{*}-\mu_{0}^{-}$as is its canonical decomposition into its phonlive and newalive parts. We shall show μ_{0}^{*} and μ_{0}^{*} are proint measures. Suppose μ_{0}^{*} is not a point measure Then $\mu_{0}^{*} \equiv 1 / 2(\beta+q)$ where p and q are positive measures satisfying p' $\mu_{0}^{*} .4 \prime \mu_{0}^{*}$ such that
$\int_{\partial \Delta} d p=\|p\|=\|q\|=\int_{\partial \Delta} d\|=\|_{i} \mu_{0}^{*}\|\| p-,\mu_{0}^{-}\|\leqslant K\| q-,\mu_{0}^{-} \| \leqslant K$.
Hence $\left(p-\mu_{0}^{-}\right) \in H_{K^{\prime}}\left(\eta-\mu_{0}^{*}\right) \in H_{K_{K}}$. But
$\mu_{0} \mid \mu_{0}^{*}-\mu_{0}^{*}: 1 / 2(\rho+\varphi)-\mu_{0}^{-} 1 / 2\left(\rho-\mu_{0}^{*}\right)+1 / 2\left(\varphi-\mu_{0}^{*}\right)$.
which implies $\mu_{0} \notin \ell\left(H_{K_{6}^{\prime}}\right)$. This contrandets our assumption $\mu_{0} \in E^{*}\left(H_{K}\right)$ so that μ_{0}^{*} is indeed a puint measure.

In a similar way, we can show that μ_{0}^{-}is a point measure too, so that each $\mu_{e} \in E\left(H_{K}\right)$ can be written in the form $\mu_{e} \equiv \alpha \delta\left(t_{1}\right)-\beta \delta\left(t_{2}\right), 0 \leqslant t_{1} \neq t_{2} \leqslant 2 \pi$. Because μ_{e} is a unit Randon measure. and because $\left\|\mu_{e}\right\|=K>1$, we find $\boldsymbol{r}_{1} \neq \boldsymbol{r}_{2}, \alpha=\frac{K+1}{2}$, and $\beta=\frac{K-1}{2}$. Hence each element in $\dot{L}\left(H_{K}\right)$ has the form (4) for $K>1$ too.

Remark 1. If $K=1$, then $H_{K} \equiv H_{1}$ consists of all probability measures on $\partial \Delta$ and $E\left(H_{1}\right)$ is the set of all point measures on $\partial \Delta$. If $K>1$, then $E\left(H_{K}\right)$ is not even closed in H_{K}, indeed we find

$$
\overline{E\left(H_{K}\right)}-E\left(H_{K}\right) \equiv\{\delta(t) \mid 0<t<2 \pi\}
$$

Lemma 5. If $K>1$, then the set of extreme points of h_{K}^{1} is the set

$$
\begin{align*}
& E\left(h_{K}^{1}\right) \equiv\left[\frac{K+1}{2} \frac{1-r^{2}}{1+r^{2}-2 r \cos \left(\theta-t_{1}\right)}-\right. \\
& \left.\left.-\frac{K-1}{2} \frac{1-r^{2}}{1+r^{2}-2 r \cos \left(\theta-t_{2}\right)} \right\rvert\, 0<t_{1}<t_{2}<2 \pi\right] \tag{5}
\end{align*}
$$

Proof. The result (5) follows from Lemma 2 and 4 , and (4).
Lemma 6. If $\boldsymbol{K} \geqslant 1$, then there is a (best) constant $\mathcal{R}_{\mathcal{K}}(1)=\boldsymbol{K}-\sqrt{\boldsymbol{K}^{2}-1}$ such thut each $h \in h_{K}^{1}$ is non-negative for $|z|<R_{K}(1)$. Moreover, $R_{K}(1)=1$ if and only if $K=1$.

Proof. This is Paatero's famous result [4].
Theorem 1. Let R and K be fixed $R_{K}(1)<R<1, \mathcal{K} \geqslant 1$. Then the maximuin of $\Phi_{R}(h)$ over h_{K}^{1} is atrained onls for functions of the form

$$
\begin{equation*}
\frac{K+1}{2} \frac{1-r^{2}}{1+r^{2}-2 r \cos (\theta-t)}-\frac{K-1}{2} \frac{1-r^{2}}{1+r^{2}+2 r \cos (\theta-t)}, 0<t<2 \pi \tag{6}
\end{equation*}
$$

or equivalently, the maximum of $\Phi_{R}(\mu)$ over H_{K} is aftained only for necasures of the form
$\frac{K+1}{2} \delta(t)-\frac{K-1}{2} \delta(t+\pi) \quad 0<t<2 \pi$
Proof. If $K=1$, then the result is a wellknown one in the study of non-negative harmonic functions defined in the unit disc Δ.

For $K>1$, we appeal to Lemmas 2 and 5 to conclude we need but study functions of the form (5) to obtain the maximum of $\Phi_{R}(h)$ over h_{K}^{1}. Since the functions (5) and the measures (4) are 'rotation invariant', it follows that we need but study functions measures of the form
$G(r, \theta ; \ell) \equiv \frac{\kappa+1}{2} \frac{1-r^{2}}{1+r^{2}-2 r \cos \theta}-\frac{\mathbb{K}-1}{2} \frac{1-r^{2}}{1+r^{2}-2 r \cos (0-\ell)}$
$\mu_{s} \equiv \frac{K+1}{2} \delta(0)-\frac{K-1}{2} \delta(t)$
where $0<t<2 \pi$. If $G(R, \theta ; t) \geqslant 0$ hulds for all $t, 0<t<2 \pi$, that is, if $P . I$. $\left(\mu_{f}\right) \geqslant 0$.for $|z|=R$, then $P . I . \mu_{e}=0$ holds for all extreme points μ_{e} for $|z| \leqslant R$. Hence each $h \in h_{K}^{1}$ is non-negative for $|z| \leqslant R$. But this is valid for all $l_{t} \in h_{\mathcal{R}}^{1}$ if and only if $R=R_{\mathcal{K}}(1)$. But $1>R>R_{K}(t)$ Hence there is at least une value $t=t_{1}, 0<t_{1}<2 \pi$, for which $\left(;\left(R, 0 ; t_{1}\right)\right.$ changes sign on $0<0<2 \pi$. This implies that at !east for $t=t_{1}$ we have $F\left(t_{1}\right)>1$ where
$\left.F(t) \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, G\left(R, \phi ; t_{1}\right) d \phi$.
Hence the maximum of $\psi_{R}(h)$ for $h \in h_{\mathcal{R}}^{1}$ is greater that unity.
Since $f(t)$ in (9) is a continuously differentiable function of 8 , and since $F\left(f_{1}\right)>1$, it follows that the maximum of $F(1)$ occurs at some $t_{0}, 0<t_{0}<2 \pi$, where $F\left(f_{0}\right)>1$ and $F^{\prime}\left(r_{0}\right)=0$. Hence

$$
\begin{equation*}
F^{\prime}\left(t_{0}\right)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{G\left(R, \phi_{i} t_{0}\right)}{\left|\zeta\left(R, \phi_{i} t_{0}\right)\right|} \frac{\partial}{\partial t} \frac{\kappa-1}{2} \frac{1-R^{2}}{1+R^{2}-2 R \cos \left(\phi-t_{0}\right)} d \phi=0 \tag{10}
\end{equation*}
$$

If $G\left(R, 0, f_{0}\right)$ does not change sign for $0 \leqslant \phi \leqslant 2 \pi$, then $F\left(r_{0}\right)=1$. This is a contradiction of $f\left(t_{0}\right)>1$. Hence $\left(i\left(R, \phi, t_{0}\right)\right.$ dues change sign in $0<0<2 \pi$. We shall now show that $\left(G\left(R, \varphi_{0}, t_{0}\right)\right.$ changes sign twice for $0<\phi<2 \pi$, that is, $\left(\mathcal{G}\left(R, \phi ; t_{0}\right)=0\right.$ has solutions only for $\phi=\phi_{1}, \phi_{2}$, where $0 \leqslant \phi_{1}<\phi_{2}<2 \pi$. The équation $G\left(R, \phi ; t_{0}\right)=0$ can be written $\left(1+R^{2}\right)+R\left[(K-1)-(K+1) \cos t_{0} \mid \cos \phi-\left[\left(K^{-}+1\right) \sin t_{0}\right] \sin \phi=0\right.$.

Hence if $\left(;\left(R, \phi: t_{0}\right)=0\right.$ vamshes for more than $t w o$ distinct values of $\phi, 0 \leqslant \phi<2 \pi$, then $\left(;\left(R, \phi ; \ell_{0}\right)\right.$ vanishes identically for $0 \leqslant \phi<2 \pi$. Since G dues change sign, it lullows that $G\left(R, \phi, t_{0}\right)=0$ has exactly two solutions, $0 \leqslant \phi_{1}<\phi_{2}<2 \pi$.

If we make use of the cllations $\left(;\left(R, \phi_{1} ; t_{0}\right)=G\left(R, \phi_{2} ; t_{0}\right)=0\right.$ and (10), we find

$$
\begin{aligned}
& F^{\prime}\left(\ell_{0}\right)=t \frac{1}{2 \pi} \int_{\phi_{1}}^{\phi_{2}} \frac{\partial}{\partial t} \frac{R-1}{2} \frac{1-R^{2}}{1+R^{2}-2 R \cos \left(\phi-t_{0}\right)} d \phi= \\
& = \pm\left[\frac{M-1}{2} \frac{1-R^{2}}{1+R^{2}-2 R \cos \left(\phi_{2}-t_{0}\right)}-\frac{1-R^{2}}{1+R^{2}-2 R \cos \left(\phi_{1}-t_{0}\right)}\right]=0,
\end{aligned}
$$

which implies $\cos \left(\phi_{1}-t_{0}\right)=\cos \left(\phi_{2}-t_{0}\right)$. This last along with $\boldsymbol{G}\left(R, \phi_{2} ; t_{0}\right)=\boldsymbol{G}\left(R, \phi_{1}, t_{0}\right)=$ $=0$ yicld the additional relation cos $\phi_{1}=\cos \phi_{2}$, with $0<\phi_{1}<\phi_{2}<2 \pi$. We obtain at once that $\left(\sin \phi_{2}-\sin \phi_{1}\right) \sin t_{0}=0$. Since $0<\phi_{1}<\phi_{2}<2 \pi$, we conclude that $\sin \phi_{2}-$ $-\sin \phi_{1}=0$ and $\cos \phi_{2}=\cos \phi_{1}$ cannot hold simultaneously. Hence $\sin \phi_{2}-\sin \phi_{1} \neq 0$. and consequently $\sin t_{0}=0$. Now $t_{0}=0$ is ruled out because $G\left(R, \phi: t_{0}\right)$ is not of constant sing on $0 \leqslant \phi \leqslant 2 \pi$. Hence $t_{0}=\pi$. Thus we have shown that the maximuin of $\Phi_{R}(h)$ for $h \in h_{K}^{1}$ is attained by (8) and hence only by functions (6). This yields (7) too.

Remark 2. We showed that if K and R are fixed, $K \geqslant 1$ and $R_{K}(1)<K<1$, then the function $G(R, \phi ; \pi)$ vanishes on $0 \leqslant \phi<2 \pi$ only for ϕ_{1} and $2 \pi-\phi_{1}$, where $\cos \phi_{1}=$ $=-\left(1+R^{2}\right) / 2 K R, \pi / 2<\phi_{1} \leqslant \pi$.

Theorem 2. If $K \geqslant 1$ and if $0<R<1$, then
$\max \left[\Phi_{R}(h) \mid h \in h_{\Delta}^{1}\right\rfloor=1,0 \leqslant R \leqslant R_{\mathcal{K}^{\prime}}(1)$,
$\left.\max \left\lfloor\Phi_{R}(h) \mid h \in h_{K}^{1}\right\rfloor=\frac{1}{\pi} \right\rvert\, 2 \phi_{1}-\pi+A R C ; \frac{\left(1-R e^{-i \phi_{1}}\right)^{K+1}}{\left(1+R e^{-i \phi_{2}}\right)^{K-1}}, R_{K}(1)<$
where $\cos \phi_{1}=-\left(1+R^{2}\right) / 2 K R, \pi / 2<\phi_{1} \leqslant \pi,-\pi / 2 \leqslant \operatorname{ARG}\left(1-R c^{-i \phi}\right) \leqslant \pi / 2$.
Proof. If $0 \leqslant R \leqslant R_{K}(1) \equiv K-\sqrt{K^{2}}-1$, then each $h \in h_{K}^{1}$ is non-negative for $|z| \leqslant R$ and hence the result (11) is valid.

Similarly, if $K=1$, then each $h \in h_{K}^{1}$ is nun-negative, so that (11) and (12) are valid for this case.

Now let $K_{K}(1)<R<1$ and $K>1$ buth huld. Then if fulluws from Thicorem I that the maximum we want is attained only for functions of the form (8) and hence, because of the rotational invariance of the extremal result, we need but consider the function $\boldsymbol{G}(R, \theta ; \pi)$ given in (8). Since, as noted in Remark $2, \boldsymbol{G}(R, 0 ; \pi)$ in non-negative for 2π -$-\phi_{i} \leqslant \phi \leqslant \phi_{1}$, and non-positive for $\phi_{1} \leqslant 0 \leqslant 2 \pi-\phi_{1}$ where cos $\phi_{1}=-\left(1+R^{2}\right) / 2 \mu R$. $-\pi / 2<\phi_{1} \leqslant \pi$, we find
$\left.\Phi_{R}(G(R, 0 ; \pi)) \equiv \frac{2}{2 \pi} \int_{0}^{\pi} \right\rvert\,(;(R, \phi ; \pi) \mid d \phi \equiv$
$\equiv \frac{1}{\pi} \int_{0}^{\pi}\left|\frac{K+1}{2} \operatorname{Re} \frac{1+R e^{-i \phi}}{1-R e^{-i \phi}}-\frac{K-1}{2} \operatorname{Re} \frac{1-R c^{-i \phi}}{1+R c^{-i \phi}}\right| d \phi \equiv$
$\equiv \frac{1}{\bar{H}}\left[2 \phi_{1}-\pi+A R G ; \frac{\left(1-R e^{-i \phi_{1}}\right)^{K+1}}{\left(1+R e^{-i \phi_{1}}\right)^{K-1}}\right]$,
where $-\pi / 2<\operatorname{ARG}\left(1 \pm R e^{-i \phi}\right) \leqslant \pi / 2,0 \leqslant \phi \leqslant 2 \pi$. This completes our provif of Theurem 2.

The preceding result leads to the raison d'étre of this note.
Theorem 3. Let $K \geqslant 1$, and let M be fixed, $1 \leqslant M \leqslant K$. Then each $\delta \in V_{K}^{\prime}$ has bounilary
rotation at most $2 \pi M$ for $|2|<R_{K}(M)$, where $R_{K}(M) \equiv X$ is the unique solution in the interual $R_{K}(1)<X<1$ to the equation
$2 \phi+\operatorname{ARG} \frac{\left(1-X e^{-i \phi}\right)^{K+1}}{\left(1+X e^{-i \phi}\right)^{K-1}}=\pi(M+1)$.
where $\cos \phi=-\left(1+X^{2}\right) / 2 K X_{1}-\pi / 2<\phi<\pi_{1}-\pi / 2<\operatorname{ARG}\left(1 \pm X e^{-1 \phi}\right)<\pi / 2$.
Proof. Since the boundary rotation of f on $|z|=r$ is given in (1) or (2) and this in turn is given by $2 \pi \Phi_{r}(h)$, where h is defined in terms of f in (3), then the result (13) follows immediately from Theorem 2.

Remark 3. If $M=1$ and $X=\boldsymbol{R}_{\boldsymbol{K}}(1)=K-\sqrt{K^{2}-1}$, then $\phi=\pi$ in (F) and thus we are able to verify Patero's result.
3. Conclusion. It would be of interest to determine whether or not the radius of univalence of the class V_{K} may be obtained from (13) by setting $M=2$. Kirwan has shown that the radius of univalence of V_{K} is then $\pi / 2 K[3], K \geqslant 1$.

REFERENCES

[1] Brannan, D. A., Clunic, J. G., Kirwan, W. E., On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Iienn., Sct. AI, S23, (1973), 18.
[2] Itelms, L. L.. Introduction to Potential Theory, New York 1969.
13| Kirwan. W. E., Exiremal problems for funcrions with bounded boundary notation, Ann. Acad. Sci. lienn., Ser. Al, 595, (1975), 19.
It Paatero, V., Über Gebiere beschränkrer Randíhehung, Ann. Acad. Scl. Fenn., Ser. A, XXXVII, 9. (1933). 20.
|S| Pfluger, A., Funcrions of bounded boundary rotation and convexity, J. Analyse Math., 30 (1976), 437-451.

16| Pfluger, A., Some extremd problems for funcrions of bounded boundary notation, Israel J. Math., 39, (1981), 46-62.

STRES2CZFNIE

Autorzy uogólniaja wynik V. Patero dotyczący promieni wypuktości klasy funkcjizograniczona wariacja brzegowa

PE3IOME

Амторы обобиают результат В. Палтеро касаоииися радиуса вылуклости класса фуикииа ограмененного в ращенен.

