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O funkcjach z ograniczonym obrotem na brzegu

O byHKUNAX OrpaHHYEHIION0 BpauteHin Ha Gepery

1. Introduction. Let Vg denote the set of all functions f(z) = z + ... that are analytic
in the unit disc A, with f*(z) # O there, and with boundary rotation at most 27K, K > 1.
1.e., each f€ I’y satisties

()

FMiReq) +
o 1)

)1d0 € 2aK, 2 =re'0, )

forallr,0<r< ).

The class ¥y, introduced by Lowner, was the subject of a detailed study by Paatero

who established some ot the basic properties of that class, including a determination of
its radius of convexity [4]

Rg(l) = K — VK* =1
In this note we generalize Paatero's result by dctermining the radius Rx (M) of boundary

rotation at most 2aM for the class ¥V, 1 <M < K, that is, we deternune (implicitly) the
largest value of r such that for f€evyg,

2n 2f"(2) i
[ IRe(1 + ) )1d0 <2nM,z =ref®, ()

holds for all | z | < R (A). Our method depends on the determination of the extreme
values of a particular continuous convex functional defined on a set Hg of Radon
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measures u defined on the unit circle dA (or, equivalently, on a certain set h'x of harmonic
functions), and these extreme values depend on the determination of the extreme points

of Hy (or h,'() after Hy (or h;() has been endowed with a particular topology.

We call. attention to papers [S] and [6] that contain results comparable to those
contsined here; there is some overlapping of results, but our technique is different. We
also call attention to the extreme points of the ‘space’ Vg found in [1]; the ‘space’ Vg
there is not used here,

The ‘well’known’ result concerning Banach spaces of measures and of harmonic
functions may be found in references [2], [5] and [6].

2. Results. Each f € V. may be associated with a unique real function

2f(2)
i'@)

h(z)=Re (1 + )=1+ ... 3)

that is harmonic in the unit disc A and has the Herglotz representation

n 1 +ze™ i@

1 )
= — P UL = r 0
hey= 5= IR~ du@)=PLG) ),

where p is a Radon mcasure with fdu =1 and total variation at most 2aK. Here P./. ()
2a

denotes the Poisson integral of u.
The functional

. 1 n io
¢,h)= — [ 1h(2)1d0, z=re™,
2n ¢
is defined for all real A (2) that ate harmonic in A. A subset of the set of all real harmonic
functions defined in A is the set

h'(A)Elh] sup ¢, () <],
0sr<)

which is well-known as a subset of 4 Banach space with N h | = || e il, = sup &, (h)
07 <}

It is also known that each h € h' (A) has the form h = P.I (u), where p is a teal Radon

measure defined on dA. If we let /{ denote the set of all real measures p on 9A and Wf

we consider #/ as a Banach space on 0A, with || u Il = f | du | <ee, then the one-to-one
22

correspondence between h'(A) and H given by the Herglotz representation is an isomeltry,
that is, if p is ‘associated’ with i = P4 (@), then || p || = |l A Il. Moreover, a sequence of
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Radon measures 'hl,,-j in H converges to the Radon measure p in H if and only if
the sequence {h,, = {P,f. ip,,)} i h'(AQ) converges uniformly to h = P.L (u) in
' (A) on compact subsct of & [2].

From the preceding remarks we can easily obtain the following results.

Lemma 1. If ris fixed, 0 <r < |, then &, (u) = b, (P.1 (n)) is a continuous and convex
Junction on H.

Lemma 2. For cach K, K > 1, the sets

Hy = He(QA)=|u|u€H, [ du=1,1pul<K],
A

hk = hi (AY=[h] hEN(A). N (O) =1, sup & (h)<K]
[} r 1

are compact convex subsets of Hand h* (), respectively; moreover, the mapping p + P.1. (1)
isan isometry benween Hy and h‘K.

Lemma 3. &, (u) artains its maxivaem on Hy: ar an extreme point of Hg and o,()
areains its maxinum on "lK at an extreme point of "llK .

We now use the preceding results to establish the tollowing propositions,
Lenuna 4. For cach K, K 2 1, the sct of extreme points of Hy is the set

5=

K+1
E(Mgy=(—— 8(1,) ~ b(1:) 1 0ty €1y <2nm), )

-

where 8(1) denotes a unit point measure at ¢’ ,0 <1 < 27,
Proof. The result 15 a classic one for K = 1. Hencee we shall consider only K > 1,

g €M lul <K, K> 1, then we can tind a unit Radon measure v on BA_such
that [l v i =K =Y ulland f dv =0, and hence such that % + v) and % (u —v)
2a

are unit Radon nicasures on 33, Since g = ' (u + v) + % (u — »), it follows that g is not
anextreme pont of My .

Since the extreme ponts of Hyy oceur only among those g for which |l u Il = K, we
consider p, € E(iyy), with gy = gy — gy as is its canonical decomposition into its
positive and nezative parts. We shall show ug and u are point imeassures. Suppose Mg is
not u point measure. Then pg = Ya(p + ) where p and ¢ are positive measures satis{lying
PV g, g b opg such that

{atll’=lll’ll=lltIII= Jda=Rhugll, Ip—uo <K, llg—u <K
A
Hence (p “H)E Mg (¢ —ug)E Hi. But

Ho Vug o VA(p+q)—po 8% (p—po) + % (¢ —uo)

wlich 1mplies gy @ £/

_ : {£7). This contradicts our assumption g € E(Hx) so that ud is
indeed 4 point measure. ’
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In a similar way, we can show that pg is a point measure too, so that each y, € E(Hg)
can be written in the form g, =ab (£,) — 6 (1,),0 <1, #1; < 2n. Because p, is a unit

K+1
2

Randon measure, and because )| go || = K > 1, we find ¢ty # 4, a = , and

-

1
g= -—2—— . Hence each element ia £ (Hx) has the form (4) for K > 1 too.

Renark 1. If K = 1, then Hx = H, consists of all probability measures on 3A and
E(H,) is the set of all point measures on 04A. If K > 1, then E(Hy ) is not even closed in
Hy ,indeed we tind

EMHg)— EHk)=16(t)1 0< 1 < 2n] .

Lemma S. If K 2 |, then the set of extreme points of h ;( is the set

AL _[K+l I =%
) = 2 1+r*=2rcos(@—1t,)

()
K—-1 1-r
g 0<t, <1y < 2n
2 V+r2 —2rcos (@ —¢,)

Proof. The result (5) follows from Lemma 2 and 4, and (4).

Lemma 6. If K > 1, then there isa (best) constant Ry (1) =K =/ KT =1 such that
each h € hi- is non-negative for | z | < Rg (1). Moreover, Rx (1) = 1 ifand only if K = 1.

Proof. This is Paatero's famous result [4].

Theorem 1. Let R and K be fixed R (1) < R < 1, K 2 1. Then the maximum o
Gg (h) over h;( is attained only for functions of the form

K+1 1-r K—1 1-r
- - 0<r<2m, (6)
2 1+rP—2rcos(0—1) 2 1+r+2rcos(0 —1)

or equivalently, the maximum of ®g (u) over Hy is attained only for measures of the form

K+1 K—1
S 8)- 5= 8¢+ 0<1<2n )

Proof. If K = 1, then the result is a wellknown one in the study of non-negative
harmonic functions defined in the unit disc A.

Fot K > |, we appeal to Lemmas 2 and 5 to conclude we need but study functions of
the form (5) to obtain the maximum of $g (/) over h'x. Since the functions (5) and the
measures (4) are ‘rotation invariant”, it follows that we need but study functions imeasures
of the form
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EEOMS K+1 1-r K-1 =7 ®
ro; n= . 2
2 1+r2 —2rcush 2 1+r =2recos(@—1¢)

K+ k-1
W= = B(0)— —— b(1)

- -

where 0 <r < 2n.1f G(R, 0;t) 2 0 holds for all 1, 0 <¢ < 2n, that is, if P.L.(it;) 2> Ofor
'z =R, then P.L g, = 0 holds for all extreme points u, for | 2 | < R. Hence each h € hy
is non-negative for | z | < R. But this is valid for all 1 € h;\: ifand only if R = Ry (1). But
1> R> Rk (1) Hence thereisat least one value £ = £,,0< 1, < 2n, forwhich G(R, 0;1,)
changes sign on 0 < ¢ < 2n. This implies that at lcast for £ = 1, we have F(f,)> 1 where

l L
Fy= — IJ [G (R, ¢:1,)do . )
(1]

e 4

Hence the maximum of bpytorh e I:'K is greater that unity.

Since F(r) in (9) is a continuously  differentiable function of ¢, and since F(r,)> 1,
it follows that the naximum of F(¢) occurs at some £o, 0 <ty < 2m, where F(ro) > 1 and
F'(15) = 0. Hence

. I GR.O,) D K~—I 1 -R? (10)
Fito)y=- — — ; d¢ =0
21 o G (R, ©.tg)| Or 2 1 + R —2Rcos(p—1t,)

IfG(R, 0. 14) does not change sign for 0 < ¢ < 27, then F(ro) = 1. This is a contradic-
tion of F(rg) > 1. Henee G (R, ¢. to) does change sign in 0 < ¢ < 2. We shall now show
that G (R, ¢. 1y ) changes sign twice for 0 < ¢ << 2, that is, G (R, ¢; 1) = 0 has solutions
only for ¢ = ¢, ¢;, where 0 < ¢, < ¢, < 2. The equation G (R, ¢;10) =0 can be written

O+RH+RIK—1)— (K + 1) costg] cosg—[(K 4 1)sine, ) sing =0.

Hence it G (R, ¢:14) = 0 vaiushes for more than two distinet values of ¢. 0 < ¢ <2nm,
then G (R, ¢ o) vanishes identically for 0 < ¢ < 27r. Since G does change sign, it lollows
that G (R, ¢.1,) = 0 has exactly two solutions, 0 < ¢, <¢, <2m.

I we muke use of the relations G (R, ¢, 1) = G (R, ¢1. 15) =0 and (10), we find

F'ltg) =1 - (™ —— Es
o) = = e e
']'"@t Y 2 L+ R —=2R cos(¢p—ty)

do =

3}

2 1+ R = 2R cos(¢; — 1o) |+ R —2R cos (¢, — o) |

. [,\1—1 1 —R? 1 —R? ]
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which implies cos(¢y — o) = cos(¢, — o). This last along with G (R, ¢.10) = G(R, ¢, )=
= 0 yield the additional relation cos ¢, = cos ¢,, with 0 < p, < ¢, < 2n. We obtain at
once that (sin ¢, — sin ¢,) sin fo = 0. Since 0 < ¢, < ¢, < 2, we conclude that sin ¢, —
—sin ¢, = 0and cos¢; = cos ¢, cannot hold simultaneously. Hence sin ¢, —sing, #0,
and conscquently sin 1, = 0. Now £y = Oisruled out because G (R, ¢. 1) is not of constant
sing on 0 € ¢ < 27. Hence tg = 7. Thus we have shown that the maximum of &g (h) for
he h,'( is attained by (8) and hence only by functions (6). This yields (7) too.

Remark 2. We showed that if K and R are fixed, K > | and Rx (1) <R <1, then the
function G (R, ¢; n) vanishes on 0 < ¢ < 2m only for ¢, and 2n — ¢, , where cos ¢, =
=—(+RY)[2KR, n[2< ¢, <m.

Theorem 2, If K> land if 0 < R < |, then

max [ Pr(h) |hE€Ehy | =1, 0SR KRk (1), . (1)
g (1 =Re~ory **
max | g () lh€hy | = — 12¢, — n+ ARG 3 Ry <
n o |
1 +Re™ 02 .
<R<I, CRYal (12)

where cos ¢, =— (1 + R?) [2KR, n/2< ¢, <u,— n/2 < ARG (1 - Re~ oy < a2,

Proof. If 0 SR < Rx(1) =K —+/K? — | ,theneach h € h;( is non-negative for
|z | < R and hence the result (11) is valid.

Similarly, if K = 1, then each h € h; is non-negative, so that (11) and (12) are valid
for this case,

Now let Rx (1) <R <1 and K > 1 buth hold. Then it follows from Theorem | that
the maxisnum we want is attained only for functions of the form (8) and hence, because
of the rotational invariance of the extremal result, we need but consider the function
G (R, 0; m) given in (8). Since, as noted in Remark 2, G (R, 0, n) in non-negative for 2m —
— ¢, S ¢< ¢,,and non-posilive for ¢, <0 < 21 — ¢, where cos @, = — (1 + R*)/2AR,
—-n2< ¢, <u,we find

9

% G (R.0.m)= OI'IG (R. ¢:m) 1 dp =

1 ; K+1 o I+Re™™  K-—1 y LEmaRy
= e e - - - =
" 2 | —Re”!® 2 Tt R ¢

i) (1 —Re~ o1y "
= - |26, —n + ARG s ]
(1 + Re™ 101y

where — n/2 < ARG (1 t Re” **) < n/2, 0 < ¢ < 2n. This completes our proof of
Theorem 2.

The preceding result leads to the raison d’étre of this note.

Theorem 3. Let K 3 1,and let M be fixed, | < M < K. Then each f € Vi has boun.lary
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rotation at most 2aM for | 2 | < Rk (M), where R (M) = X is the unique solution in the
interval Rg (1) < X < 1 to the equation

a _Xe_w)xol
26+ ARG T =t 1), (13)

(1 + Xe™ ')

where cos¢=— (1 + X*) | 2KX, —n[2< ¢ <, —n/2 S ARG (1 £ Xe )< n/2.

Proof. Since the boundary rotation of fon | z | = r is given in (1) or (2) and this in
turn is given by 2nd,(h), where h is defined in terms of f in (3), then the result (13)
follows immediately from Theorem 2.

Remark 3. If M =1and X = Rg(1) =K —+/ K* — 1 ,then ¢ = n in (F)and thus
we are able to verify Paatero’s result,

3. Conclusion. It would be of interest to determine whether or not the radius of unival-
ence of the class ¥y may be obtained from (13) by setting M = 2. Kiswan has shown that
the radius of univalence of Vx isthenn/2K [3],K > 1.
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