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1. Introduction. Let D be a bounded domain in C whose boundary 0D is a Jordan
curve. We denote by A the unit disc 1w | < l& and suppose that z = y(w)isa I 1
conformal mapping of A onto D. The Poincaré metric in D, denoted by Ap  is defined by

A (v (W) w'wy=(1 —lwi’)" ',

For ¢ > 1, the Bers space Agq(D) is the space of functions f{z) analytic in D for which
VAR =1, f1ne) J\}J' 4 (z)dvdy < oo .

With Y (w) defined as above we have

!w}=ID SN Ydxdy =1, S0 19 (1= 1w )72 duady (1)
Thus the function f(z) = 1 and all polynomials will belong to A4,(D) if and only if

I(g)ot (1.1) s finite.

The integral /(¢) is certainly finite for ¢ 2 2 since  is a bounded domain, and so has
finite area. It was shown by Bers ( {3], pp. 118—119) that for any bounded Jordan domain
D the polynomials not only belong to A4 (D), but are dense in Aq(D), for g 2 2. We shall
use throughout the notation of Duren's book [4]. If D has a rectifiable boundary then
V'€ H' ([4], Theorem 3.12). It then follows from a theorem of Hardy and Littlewood
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({4], Theorem 5.11 with p =1, X\ = q) that I(q), defined by (1.1), is finite forallg> 1.
It has been shown by Metzger [9] (see also [6], [8]) that the polynomials are dense in
A4 (D) in this case also. Very little appears to be known in the case when the boundary
aD is non-rectifiable apart from Theorem 2 of [9]. It is this situation which we wish to
discuss,

2. Quasiconformal discs. A bounded domain D in C is called a k-quasiconformal disc
or, briefly, a k-quasi-disc if its boundary 3D is the image of the unit circle § jw | =]
under a sense-preserving quasiconformal mapping z = ¢(w) of € onto € whose complex
dilatation u(w) = ¢/ ¢, satisfies

lHlull=suplpuw)l=k<l.

The domain D is called simply a quasidisc if it is a k quasi-disc for some k, 0 <k < 1. We
do not, in what follows, wish to emphasise the particular k of the quasi-discs concerned.

It is well known that the boundary 9D of a quasi-disc D need not be rectifiable (see
[S], where it is shown that the Hausdoiff dimension of a quasi<ircle can be arbitrarily
near to 2). Thus the mapping z = y(w) of A onto D need not have ' € H'. The first
question that arises, therefore, is to determine when the polynonials belong to A4 (D);
i.e. to determine tie values of ¢, 1 <q <2, for which /(g), defined by (1.1), 1s finite. The
first theorem is an elementary consequence of a result of Bojarski (sce [7}, Theorem 5.1,
p. 215).

Theorem 1. Let D be a k-quasi-disc, 0 < k < 1, and suppose that z = Yy(w) maps A=
= {I w|< 13 conformally onto D. Then there isa qo = qo (k) < 250 that I(q) <o for
Qo <q <2.

Proof. It has been shown by Bojarski ([7], loc. cit.) that, with the above notation,

So 1V W) 12 ° 8 dudy < =

for some & =8(k)> 0. Thus, applying the Cauchy-Schwarz inequality withr =(2 + )y i
$=(2+8—¢)(2+58) ' weobtain

1/8

I@)< (J’Afllprtﬂ'}lhbdmlv) v (f/\ [l —|w|2)(‘l'3)l)

Thus /(g)<oe provided that (¢ —2)s < 1,ie. forg>2—8 (1 —8) ' =gy, as required.

It is an elementary consequence of the Grunsky inequalities for the class T, (sce [10],
p. 287) that for a given q¢ > | there is a k = k(gg) so that I{g) <o tor every k-quasi<dise
D. For if D is a kquasi-disc thereisa k =k (k),0 <k < 1,so that

YW =0 —Iwi?) *)(Iwi>1-) Q2.n

and moreover k(k) ~ 0 as k = 0. Hence the integiand in /(gy), given by (1.1), is of the
order (1 — | w | 2)9e U =)= 2 jor k sufficiently near to 0. Thus /(4o ) converges provided
Go(1 —€)> 1.

The next theorem shows, however, that f(¢) necd not be finite tor all g(} < g <2).
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Theorem 2. There are constants k < 1 and qo > | such that there exists a k-quasi-lisc
D for witich 1(q) = for 1 < q <qo, where 1(q) is defined by (1.1).

It will be clear from the proof that our construction works only if k is sufficiently
close 10 1, and then we could choose a go = ¢ (k). There is no reason to suppose that
our method is optimal; so we choose not to make the relationship between ¢ and &
explicit, through it will be clear from our construction how this could be done.

3. Polynomial density, Let D be any quasi-disc in €. 1t I(g) is defined by (1.1),I(1) =
=0 always and /(g) < °° for ¢ near to 2 from below. We define

90 = q0(D) = inf {g: 1(@)< =] . (3.1)

%0 that 1 € q4 < 2. with gy > 1 for the domains of Theorem 2.

Theorem 3. Suppose that D is a quasi-disc and that ¢, is defined by (3.1). Then the
polynomials are dense in Ag(D)jorallq > qe.

1f 9o = 1 then /(qo) = °° and it might be conjectured that /(qq) = o0 for go = qo (D)
in all cases. If this were true, then Theorem 3 would take the pleasing form:

® If D is a quasi-disc then the polynomials are dense in Aq(D) if all the polynomials
belong to Aq(D).

It seems unlikely, however, that /(qo) = = in all cases and it is possible that the
polynomials are also dense in Aqq(D) when I{go) <o, i.e. ® may in fact, be true, This
intriguing situation, which occurs also in Theorem 2 of [9], dqpends on the fact that our
proot of Theorem 3 uses ideas similar to those of Shapiro’s paper [11] on weighted
polynomial approximation — the ‘weight' in our case being | ¢'(w) | 7. Similar situations
arise in work on weak invertibility in [1]. We could give a sclf-contained proof of Theorem
3, but it would be similar to the proof of Theorem 1 of [11] and so it is not surprising
that the critical case ¢ = ¢o(D) is left open. The proof that we do give is based on an idea
of Sheingorn ([12], Prop. 10).

I 1(q) = o, then no polynomial which is bounded away from 0 in D belongs to 44(D).
However, /(g) may diverge because of the behaviour of '(w) at only a finite number of
points on {I w|= l} and in this case it might happen that certain polynomials were in
A¢(D). We do not know whether this can occur or not; and if it can the question then
arises as to what is the closure of such polynomials in 44(D).

4. Some Lemmas. The following two lemiias are needed for the construction of the
example provided in Theorem 2. -

Lemma L. Given € > 0 there are positive integers vy and k such that if f(ry= Z k"rk".

n=v,
then, for0<r < | L

(M=rfr)y<e ' +e.

R - n
Proof. We define F(r) = T k"X and, for K <r <1, we let N be the smallest integer
such that n=
k N
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Consider

N - o
Fiy=(Z + ) " =3, + 2,, say.
n=a) pesNei

First of all,

- N N
2,=kV (AW = NE AT < kVF ().
A=)

Secondly.

kV-1

N
e SVl YR Y o

Given € > 0, we next show that if k is large enough, then, for any positive integer v,

v kvt < (e + %)(1 - O<r< 1)

4 Ve
The maximum of vr” (1 — r)occursatr = v (v +1)” ' and is il o
v

4.2)

t
<e!

We can choose k so large that for some ro,0 <rq <1,depending onv, but independ-

ent of k,

€ fn=v ra<r
n =l L & 4 ’ »
Y ’)<2 (n=ky, 0OSr <«<r,.

Hence inequality (4.2) follows.

Since by (4.I)J“~ﬂ > % we sce that as N+ o0 and hence asr -+ | —,
kN1 <(log 2) (log ,i)" S+ —ryt.
From (4.2) and (4 3) for k large enough and R, 0 < R < |, suitably chosen,
= (e + ; +k=1)""N)(A ="' R<r<1)
Taking (4.3) once more into account we obtain

Fir)=2, + T, <(e™ + § +(k —1) + F(A) (1 —r)"* (R<r<1),

Since k F (%) 0 (k = ) we can assume that k is large enough to ensure that

(4.3)
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F(<Ee ! +e)(1—r)y' (R&r<1). (44)

Finally we choose v, large enough so that the inequality of (4.4) holds for f(r) in the
range 0 < r < R and this completes the proof of Lemma 1.

Lemma 2. Let f(z) = 5 ay =" be analytic in flzI1< ljand suppose that \ay | >n®
n=0 -

Jor infinitely many n, where o is a positive constant. Then there is a sequence (ry) with
r, / 1asv /oo such that, for cach q > 1,

f:' Lfre®)19d0 > A@) (1 =r) 9 r =rpv=1,2,.).

2

where A(q) > 0.
Proof, For all n we have that

1 2n .
lan"n<'_’—_'f |f(r¢"o)|d0.
2n 0

Consider those n,, for which lay, | > and setr, =1 — — . Then
- Hy

i n i )
T o Afeety1do>ns (1 = —)'vea0 -n) Y,
i 1R ny

for some constant 4 > 0. The lemma now tollows on applying H6lder's inequality.,
5. Proof of Theorem 2. We require one further lemma.

Lemnu 3. There exists a function Y(w) = X an W', bounded and univalent m 8,
nao
possessing a quasi-conformal extension to € such that 1a, | >n®"" for infinitely many n,
where a is some positive constant.

The domam D which is the image of A under z = Y(w) is the required example for
Theorem 2. Since Y(w) has a quasi<onformal extension to € the boundary 30 is a
kquasi-disc for some k < 1. Suppose that 1 <q <2 and /(g), defined by (1.1), is finite.
Then, with w=pe'? n<p<1,

3 P ; gl )
o WL 1 =11 Pt drdg <
2n

| 4
< Jo {‘ LU e ) 19 (1 =11 11)9 edidg < 1(q) = K < oo, say.

This implies that for some constant 4 and all pnearto 1,

2a
3, L1V Tdg<a —p) T
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If we apply Lemma 2 to ¥'(w), however, we arrive at a contradiction unlessq a < g — 1,
ie.q>(1 —a)” ! =¢q,say. Thus J(q) = = for 1 < q < qq, and this completes the proof
of Theorem 2.

Proof of Lemma 3. We choose vy and k as in Lemnma 1 and consider J(w) detined by
Y)=0and

- n9
¢ '(w) = exp ; Az owk 7.
Y one vy 1
where X > 1 will be chosen later. Now
" .W -

Wil _y % ant”

v (w) nev,

and hence, from Lesnma 1,

(1-iwl) ﬂ(—w) I KA(I+iwh(Ee ' te)y<2r(e ' +e).
viw)

If € > 0 is chosen small enough so that 2(e~ ' + €) < | we may then choose A > | so that

2A(e” '+ €)=« <1 Then, by aresult of Becker ({2], Korollar 4.1) "(w) has a quasi-

<conformal extension to all of ¢ . It D denotes the image of A under ¢ (w). thendDisa

k quasi-conformal circle for some k depending only on k., and so, ultimately, only on X.
We write ¢ ‘(w) as

- " - n
viw) = Il exp (A wh y=1 (Q+ Awk + higher ternis)
nev, nev,
All terms in each bracket above have non-negative coellicients and if we consider

N=kYo + k" Y+ +k"™ (m>v,),

then N < k™ and

ay > const A" = conste” M2 > const exp ( —) > const A®

log A
For @ = ————_This proves Lemma 3.
2 log k
It is clear from Lemma 3 how to choose a ¢g = ¢o (K) for a given k sufliciently cluse
to 1 (cf. remarks at end of § 2).
6. Proof of Theorem 3. The proof of Theorem 3 depends on showing that givene >0 -
there is a polynomial £(w) such that

I, 10 - PWYW' )10 = 1w )" dudv <e, (6.1)
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i.e. that (¢'(w))? is weakly invertible in Aq(D), and then applying a result of Sheingorn
({12], Prop. 10). We suppose now that g is some fixed number greater than g4 (defined
by (3.1).

Lemme 4. Under the hypotheses of Theorem 3 there is an 1 > 0 such that

Jo TN (1 =1w1?)P 7" 2 dudr <K <o

Jor0 < r< g, where K is a constant.
Proof. It is sufficient to prove  the lemma forr =g since for0<p < 1,

21—" {:'l U'(pe'®) 1"do < max {1, -21—” {" | v'(pei®) )9 d¢}.
Now choose an s with g, < s < q and then

[ w) 191 = e ?)-n=2 = [w’(wn‘u -lwl’)"’]x

X[1900197 5 =1w i@ 0].

But D is a quasi-disc and fiom (2.1)

W T (1= w )i =0 ((l —lw H?-D a0 'I""")(le-*l—).
This latter 1erm is bounded for any n = n(g, &) satisfying

0<n<(qg—95)(1 —«). (6.2)
Hence, tor such an n,

Sy S0l (= 1w 1Y S gudy < Ky ) <K,

and this proves Lemma 4.

Lemma 5. Suppose that the hypotheses of Theorem 3 are satisfied and € > 0. Then
there is a polynomial P(w) such that

S, SO ') = (') U = 1w 97 ) dudv < e

Joralls, n<s <y, and v satisfics (6.2)

The proot of (6.1) now follows by repeated applications of this lemma. A similar step-
by-step argument appears tirst n the work of Shapiro ({11}, Theorem t). Note that the
exsstence of an n sauisfying (6.2) was proved only on the assuption that ¢ > go. The
argument that concludes the proof of Theorem 3 from (6.1) is omitted since it has been
indicated by Sheingorn ([12], Prop. 9).

!’rouf of Lemnua . Fix some analytic determination of log ¢ '(w) and for ¢ € € define
(v (Wh¥ = exp (¢ log ¢ (w)) as usual. Note that V'(w) # 0 in A so that the preceding
tunctions are well defined. For fixedr, ¥ <r< 1,
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LW ew) TP <Gy (1= |w )™ < G (1 —Iwi)"™

for | w | < 1 by the result for | ¢'(w) |~ ! corresponding to (2.1). From lemma 4 and
Lebesgue’s dominated convergence theoremasr— 1 —,

[, ST ) T =@'ew) " 1’ (w) FA—1wt*)? " dudv+ 0.

We choose 7, 0 < r < 1, so that the above integral is less than €/2. Since (¢ '(rw)) ™~ " is
analytic in { Iwi< l/r} there is a polynoiial p(w) so that

.fA SIpwW)—('w) M 1YW 11— 1w i*)47? dudv < § 1

These two estimates give the result of Lemma S and consequently the proof of Theorem
3 is complete
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STRESZCZENIE

Niech D oznacza ugraniczony otiszar Jordana, gas Aq(D), g > 1, przestraen Bersa funkcji holomor-
ficznych w obszarze D.
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Przedimiotem rozwazan jest poszukiwanie odpowiedal na pytanie przy jakich warunkach natozo-
nych na obszar Di wyktadnik q wielomiany naleza do A4(D) i tworza w niej zbidr gesty.

PE3IOME

Mycre D o603navaer orpamnuciiyo o6nacte Xopnaxa u Aq (D), q > | npoctpancrso Bapca
Gyurunf ronomopdHuix 8 o6nactu D

NMpenmetom paccyxacHuA ecTh OTHICKAHHE OTBETA HA BONPOC 11pH KAKHX Y CIOBHA X HANOXKeHHbIX
Ha 06nuctb D m Nokazamsib ¢ MONMHOMbLI NPHHAINCXAT K Aq (D) w coapaliHoM BCoONY MAOTHOE
HOMMHOXE CTHO 3TONO IPUCTPIAHCTBA.






