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Плотность полиномов в некоторых классах аналитических функций

I. Introduction. Let D be a bounded domain in C whose boundary t)£) is a Jordan 
curve. We denote by A the unit disc w | < 1^ and suppose that z = i^(rv) isa J ■*- I 
conformal mapping of A onto D. The Poincarj metric in D, denoted by X/j is defined by 

Xo(t>(w))^(»v) = (l -Itvl1)-' .

For r/ > 1, the Hers space Aq(D) is the space of functions/^) analytic in D forwhich 

11 /11 </ = f I J\:) I ’ (z) dxdy < «•.

With t(r(»v) defined as above we have

= ID f Xj,’ * dxdy = /A J I tp’(w) |« (I - | w i’-1 dudv . (1.1)

Thus the function /(z) = 1 and all polynomials will belong to Aq(D) if and only if 
ffi/) ol (1.1) is finite.

The integral /(</) is certainly finite for q > 2 since £1 is a bounded domain, and so has 
finite area. It was sliown by Bets ([3], pp. 118—119) that for any bounded Jordan domain 
/3 the polynomials not only belong to Aq(D), but are dense in Aq(D), for q > 2. We shall 
use throughout the notation of Duren’s book [4|. If /3 has a rectifiable boundary then

6 //* ((4j, Theorem 3.12). It then follows from a theorem of Hardy and Littlewood
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([4], Theorem 5.11 with p - 1, X = q) that /(<7), defined by (1.1), is finite for all q > 1.
It has been shown by Metzger [9] (see also [6], {8]) that the polynomials are dense in 
Aq(D) in this case also. Very little appears to be known in the case when the boundary 
dD is non-rectifiable apart from Theorem 2 of [9]. It is this situation which we wish to 
discuss.

2. Quasiconformal discs. A bounded domain D in C is called a A-quasiconformal disc 
or, briefly, a k-quasi-disc if its boundary dD is the image of the unit circle w | = 1^ 
under a sense-preserving quasiconformal mapping z = 0(w) of Ç onto Ç whose complex 
dilatation p(w) = </>ïp/</>w satisfies

||/r|| = suplM(w’)l=*<l.

The domain D is called simply a quasi-disc if it is a k -quasi-disc for some k, 0 < k < 1. We 
do not, in what follows, wish to emphasise the particular A of the quasi-discs concerned.

It is well known that the boundary 'dD of a quasi-disc D need not be rectifiable (see 
[5], where it is shown that the Hausdoiff dimension of a quasi-circle can be arbitrarily 
near to 2). Thus the mapping z = tfr(w) of A onto D need not have ÿ € //*. The first 
question that arises, therefore, is to determine when the polynomials belong to Aq(D}\ 
i.e. to determine tie values of q, 1 <q < 2, for which l(q), defined by (1.1), is finite. The 
first theorem is an elementary consequence of a result of Bqjarski (see [7], Theorem 5.1, 
p. 215).

Theorem 1. Let D be a k-quasi-disc, 0 < k < 1, and suppose that z = ^(w) maps A=
= {I w 1 < 1 conformally onto D. Then there isaq0 = q0(k)<2 so that l(q)<°° for 
q0 <q<2.

Proof. It has been shown by Bojarski ([7), loc. cit.) that, with the above notation,

11 l/(w’) 12 * 4 dudv < “>

for some 6=6(k)> 0. Thus, applying the Cauchy-Schwarz inequality with r = (2 + 6)2 *. 
j = (2 + 6 — q) (2 + 6)" 1 we obtain

/(<?)< ,/z (/a/<1 -1 w 1 a)<«-*"

Thus provided that (q — 2)s < 1, i.e. for q > 2 — 6 ( 1 — 6)~ 1 = qu, as required.
It is an elementary consequence of the Grunsky inequalities for the class 2* (sec [ 10|, 

p. 287) that for a given q0 > I there is a k - k{q0) so that l(q) < 00 for every A-quasi-duc 
D. For if D is a A-quasi-disc there is a k = k(A), 0 < k < 1, so that

^'(w) = 0((l — I w I 2)’“)( 1 w I-* 1 -) (2.1)

and moreover k(A) -* 0 as A -* 0. Hence the integrand in l(q0), given by (1.1), is of the 
order (1 — I w I 2)<?0 2 for A sufficiently near to 0. Thus /(r/0) converges provided
<ZoO -«)>!.

The next theorem shows, however, that l(q) need not be finite for all q( 1 < q < 2).
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Theorem 2. There are constants k < 1 and q0 > 1 such that there exists a k-quasi-disc 
D for which J(q) = °° for 1 < q < q0, where l(q) is defined by (1.1).

Il will be clear from the proof that our construction works only if k is sufficiently 
close to 1, and then we could choose a q0 = q0(k). There is no reason to suppose that 
our method is optimal; so we choose not to make the relationsltip between r/0 and k 
explicit, through it will be clear from our construction how this could be done,

3. Polynomial density. Let D be any quasi-disc in (f. If I(q) is defined by (1 1),/(1) =
= °° always and /(</) < °° for q near to 2 from below. We define

<?o =qo(/>) = inf{<7:/(tZ)<00} . (3.1)

so that 1 < q0 < 2, with q0 > 1 for the domains of Theorem 2.
Theorem 3. Suppose that D is a quasi-disc and that q0 is defined by (3.1). Then the 

polynomials are dense in Ag(D) for ail q>qQ.
If q0 = 1 then l(q0) = °° and it might be conjectured that l(q0) = °° for q0 — q0(D) 

in all cases. If this were true, then Theorem 3 would take the pleasing form:
• If D is a quasi-disc then the polynomials arc dense in Aq(D) if all the polynomials 

belong to Aq(D).
It seems unlikely, however, that /(r/0) = °° hi all cases and it is possible that the 

polynomials are also dense in Aq0(D) when l(q0) < °°> i-e- * may in fact, be true. This 
intriguing situation, which occurs also in Theorem 2 of [9], depends on the fact that our 
proof of Theorem 3 uses ideas similar to those of Shapiro's paper [11] on weighted 
polynomial approximation - the “weight' in our case being I i/(»v) 1 . Similar situations 
arise in work on weak invertibility in [ I ]. We could give a self-contained proof of Theorem 
3, but it would be similar to the proof of Theorem 1 of [11] and so it is not surprising 
that the critical case q - q0(D) is left open. The pioof that we do give is based on an idea 
of Sheingorn ([12], Prop. 10).

If l(q) = <=«, then no polynomial which is bounded away from 0 in D belongs i.e>Aq(D). 
However, I(q) may diverge because of the behaviour of t/(tv) at only a finite number of 
points on £| w | = 1 and in this case it might happen that certain polynomials were in 
Aqtf)}. We do not know whether this can occur or not; and if it can the question then 
arises as to what is the closure of such polynomials in Aq(D).

4. Some Lemmas. The following two lemmas are needed for the construction of the
example provided in Theorem 2. _

Lemma 1. (liven e >, 0 there are positive integers v0 and k such that if f(r) — £ knr* , 
„•v,

then, for 0 < r < 1,

(I ~r)/(r)<e-'+e.

Proof. We define/-’(r) = £ k”/ and, for 'A <r < 1, we let N be the smallest integer 
such that 

kNr < H (4.1)
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Consider

F(r)=(z + Z ) knrk" = Z, + Z2 , say.
n • i n » N ♦ l

First of all.

Z2 = kN Z *"(/•**)*" = kNF('A).
it- i

Secondly.

y < kH rkN + kN'1 + k kN'2 
* k -1

Given e > 0, we next show that if k is large enough, then, for any positive integer p,

t>rv + kvrkv< (e'1 + -)(1 -/•)'* (0< r < 1). (4.2)
2

, f »♦* ,
The maximum of vr (1 — r) occurs at r = v (v + 1)’ ‘ and is--------- <e'‘

v + 1

We can choose k so large that for some rQ,0 <r„ < 1 .depending on p, but independ­
ent of k,

»r"c-o<- 5'-
7 2 ( n = kv, 0 < r < r0 •

Hence inequality (4.2) follows.

tN-,i
Since by (4.1 ),r > 'A we see that as N -*■ °°, and hence as r -* 1

..A-I <( log 2) (log -)-‘ <(1 +(,)(! - r)-‘ . (4.3)

From (4.2) and f4 31 for k large enough and R, 0 <R < 1, suitably chosen, 

Zi = (eM + | + (A — 1)_,)(1 —r)'1 (R <r < 1).

Taking (4.3) once more into account we obtain

F(z)=Z, + Z, <(e"1 + | + (Jfc -1)"‘ +F()S))(1 -z)*‘ (R<z< 1)

Since k F( 14) -+ 0 (k -» °°) we can assume that k is large enough to ensure that
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F(r)<(e"‘ + e)(l - r)*‘ (A^r<l). (44)

Finally we choose v0 large enough so that the inequality of (4.4) holds for f(r) in the 
range 0 < r < R and this completes the proof of Lemma 1.

Lemma 2. Let f(z) = £ a„ z" be analytic in F | z | < 1y and suppose that | a„ | > «“ 
n-o ' J

for infinitely many n, where a is a positive constant. Then there is a sequence (r,,) with 
rv f 1 as v / °° such that, for each q> 1,

~~ fl"\J\reie)\‘l dO>A(q)(l -r)'““ (r = rv. v = 1,2,...) ,
2rr °

where A (q) > 0.
Proof. For all n we have that

la., |r"< — /” |/(n’'°)|t/0 .
2n 0 ,

Consider those n., lor which | a,. I > «“ and set r„ — 1 — — . Then 
F «F

~ J2’ \f(re,o)\d0>navO - —/’">/1(1 -ry)-.
2rr " nv

for some constant A > 0. The lemma now follows on applying Fielder's inequality.
5, Proof of Theorem 2. We require one further lemma.

Letnnu 3. There exists a function *l/(w) ~ “ an • bounded and univalent in A. 
n » 0

IKisscssing a quasiconformal extension to <T such that I aH | > n “ '1 for infinitely many n, 
where a is some positive constant.

The domain I) which is the image of A under z — \l/(w) is the required example for 
Theorem 2. Since ^(tv) has a quasi-conformal extension to C the boundary d£> is a 
k-quasi-disc for some k < 1. Suppose that 1 < q < 2 and l(q), defined by (1.1), is finite. 
Then, with w = pe‘° ,0 < p < 1.

t(\-\t\1)q'i dtd<l><
1» I

< Ju jf I ^,(re,<‘)|« (I-lz I’)’-*tdtd<i> < I(q) = K<°°,say.

1 his implies that for some constant A and all p near to l.

I a.
— / H’(pe'*)|4t/0</4(l -p)‘-fl
ZJT u
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If we apply Lemma 2 to ^'(iv), however, we arrive at a contradiction unless q a <.q — 1, 
i.e. q > (1 — a)' * = g0, say. Thus/(g) - °° for 1 <q < q0, and this completes the proof 
of Theorem 2.

Proof of Lemma 3. We choose v0 and * as ln Lemma 1 and consider tl'(w) defined by 
(0) = 0 and

'(w) = exp f X Ê wk J , 
k n « v,

where X > 1 will be chosen later. Now

iJr'(H’) n-v, 

and hence, from Lemma 1,

w^"(w)
(1 -Itvl1) < X (I + | w |) (<?" 1 + e) < 2 X (e' ' + e).

If e > 0 is chosen small enough so that 2(e* 1 +e)<l we may then choose X > 1 so that 
2 X(e‘ 1 + e) = k < 1. Then, by a result of Becker ((2), Korollar 4.1) J/'(u) has a quasi- 
-conformal extension to all of <T. If D denotes the image of A under ^(w), then 'dD is a 
k -quasi-conformal circle for some k depending only on k. and so, ultimately, only on X.

We write </< ’(w) as

i//'(rv) = II exp (Xw* ) = (I (1 + X w* + higher terms) 
n-v, n-vt

All terms in each bracket above liave non negative coefficients and if we consider

N--k^ + ... + *» (wi>Po),

then N<kand

«JV > const X" = const e” x > const exp (t log X_
log k

> const A'“

log X
For a =---------- . This proves Lemma 3.

2 log k

It is clear from Lemma 3 hoyv to choose a q0 = q0(k) for a given k sufficiently close 
to I (cf. remarks at end of § 2).

6. Proof of Theorem 3. The proof of Theorem 3 depends on showing that given ( > 0 • 
there is a polynomial /’(w) such that

f /|1 -/’(w)(^'(M-))’|(l-|w|,)«-,r/n«/p<e.A (6.1)
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i.e. that (v'(rv))<? is weakly invertible in Aq(D), and then applying a result of Sheingorn 
([12], Prop. 10). We suppose now that q is some fixed number greater thant/o (defined 
by (3.1)).

Lemma 4» Under the hypotheses of Theorem 3 there is an 17 > 0 such that

/1 ^'(f*’) lr (1 -Ih-I1)'"’»'1 dudv<K<°° 

forQ<r<q, where K is a constant.
Proof, n is sufficient to prove the lemma for r = q since for 0 < p < 1,

~~ f2" | |” d<? < max f 1, — /’ I ^'(pe*) I’
2rr o v 2ir o J

Now choose an s with q0 < s < q and then

-l»v1 = [lt!/(w)l*(l -Iw'lV’jx

X[||>‘(H')I‘,"'(1 -Iwl’)'7*1"’’].

But D is 3 quasi-disc and from (2.1)

' lfr’(w) I*"1 ( 1 -i iv = o ((1 - I w I’/’-»’ <* ( I tv |-» 1 -).

This latter tctnt is bounded for any 17 = q(q. x) satisfying

0 < n < (<7 — J) (1 -k). (6.2)

Hence, for such an »}.

/a / 1 |r <1 -|*‘l’)'"’" 2 dude < £,/(«)<*.

and this proves Lemma 4.
Lemma 5. Suppose that the hypotheses of Theorem 3 are satisfied and e > 0. Then 

there is a polynomial p(w) such that 

/A /l/4‘e)(^'(w))’ -.(^'(“’)),‘ ”1(1 — I w \q'i)dudv<e 

/or all s. q < j < </, and j/ satisfies (6.2)
1 he proof ol (6.1) now follows by repeated applications of this lemma. A similar step- 

•by-step argument appears first 111 the work of Shapiro ([II], Theorem 1). Note that the 
existence 01 an 17 satisfying (6.2) was proved only on the assuption that q>q0. The 
argument that concludes the proof of Theorem 3 from (6.1) is omitted since it has been 
indicated by Sheingorn ([12], Prop. 9).

Proof of Lemma 5. Fix some analytic determination of log Vr'(w') and for f e C define 
(v (»v))r = exp (f log \!/'(w’)) as usual Note'that Jz'(w') 0 in is so that the preceding
functions are well defined. For fixed r. & «£ r < 1,
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| +'(nv) ” < C, (1-P |w|2)’1* < C2 (1 -|w’P),"‘

for | w | < 1 by the result for | |' * corresponding to (2.1). From Lemma 4 and
Lebesgue’s dominated convergence theorem as r-* 1 —, 

f A / I (yfr'(»v))- ” - W'(nv))- ” | t//(w) Is (1 ~ | w |J)’ ' 2 dudv 0.
A

We choose r 0 < r < 1, so that the above integral is less than e/2. Since (^'(rw)) " n is 
analytic in £ | w | < 1/r^ there is a polynomial p(w) so that

f ;ip(*v)-(^'(nv))-”| H»|2(l-|tv|2)«-2 < 4 •

A 2

These two estimates give the result of Lemma 5 and consequently the proof of Theorem 
3 is complete
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STRESZCZ1 N1E

Niech D oznacza ograniezonv otiszar Jordana, gas AglD), q > I, przestrzcii Bersa funkcjt holomor- 
ficznych w obszarze D.
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Przedmiotem rozwazan jest poszukiwanie odpowiedzi na pytanie przy jakich warunkach nałożo 
nych na obszar D i wykładnik q wielomiany należą do Aq(D) i tworzą w niej zbiór gęsty.

РЕЗЮМЕ

Пусть О обозначает ограниченную область Жордана и Адф), ч > 1 пространство Бэрса 
функций голоморфных в области Д

Предметом рассуждений есть отыскание ответа на вопрос при каких условиях наложенных 
на область О и показатель ч полиномы принадлежат к Ад (Д) и созданном всюду плотное 
подмножество этого пространства.




