ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

SECTIO A
1982/1983

Mathernatics Dcpartment
L'niversity Colleye
London, Encland
Faculty of Mathematics
The Open University
Miltum K'esnes, England

J. M. ANDERSON, J. CLUNIE

Polynomial Density in Certain Spaces of Analytic Functions

Gestose wielomianow w pewnych klasach funkcji analityeznych

П.лотность полнномив в некоторых класеах аналнтических фуикшни

1. Introduction. Let D be a bounded domain in C whose boundary ∂D is a Jordan curve. W'e denute by $د$ the unit disi $\{|w|<1\}$ and suppose that $z=\psi(w)$ is a $\}-1$

$\lambda_{D}\left(\dot{\psi}^{\prime}(w)\right) \dot{\psi}^{\prime}(w)=\left(1-|w|^{2}\right)^{-1}$.
For $q>1$, the Bers space $A_{q}(l)$ is the space of functions $f(z)$ analytic in D for which

$$
\|f\|_{4}=\int_{D} \int|f(:)| \lambda_{D}^{2-4}(z) d x d y<\infty
$$

With $\downarrow(\cdots)$ defined as above we have
$I(q)=\int_{D} \int \lambda_{D}^{2-4} d x d y^{\prime}=\int_{\Delta} \int\left|\psi^{\prime}(w)\right|^{4}\left(1-|w|^{2}\right)^{q-2} d u d v$.
Thus the function $f(z) \equiv 1$ and all polynosnials will belong to $A_{4}(D)$ if and only if $I(1)$ of (1.1) is finite.

The integral $/(\varphi)$ is certainly finite for $q \geqslant 2$ since D is a bounded domain, and so has finite area. It was slown by $\operatorname{Bers}([3 \mid$, pp. $118-119)$ that for any bounded Jordan domain I) the polynomials not only belong to $A_{q}(D)$, but are dense in $A_{q}(D)$, for $\varphi \geqslant 2$. We shall use throughout the notation of Duren's book $[4]$. If D) has a rectifiable boundary then $\psi^{\prime} \in f^{\prime}([4]$. Theorem 3.12). It then follows from a theorem of Hardy and Littewood
([4], Theorem 5.11 with $p=1, \lambda=q$) that $I(q)$, defined by (1.1), is finite for all $q>1$. It has been shown by Metzger [9] (see also [6] , [8]) that the polynomials are dense in $A_{q}(D)$ in this case also. Very little appears to be known in the case when the boundary ∂D is non-rectifiable apart from Theorem 2 of [9]. It is this situation which we wish to discuss.
2. Quasiconformal discs. A bounded domain D in C is called a k-quasicunformal disc or, briefly, a k-quasi-dise if its boundary ∂D is the image of the unit circle $\{|w|=1\}$ under a sense-preserving quasiconformal mapping $z=\phi(w)$ of \mathbb{C} onto \mathbb{C} whose complex dilatation $\mu(w)=\phi_{w} / \phi_{w}$ satisfies
$\|\mu\|=\sup |\mu(w)|=k<1$.
The domain D is called simply a quasi-disc if it is a k-quasi-disc for some $k, 0<k<1$. We do not, in what follows, wish to emphasise the particular k of the quasi-discs concerned.

It is well known that the boundary ∂D of a quasj-disc D need not be rectifiable (see [5], where it is showil that the Hausdorff dimension of a quasi-circle can be arbitrarily near to 2). Thus the mapping $z=\psi(w)$ of Δ onto D need not have $\psi^{\prime} \in H^{\prime}$. The first question that arises, therefore, is to determine when the polynomials belong to $A_{q}(D)$; i.e. to determine tie values of $q, 1<q<2$, for which $I(q)$, defined by (1.1), is finite. The first theorem is an elementary consequence of a result of Bojarski (sce [7]. Theoremis.1, p. 215).

Theorem 1. Let D be a k-quasi-disc, $0<k<1$, and suppose that $z=\psi(w)$ maps $\Delta=$ $=\{|w|<1\}$ conformally onto D. Then there is a $q_{0}=\varphi_{0}(k)<2$ so that $I(q)<\infty$ for $q_{0}<q \leqslant 2$.

Proof. It has been shown by Bojarski ([7], loc. cit.) that, with the above notation,
$\int_{\Delta} \int\left|\psi^{\prime}\left(x^{\prime}\right)\right|^{2+6} d t u t \nu<\infty$
for some $\delta=\delta(k)>0$. Thus, applying the Cauchy-Schwarz inequality with $r=(2+\delta)_{q}^{-1}$. $s=(2+\delta-q)(2+\delta)^{-1}$ we ubtain
$I(q) \leqslant\left(\int_{\Delta} \int\left|\psi^{\prime}(w)\right|^{2+\delta} d u d v\right)^{1 / r}\left(\int_{\Lambda} \int\left(1-|w|^{2}\right)^{(4-2) s}\right)^{1 / 8}$
Thus $I(q)<\infty$ provided that $(q-2) s<1$. i.e. for $\varphi>2-\delta(1-\delta)^{-1}=\%$, as required.
It is an elementary consequence of the Grunsky inequalities for the class $\boldsymbol{\Sigma}_{\boldsymbol{k}}$ (sec [10]. p. 287) that for a given $q_{0}>1$ there is a $k=k\left(\varphi_{0}\right)$ so that $/(4)<\infty$ for every k-quasi-disc D. For if D is a k-quasi-disc there is a $k=\kappa(k), 0<k<1$, so that

$$
\begin{equation*}
\psi^{\prime}(w)=0\left(\left(1-|w|^{2}\right)^{-\kappa}\right)(|w| \rightarrow 1-) \tag{2.1}
\end{equation*}
$$

and moreover $k(k) \rightarrow 0$ as $k \rightarrow 0$. Hence the integrand in /(40), given by (1.1), is whe order $\left(1-|w|^{2}\right)^{\varphi_{0}(1-e)-2}$ for k sufficiently near to 0 . Thus $I\left(\varphi_{0}\right)$ converges provided $q_{0}(1-\epsilon)>1$.

The next theorem shuws, however, that $l(4)$ need not be tinite for all $4(1<q<2$).

Theorem 2. There are constants $k<1$ and $\varphi_{0}>1$ such that there exists a k-quasivisc D for winch $J(q)=\infty$ for $1<q<q_{0}$, where $I(q)$ is defined by (1.1).

It will be clear from the proof that our construction works only if k is sufficiently close to 1 , and then we could choose a $q_{0}=\varphi_{0}(k)$. There is no reason to suppose that our method is optimal; so we choose not to make the relationslup between φ_{0} and k explicit, through it will be clear irom our construction how this could be done.
3. Polynomial density. Let D be any quasi-disc in \mathbb{C}. If $I(q)$ is defined by $(1,1), I(1)=$ $=\infty$ always and $I(q)<\infty$ for q near to 2 from below. We define
$q_{0}=q_{0}(D)=\inf \{q: I(q)<\infty\}$.
so that $1 \leqslant q_{0}<2$. with $q_{0}>1$ for the domains of Theorem 2
Theorem 3. Suppose that D is a quasi-disc and that ψ_{0} is defined by (3.1). Then the polynomials are dense in $A_{q}(D)$ for all $\eta>q_{0}$.

If $q_{0}=1$ then $I\left(q_{0}\right)=\infty$ and it might be conjectured that $I\left(q_{0}\right)=\infty$ for $q_{0}=q_{0}(D)$ in all cases. If this were true, then Theorem 3 would take the pleasing form:

- If D is a yuasi-dise then the polynomials are dense in $A_{q}(D)$ if all the polynomials belong to $A_{q}(D)$.

It seems unlikely, however, that $I\left(q_{0}\right)=\infty$ in all cases and it is possible that the polynomials are also dense in $A q_{0}(D)$ when $I\left(q_{0}\right)<\infty$; i.e. ${ }^{0}$ may in fact, be true. This intriguing situation, which occurs also in Theorem 2 of $\{9]$, depends on the fact that our proof of Theorem 3 uses ideas similar to thuse of Shapiro's paper [11] on weighted polynomial approximation - the 'weight' in our case being $\left|\psi^{\prime}(w)\right|^{q}$. Similar situations arisc in work on weak invertibility in [1]. We could give a self-contained proof of Theorem 3, but it would be similar to the proof of Theorem \mid of $[11]$ and so it is not surprising that the eritical case $g=\varphi_{0}(D)$ is left open. The proof that we do give is based on an idea of Sheingorn ([12], Prop. 10).

If $I(l)=\infty$, then no polynomial which is bounded away from 0 in D belongs to $A_{q}(D)$. However. I(4) may diverge because of the behaviour of $\psi^{\prime}\left(u^{\prime}\right)$ at only a finite number of points on $\{|\boldsymbol{W}|=1\}$ and in this case it might happen that certain polynomials were in $\left.A_{y}(l)\right)$. We do not know whether this can occur or not; and if it can the question then arises as 10 what is the closure of such polynomials in $A_{q}(D)$.
4. Some Lemmas. The following two lemmas are needed for the construction of the example provided in Theorem 2.

Lemma 1. (iivent $\epsilon>.0$ there are positive integers ν_{0} and k such that if $f(r)=\sum_{n=\nu_{0}}^{\infty} k^{n} k^{n}$, then. for $0 \leqslant r<1$. $(1-r) f(r) \leqslant e^{-1}+\varepsilon$.

Proof. We define $\mathscr{F}(r)=\sum_{n=1} k^{n} r^{n}$ and, for $1 / 2 \leqslant r<1$, we let N be the smallest integer
隹 such that
$r^{k^{N}}<1 / 2$

Conside:
$F(r)=\left(\sum_{n=1}^{N}+\sum_{n=N}\right)_{1} k^{n} r^{k \cdot}=\Sigma_{1}+\Sigma_{2}$, say.

First of all.
$\Sigma_{2}=k^{N} \sum_{n=1}^{\infty} k^{n}\left(r^{k^{N}}\right)^{k^{n}}=k^{N} F\left(r^{k^{N}}\right) \leqslant k^{N} F(1 / 2)$.

Secondly.
$\Sigma_{1} \leqslant k^{N} r^{N}+k^{N-1}+\frac{k}{k-1} k^{N-2}$

Given $\epsilon>0$, we next show that if k is large enough, then, for any positive integer ν_{1}
$v r^{\nu}+k \nu r^{A \nu}<\left(e^{-1}+\frac{\epsilon}{2}\right)(1-r)^{-1}(0<r<1)$.
The maximum of $\nu r^{\nu}(1-r)$ occurs at $r=\nu(\nu+1)^{-1}$ and is $\frac{\nu}{\nu+1} \quad \nu+1<e^{-1}$
We can choose k so large that for some $r_{0}, 0<r_{0}<1$, depending on ν, but independ. ent of k.
$n r^{n}(1-r)<\frac{\epsilon}{2}\left\{\begin{array}{l}n=v, r_{0}<r . \\ n=k \nu, 0<r<r_{0} .\end{array}\right.$
Hence inequality (4.2) follows.
Since by (4.1), $r^{r^{N-1}} \Rightarrow 1 / 2$ we sec that as $N \rightarrow \infty$, and hence as $r \rightarrow 1-$,
$k^{N-1} \leqslant(\log 2)\left(\log \frac{1}{r}\right)^{-1}<\left(1+(1)(1-r)^{-1}\right.$.
From (4.2) and (4 3) for k large enourh and $R, 0<R<1$, suitably chosen,
$\Sigma_{1}=\left(e^{-1}+\frac{\epsilon}{2}+(k-1)^{-1}\right)(1-r)^{-1}(R<r<1)$.
Taking (4.3) once more into account we obtain
$F(r)=\Sigma_{1}+\Sigma_{2} \leqslant\left(e^{-1}+\frac{e}{2}+(k-1)^{-1}+F(1 / 2)\right)(1-r)^{-1}(R<r<1)$.

Since $k F(1 / 2) \rightarrow 0(k \rightarrow \infty)$ we can assume that k is large enough to ensure that
$F^{\prime}(r) \leqslant\left(e^{-1}+\epsilon\right)(1-r)^{-1}(R<r<1)$
Finally we choose ν_{0} barge enough so that the inequality of (4.4) holds for $f(r)$ in the range $0<r<R$ and this completes the prooi of Lemma 1.

Lemma 2. Let $f(z)=\sum_{n=0}^{\vec{n}} a_{n} z^{n}$ be analytic in $\{|z|<1\}$ and suppose that $\left|a_{n}\right|>n^{\alpha}$ for infinitely many n, where α is a positioce constant. Then there is a seguence (r_{1}) with $r_{v^{\prime}} /$ las v / \neq such that, for cuch $\varphi>1$.
$\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r_{i}^{i \theta}\right)\right|^{q} d 0 \geqslant A(q)(1-r)^{-4 a}\left(r=r_{\nu}, v=1,2, \ldots\right)$,
where $A(q)>0$.
Proof. For all n we have that
$\left|a_{01}\right| r^{n} \leqslant \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i o}\right)\right| d \theta$.
Consider those n_{v} for which $\left|a_{n_{v}}\right|>n_{v}^{\alpha}$ and set $r_{v}=1-\frac{1}{n_{v}}$. Then
$\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r c^{i 0}\right)\right| d \theta>n_{v}^{i}\left(1-\frac{1}{n_{v}}\right)^{n_{\nu}} \geqslant A\left(1-r_{v}\right)^{-\omega}$.
fur some constant $A>0$. The lemma now follows on applying Holder's inequality.
5. Proof of Theorem 2. He require one further lemina.

Lemmu 3. There exists a function $\psi(w)=\underset{n}{\bar{z}} \quad a_{n} w^{n}$, bounded and unisalent in Δ, mussessing a unasiconformal extension to \mathbb{Q} such that $\left|a_{n}\right|>n^{\alpha-1}$ for infinitely many n, where a is sume pusitioce constant.

The doman l) whel is the image of Δ under $z=\psi(w)$ is the required example for Theoren 2. Since $\psi(\cdots)$ has a quasiconformal extension to \mathbb{C} the boundary ∂D is a k-quasi-dise for sume $k<1$. Suppuse that $1<q<2$ and $/(4)$, defined by (1.1), is finite. Then, with $w=\rho c^{i \theta}, 0<\rho<1$.
$\int_{Q}^{2 \pi}\left|\psi^{\prime}\left(\rho e^{i \phi}\right)\right|^{q} \int_{\rho}^{\rho^{2 L \prime}} t\left(1-|t|^{2}\right)^{q-2} d t d \phi \leqslant$
$\leqslant \int_{0}^{2 n} \int_{\rho}^{1}\left|\psi^{\prime}\left(f e^{i\left(s^{p}\right.}\right)\right|^{4}\left(1-|f|^{2}\right)^{q-2} d d t d \phi \leqslant I(4)=K<\infty$, say.
This implies that for some constant A and all ρ near to 1 .
$\frac{1}{2 \pi} \int_{u}^{2 a}\left|\psi^{\prime}\left(\rho c^{1 \phi}\right)\right|^{q} d \phi<A(1-\rho)^{1-a}$

If we apply Lemma 2 to $\psi^{\prime}(w)$, however, we arrive at a contradiction unless $q \alpha \leqslant q-1$, i.e. $q \geqslant(1-\alpha)^{-1}=40$, say. Thus $I(q)=\infty$ for $1<q<q_{0}$, and this completes the proof of Theorem 2.

Proof of Lemma 3. We choose ν_{0} and k as in Lemma 1 and consider $\psi(w)$ detined by $\psi(0)=0$ and
$\psi^{\prime}(w)=\exp \left\{\lambda \sum_{n=\nu_{0}}^{\infty} w^{k^{n}}\right\}$,
where $\lambda>1$ will be chosen later. Nuw
$w \frac{\psi^{\prime \prime}(w)}{\psi^{\prime}\left(w^{\prime}\right)}=\lambda \underset{n=\nu_{0}}{\vec{\Sigma}} k^{n} w^{k^{n}}$
and hence, from Lemnial.
$\left(1-|w|^{2}\right)\left|\frac{w \psi^{\prime \prime}(w)}{\psi^{\prime}(w)}\right| \leqslant \lambda(1+|w|)\left(e^{-1}+\epsilon\right) \leqslant 2 \lambda\left(e^{-1}+\epsilon\right)$.
If $\epsilon>0$ is chosen snall enough so that $2\left(e^{-1}+\epsilon\right)<1$ we may then chouse $\lambda>$ I sit that $2 \lambda\left(e^{-1}+\epsilon\right)=\kappa<1$. Then, by a result of Becker $([2]$, Korollar 41$) \downarrow^{\prime}(w)$ has a quasiconformal extension to all of \mathbb{C}. If D denotes the image of Δ under $\psi(w)$, then ∂D is a k quasi-conformal circle for some k depending only on κ. and so, ultimotely, only on λ.

We write $\psi^{\prime}(w)$ as
$\psi^{\prime}(w)=\prod_{n=v_{0}} \exp \left(\lambda w^{k^{n}}\right)=\prod_{n=v_{0}}\left(1+\lambda w^{k^{n}}+\right.$ higher ternos $)$
All terms in each bracket above lave non negative coefficients and if we consider
$N=k^{\nu_{0}}+k^{\nu_{0}+1}+\ldots+k^{n}\left(m>v_{0}\right)$,
then $N<k^{2 n}$ and
$u_{N}>\operatorname{const} \lambda^{n}=$ const $e^{n \log \lambda}>$ const $\exp \left(\frac{N \log \lambda}{2 \log k}\right)>$ const $N^{\prime a}$
Fur $\alpha=\frac{\log \lambda}{2 \log k}$. This proves Lemma 3.

It is clear from Lemma 3 how to choose a $\varphi_{0}=\varphi_{0}(k)$ for a given k sufficiently clese to I (cf. reniarks at end of § 2).
6. Proof of Theorem 3. The proof of Theorem 3 depends on showing that given $\in>0$ there is a polynomial $P(w)$ such that
$\int_{\Delta} \int\left|1-P(w)\left(\psi^{\prime}\left(w^{\prime}\right)\right)^{q}\right|\left(1-|w|^{2}\right)^{q-2} d u d v<\epsilon$.
i.e. that $\left(\dot{U}^{\prime}(w)\right)^{q}$ is weakly invertible in $\left.A_{q}(L)\right)$, and then applying a result of Sheingorn ($[12]$, Prop. 10). We suppose now that q is some fixed number greater than q_{0} (defined by (3.1 i).

Leman 4. Under the hypotheses of Theorem 3 there is an $\eta>0$ such that
$\int_{\Delta} \int\left|v^{\prime}\left(n^{\prime}\right)\right|^{p}\left(1-|w \cdot|^{2}\right)^{p-\eta-2}$ duds $<K<\infty$
for $0 \leqslant r \leqslant 4$, where \mathcal{K} is a constant.
Proof. It is sufficient to prove the lemma for $r=q$ since for $0<\rho<1$,
$\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\psi^{\prime}\left(\rho e^{i \phi}\right)\right|^{\eta} d \phi \leqslant \max \left\{1, \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\psi^{\prime}\left(\rho e^{i \phi}\right)\right|^{q} d \phi\right\}$.
Now chouse in s with $q_{0}<s<q$ and then
$\left|\psi^{\prime}(w)\right|^{q}\left(1-|w|^{2}\right)^{q-\eta-2}=\left[\left|\psi^{\prime}\left(w^{\prime}\right)\right|^{s}\left(1-|w|^{2}\right)^{s-2}\right] x$
$x\left[\left|\psi^{0}\left(w^{\prime}\right)\right|^{a-8}\left(1-|w|^{2}\right)^{q-s-\eta}\right]$.
But D is a quasi disc and from (2.1)
$\left.1 \psi^{\prime}(w)\right|^{q-8}\left(1-|w|^{2}\right)^{q-s-\eta}=0\left(\left(1-|w|^{2}\right)^{(\eta-s)(1-\kappa)-\eta}\right)(|w| \rightarrow 1-)$.
This taltet tetnis bounded for any $\eta=\eta(\varphi, \kappa)$ satisfying
$0<\eta<(q-s)(1-\kappa)$
Hence, for such an η.
$\int_{d} \int\left|\forall^{\prime}(w)\right|^{r}\left(1-|w|^{2}\right)^{r-\eta-2}$ ducl $\leqslant \mathcal{K}_{1} I(s) \leqslant \mathcal{K}_{\text {, }}$
and this proves Lemmia t.
Lemma 5. Suppose that the Miphtheses of Theorem 3 are satisfied and $\varepsilon>0$. Then there is a pultinomial $r(w)$ such shas
$\int_{\Delta} \int\left|p\left(w^{\prime}\right)\left(\dot{w}^{\prime}\left(w^{\prime}\right)\right)^{s}-\left(v^{\prime}\left(w^{\prime}\right)\right)^{s-\eta}\right|\left(1-\left|w^{\prime}\right|^{q-2}\right) d u d v<\epsilon$
for all $s, \eta \leqslant s \leqslant(1$, and η satisfies (6.2)
The proof of (6.1) now follow's by repeated applications of this lemma. A similar step-by-step arguinent appears lirst in the work of Shapiro ([11], Theorem 1). Note that the existence of an η satisfying (6.2) was proved only on the assuption that $q>\boldsymbol{q}_{0}$. The argument that concludes the proof of Theorem 3 from (6.1) is omitted since it has been indicated by Sheingurn ($\mid 12]$, Prop. 9).

Prouf of Lemma 5. Fix some analytic determination of $\log \psi^{\prime}(w)$ and for $\zeta \in \mathbb{C}$ define $\left(\dot{\psi}^{\prime}(w)\right)^{5}=\exp \left(\zeta \log \psi^{\prime}\left(w^{\prime}\right)\right)$ as usual, Note that $\psi^{\prime}(w) \neq 0$ in Δ so that the preceding functions are well defined. For fixed $r, 1 / 2<r<1$.
$\left|\psi^{\prime}(n w)\right|^{-\eta} \leqslant C_{1}\left(1-r^{2}|w|^{2}\right)^{\eta k} \leqslant C_{2}\left(1-|w|^{4}\right)^{\eta \kappa}$
for $|w|<1$ by the result for $\left|\psi^{\prime}(w)\right|^{-2}$ corresponding to (2.1). From Lemma 4 and Lebesgue's duminated convergence theorem as $r \rightarrow 1-$.
$\left.\int_{\Delta} \int\left|\left(\psi^{\prime}(w)\right)^{-\eta}-\left(\psi^{\prime}(n v)\right)^{-\eta}\right| \psi^{\prime}(w)\right|^{s}\left(1-|w|^{2}\right)^{q-2}$ diulv $\rightarrow 0$.
We choose $r_{r} 0<r<1$. sio that the above integral is less than $\epsilon / 2$. Since $\left(\psi^{\prime}\left(w_{w}\right)\right)^{-\eta}$ is analytic in $\{|w|<1 / r\}$ there is a polynomial $p(w)$ so that
$\int_{\Delta} \int\left|p(w)-\left(\psi^{\prime}(n w)\right)^{-\eta}\right|\left|\psi^{\prime}(w)\right|^{s}\left(1-|w|^{2}\right)^{q-2} d u d v<\frac{e}{2}$.
These two estimates give the result of Lemma 5 and consequently the proof of Theorem 3 is cumplete

RI:II: RENCES

[1] Aharonov, D., Shapiro, II. S., Shields, A. L., Wcakly inverthle elements in the space of square-summable holomorphic functions, J. London Math. Soc. (2), 9 (1974), 183-192.
[2] Beckcr, J., Lōwnersche Differentialgeleichung und quasikonform fortselzbare Funkfionen, J. Reine Angew. Math. 255 (1972), 23-43.
[3] Bers, L., A non-standard integral equation with applications to quasi-cunformal mappings, - Acta Math. 116 (1966), 113-134.
[4] Duren, P. L., Theory of IP -spaces, Academic I'ress, N. Y. 1970.
[5] Gehring, I:. W.. Väisälä, J., Ilausclorff dinension and quasi-conformal mappings, J. Londun Math. Suc. (2), 6 (1973), 504-51 2.
[6] Knopp, M. J., A corone theorem for autumarphic functions and related resulis, Amer. J. Math. 91 (1969), 599-618.
[7] Lelito, O., Virtanen, K. I., Quasiconformal Map.jings in the Plane, Spritpert, Burdiar 1973.
[8] Metzger, T. A., On polynomial approximution in $A_{4}(D)$, Proc. Amer. Math. Soc. 37 (1973), 468-470.
[9] Metzger, T. A., On polynomial density in $A_{q}(D)$, Proc. Amer. Math. Suc. 44 (1974), 326-330.
[10] Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
[111] Shapiro, II. S., Weighted pulynomial approximations and boundary behaviour of holomorphic functions, Contemporary prublems of the theory of Analytic functions, Nauka, Muscuw 1906, 326-335.
|12| Sheingurn, M., Puincaré series of polynomials bounded away from zero on a funclamental region. Amer. J. Math. 95 (1973), 729-749.

STRI:SZCZENIE

Niech D oznacza ugraniccony otıszar Jordana, zaj $A_{4}(D), 4>1$, preestrzeń bersa funkrji holumurficznych w obszarze D.

Przedıniotem rozwazan jest poszukiwanie odpowiedal na pjtanie przy jakich warunkach natoionych na obszar D i uykładnik q wielomiany nale z_{a} do $A_{q}(D)$ i iworza w niej zbiór gesty.

PE3FOME

Пусть D обозначает ограинчнную область Жордана и $A_{q}(D), q>1$ прострінство Бзрса Функция поломорфных в областм D.

Прслметом рассуждениА есть отшсканне отнета на вопрос при какнх условних ॥дложениых на обтасть D п показалель q полиномы принадпсжат $к A_{q}(D)$ и созданном всюолу плотние Нодмножество этого иристранства.

