ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN - POLONIA

VOL. XXXVI/XXXVII, 1

SECTIO A

1982/1983

Mathematics Department University College London, England Faculty of Mathematics The Open University Milton Keynes, England

J. M. ANDERSON, J. CLUNIE

Polynomial Density in Certain Spaces of Analytic Functions

Gęstose wielomianów w pewnych klasach funkcji analitycznych

Плотность полиномов в некоторых классах аналитических функций

1. Introduction. Let D be a bounded domain in C whose boundary ∂D is a Jordan curve. We denote by Δ the unit disc $\{|w| \le 1\}$ and suppose that $z = \psi(w)$ is a 1 - 1 conformal mapping of Δ onto D. The Poincaré metric in D, denoted by λ_D is defined by

 $\lambda_D (\psi(w)) \psi'(w) = (1 - |w|^2)^{-1}$

For q > 1, the Bers space $A_q(D)$ is the space of functions f(z) analytic in D for which

 $||f||_q = \int_D f|f(z)| \ \lambda_D^{2-q}(z) \, dx \, dy < \infty \ .$

With $\psi(w)$ defined as above we have

$$I(q) = \int_D \int \lambda_D^{2-q} \, dx \, dy = \int_\Delta \int |\psi'(w)|^q \, (1 - |w|^2)^{q-2} \, du \, dv \,. \tag{1.1}$$

Thus the function $f(z) \equiv 1$ and all polynomials will belong to $A_q(D)$ if and only if I(q) of (1.1) is finite.

The integral I(q) is certainly finite for $q \ge 2$ since D is a bounded domain, and so has finite area. It was shown by Bers ([3], pp. 118–119) that for any bounded Jordan domain D the polynomials not only belong to $A_q(D)$, but are dense in $A_q(D)$, for $q \ge 2$. We shall use throughout the notation of Duren's book [4]. If D has a rectifiable boundary then $\psi^* \in H^1$ ([4], Theorem 3.12). It then follows from a theorem of Hardy and Littlewood

([4], Theorem 5.11 with p = 1, $\lambda = q$) that I(q), defined by (1.1), is finite for all q > 1. It has been shown by Metzger [9] (see also [6], [8]) that the polynomials are dense in $A_q(D)$ in this case also. Very little appears to be known in the case when the boundary ∂D is non-rectifiable apart from Theorem 2 of [9]. It is this situation which we wish to discuss.

2. Quasiconformal discs. A bounded domain D in C is called a k-quasiconformal disc or, briefly, a k-quasi-disc if its boundary ∂D is the image of the unit circle ||w| = 1under a sense-preserving quasiconformal mapping $z = \phi(w)$ of \mathbb{C} onto \mathbb{C} whose complex dilatation $\mu(w) = \phi_{\overline{W}}/\phi_{w}$ satisfies

 $||\mu|| = \sup |\mu(w)| = k < 1.$

The domain D is called simply a quasi-disc if it is a k-quasi-disc for some k, $0 \le k \le 1$. We do not, in what follows, wish to emphasise the particular k of the quasi-discs concerned.

It is well known that the boundary ∂D of a quasi-disc D need not be rectifiable (see [5], where it is shown that the Hausdorff dimension of a quasi-circle can be arbitrarily near to 2). Thus the mapping $z = \psi(w)$ of Δ onto D need not have $\psi' \in H^1$. The first question that arises, therefore, is to determine when the polynomials belong to $A_q(D)$; i.e. to determine tie values of q, $1 \le q \le 2$, for which I(q), defined by (1.1), is finite. The first theorem is an elementary consequence of a result of Bojarski (see [7], Theorem 5.1, p. 215).

Theorem 1. Let D be a k-quasi-disc, 0 < k < 1, and suppose that $z = \psi(w)$ maps $\Delta = \{ |w| < 1 \}$ conformally onto D. Then there is a $q_0 = q_0(k) < 2$ so that $I(q) < \infty$ for $q_0 < q \leq 2$.

Proof. It has been shown by Bojarski ([7], loc. cit.) that, with the above notation,

$$\int_{\Delta}\int |\psi'(w)|^{2+\delta} du dv < \infty$$

for some $\delta = \delta(k) > 0$. Thus, applying the Cauchy-Schwarz inequality with $r = (2 + \delta)_q^{-1}$. $s = (2 + \delta - q)(2 + \delta)^{-1}$ we obtain

$$I(q) \leq \left(\int_{\Delta} f |\psi'(w)|^{2+\delta} du dv \right)^{1/\ell} \left(\int_{\Delta} f (1-|w|^2)^{(q-2)s} \right)^{1/s}$$

Thus $I(q) \le \infty$ provided that $(q-2) \le 1$, i.e. for $q \ge 2-\delta (1-\delta)^{-1} = q_0$, as required.

It is an elementary consequence of the Grunsky inequalities for the class Σ_k (see [10], p. 287) that for a given $q_0 > 1$ there is a $k = k(q_0)$ so that $I(q) < \infty$ for every k-quasi-disc D. For if D is a k-quasi-disc there is a $\kappa = \kappa(k), 0 < \kappa < 1$, so that

$$\psi'(w) = 0\left((1 - |w|^2)^{-\kappa}\right)(|w| \to 1 -)$$
(2.1)

and moreover $\kappa(k) \to 0$ as $k \to 0$. Hence the integrand in $I(q_0)$, given by (1.1), is of the order $(1 - |w|^2)^{q_0} (1 - \epsilon)^{-2}$ for k sufficiently near to 0. Thus $I(q_0)$ converges provided $q_0 (1 - \epsilon) > 1$.

The next theorem shows, however, that I(q) need not be finite for all $q(1 \le q \le 2)$.

Theorem 2. There are constants k < 1 and $q_0 > 1$ such that there exists a k-quasi-disc D for which $I(q) = \infty$ for $1 < q < q_0$, where I(q) is defined by (1.1).

It will be clear from the proof that our construction works only if k is sufficiently close to 1, and then we could choose a $q_0 = q_0(k)$. There is no reason to suppose that our method is optimal; so we choose not to make the relationship between q_0 and k explicit, through it will be clear from our construction how this could be done.

3. Polynomial density. Let D be any quasi-disc in \mathbb{C} . If I(q) is defined by $(1.1), I(1) = \infty$ always and $I(q) < \infty$ for q near to 2 from below. We define

$$q_0 = q_0(D) = \inf \{ q: I(q) < \infty \},$$
 (3.1)

so that $1 \le q_0 < 2$, with $q_0 > 1$ for the domains of Theorem 2.

Theorem 3. Suppose that D is a quasi-disc and that q_0 is defined by (3.1). Then the polynomials are dense in $A_q(D)$ for all $q > q_0$.

If $q_0 = 1$ then $I(q_0) = \infty$ and it might be conjectured that $I(q_0) = \infty$ for $q_0 = q_0(D)$ in all cases. If this were true, then Theorem 3 would take the pleasing form:

• If D is a quasi-disc then the polynomials are dense in $A_q(D)$ if all the polynomials belong to $A_a(D)$.

It seems unlikely, however, that $I(q_0) = \infty$ in all cases and it is possible that the polynomials are also dense in $Aq_0(D)$ when $I(q_0) < \infty$, i.e. Θ may in fact, be true. This intriguing situation, which occurs also in Theorem 2 of [9], depends on the fact that our proof of Theorem 3 uses ideas similar to those of Shapiro's paper [11] on weighted polynomial approximation – the 'weight' in our case being $|\psi'(w)|^{q}$. Similar situations arise in work on weak invertibility in [1]. We could give a self-contained proof of Theorem 3, but it would be similar to the proof of Theorem 1 of [11] and so it is not surprising that the critical case $q = q_0(D)$ is left open. The proof that we do give is based on an idea of Sheingorn ([12], Prop. 10).

If $I(q) = \infty$, then no polynomial which is bounded away from 0 in D belongs to $A_q(D)$. However, I(q) may diverge because of the behaviour of $\psi'(w)$ at only a finite number of points on $\{|w| = 1\}$ and in this case it might happen that certain polynomials were in $A_q(D)$. We do not know whether this can occur or not; and if it can the question then arises as to what is the closure of such polynomials in $A_q(D)$.

 Some Lemmas. The following two lemmas are needed for the construction of the example provided in Theorem 2.

Lemma 1. Given $\epsilon > 0$ there are positive integers v_0 and k such that if $f(r) = \sum k^n r^{k^n}$

then, for
$$0 \leq r < 1$$
.

$$(1-r)f(r) \leq e^{-1} + \epsilon$$

Proof. We define $F(r) = \sum_{n=1}^{\infty} k^n r^{k^n}$ and, for $\frac{1}{2} \le r < 1$, we let N be the smallest integer such that

$$r^{k^{N}} \leq \frac{1}{2} \tag{4.1}$$

Consider

$$F(r) = \left(\sum_{n=1}^{N} + \sum_{n=N+1}^{m}\right) \quad k^n r^{k^n} = \Sigma_1 + \Sigma_2 \text{, say}$$

First of all,

$$\Sigma_{2} = k^{N} \sum_{n=1}^{\infty} k^{n} (r^{k^{N}})^{k^{n}} = k^{N} F(r^{k^{N}}) \leq k^{N} F(\frac{1}{2}).$$

Secondly.

$$\Sigma_{i} \leq k^{N} r^{k^{N}} + k^{N-1} + \frac{k}{k-1} k^{N-2}$$

Given $\epsilon > 0$, we next show that if k is large enough, then, for any positive integer ν_1

$$\nu r^{\nu} + k \nu r^{k \nu} < (e^{-1} + \frac{e}{2})(1 - r)^{-1} (0 \le r \le 1).$$
(4.2)

The maximum of $\nu r^{\nu} (1-r)$ occurs at $r = \nu (\nu + 1)^{-1}$ and is $\frac{\nu}{\nu + 1} < e^{-1}$

We can choose k so large that for some r_0 , $0 < r_0 < 1$, depending on ν , but independent of k,

$$nr^{n}(1-r) < \frac{\epsilon}{2} \quad \int n = v, r_{0} < r, \\ n = kv, \ 0 \le r \le r_{0}$$

Hence inequality (4.2) follows.

Since by (4.1),
$$r^{k^{N-1}} \ge \frac{1}{2}$$
 we see that as $N \to \infty$, and hence as $r \to 1 - \frac{1}{2}$
 $k^{N-1} \le (\log 2) (\log \frac{1}{r})^{-1} \le (1 + (1)(1 - r)^{-1}).$ (4.3)

From (4.2) and (4.3), for k large enough and R, 0 < R < 1, suitably chosen,

$$\Sigma_1 = (e^{-1} + \frac{\epsilon}{2} + (k-1)^{-1})(1-r)^{-1} (R \le r \le 1).$$

Taking (4.3) once more into account we obtain

$$F(r) = \Sigma_1 + \Sigma_2 \leq (e^{-1} + \frac{e}{2} + (k - 1)^{-1} + F(\frac{1}{2}))(1 - r)^{-1} (R \leq r < 1)$$

Since $k F(\frac{1}{2}) \rightarrow 0$ ($k \rightarrow \infty$) we can assume that k is large enough to ensure that

$$F(r) \le (e^{-1} + \epsilon) (1 - r)^{-1} (R \le r < 1).$$
(4.4)

Finally we choose v_0 large enough so that the inequality of (4.4) holds for f(r) in the range $0 \le r < R$ and this completes the proof of Lemma 1.

Lemma 2. Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 be analytic in $\{|z| < 1\}$ and suppose that $|a_n| > n^{\alpha}$

for infinitely many n, where α is a positive constant. Then there is a sequence (r_v) with $r_v \uparrow 1$ as $v \uparrow \infty$ such that, for each q > 1,

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{q} d\theta \ge A(q) (1-r)^{-q\alpha} (r = r_{\nu}, \nu = 1, 2, ...),$$

where A(q) > 0.

Proof. For all *n* we have that

$$|a_n| r^n \leq \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| d\theta$$
.

Consider those n_v for which $|a_{n_v}| > n_v^{\alpha}$ and set $r_v = 1 - \frac{1}{n_v}$. Then

$$\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})| d\theta > n_{\nu}^{\alpha} (1 - \frac{1}{n_{\nu}})^{n_{\nu}} \ge A (1 - r_{\nu})^{-\omega},$$

for some constant A > 0. The lemma now follows on applying Hölder's inequality.

5. Proof of Theorem 2. We require one further lemma.

Lemma 3. There exists a function $\psi(w) = \sum_{n=0}^{\infty} a_n w^n$, bounded and univalent in Δ ,

South a set of the second strength of the Control

possessing a quasi-conformal extension to \mathbb{C} such that $|a_n| > n^{\alpha-1}$ for infinitely many n, where α is some positive constant.

The domain D which is the image of Δ under $z = \psi(w)$ is the required example for Theorem 2. Since $\psi(w)$ has a quasi-conformal extension to \mathbb{C} the boundary ∂D is a k-quasi-disc for some k < 1. Suppose that 1 < q < 2 and I(q), defined by (1.1), is finite. Then, with $w = \rho e^{i\theta}$, $0 < \rho < 1$,

$$\int_{q}^{2\pi} |\psi'(\rho e^{i\phi})|^{q} \int_{\rho}^{\rho^{1+r}} t (1-|t|^{2})^{q-2} dt d\phi \leq \\ \leq \int_{0}^{2\pi} \int_{\rho}^{1} |\psi'(t e^{i\phi})|^{q} (1-|t|^{2})^{q-2} t dt d\phi \leq I(q) = K < \infty, \text{ say}$$

This implies that for some constant A and all ρ near to 1,

$$\frac{1}{2\pi} \int_{0}^{2\pi} |\psi'(\rho v^{i\phi})|^{q} d\phi < A (1-\rho)^{1-q}$$

If we apply Lemma 2 to $\psi'(w)$, however, we arrive at a contradiction unless $q \alpha \leq q - 1$. i.e. $q \ge (1-\alpha)^{-1} = q_0$, say. Thus $I(q) = \infty$ for $1 \le q \le q_0$, and this completes the proof of Theorem 2.

Proof of Lemma 3. We choose v_0 and k as in Lemma 1 and consider $\psi(w)$ defined by $\psi(0) = 0$ and

$$\psi'(w) = \exp \left\{ \lambda \sum_{n=\nu_0}^{\infty} w^{k^n} \right\},$$

where $\lambda > 1$ will be chosen later. Now

$$w \frac{\psi''(w)}{\psi'(w)} = \lambda \sum_{n=\nu_0}^{\infty} k^n w^{k'}$$

and hence, from Lemma 1,

$$(1-|w|^2)\left|\frac{w\psi'(w)}{\psi'(w)}\right| \leq \lambda \left(1+|w|\right)(e^{-1}+\epsilon) \leq 2\lambda \left(e^{-1}+\epsilon\right).$$

If $\epsilon > 0$ is chosen small enough so that $2(e^{-1} + \epsilon) < 1$ we may then choose $\lambda > 1$ so that $2\lambda(e^{-1}+\epsilon) = \kappa < 1$. Then, by a result of Becker ([2], Korollar 4.1) $\psi'(w)$ has a quasi--conformal extension to all of \mathcal{C} . If D denotes the image of Δ under $\psi(w)$, then ∂D is a k-quasi-conformal circle for some k depending only on κ , and so, ultimately, only on λ .

We write $\psi'(w)$ as

$$\psi'(w) = \prod_{n=\nu_0}^{\infty} \exp(\lambda w^{k^n}) = \prod_{n=\nu_0}^{\infty} (1 + \lambda w^{k^n} + \text{higher terms})$$

All terms in each bracket above have non-negative coefficients and if we consider

$$N = k^{\nu_0} + k^{\nu_0 + 1} + \dots + k^n \quad (m > \nu_0),$$

then $N < k^{2n}$ and

$$u_N > \operatorname{const} \lambda^n = \operatorname{const} e^n \log \lambda > \operatorname{const} \exp\left(\frac{N \log \lambda}{2 \log k}\right) > \operatorname{const} N^n$$

. This proves Lemma 3. For a $2 \log k$

It is clear from Lemma 3 how to choose a $q_0 = q_0(k)$ for a given k sufficiently close to 1 (cf. remarks at end of § 2).

6. Proof of Theorem 3. The proof of Theorem 3 depends on showing that given $\epsilon > 0$. there is a polynomial P(w) such that

$$\int_{\Delta} \int |1 - P(w)(\psi'(w))^{q} | (1 - |w|^{2})^{q-2} du dv < \epsilon, \qquad (6.1)$$

i.e. that $(\psi'(w))^q$ is weakly invertible in $A_q(D)$, and then applying a result of Sheingorn ([12], Prop. 10). We suppose now that q is some fixed number greater than q_0 (defined by (3.1)).

Lemma 4. Under the hypotheses of Theorem 3 there is an $\eta > 0$ such that

$$\int |\psi'(w)|^{r} (1-|w|^{2})^{\rho-\eta-2} du dv \leq K < \infty$$

for $0 \le r \le q$, where K is a constant.

Proof. It is sufficient to prove the lemma for r = q since for $0 < \rho < 1$,

$$\frac{1}{2\pi} \int_{0}^{2\pi} |\psi'(\rho e^{i\phi})|^{\eta} d\phi \le \max\left\{1, \frac{1}{2\pi} \int_{0}^{2\pi} |\psi'(\rho e^{i\phi})|^{q} d\phi\right\}$$

Now choose an s with $q_0 < s < q$ and then

$$|\psi'(w)|^{q} (1 - |w|^{2})^{q - \eta - 2} = \left[|\psi'(w)|^{s} (1 - |w|^{2})^{s - 2} \right] \times \\ \times \left[|\psi'(w)|^{q - s} (1 - |w|^{2})^{q - s - \eta} \right].$$

But D is a quasi-disc and from (2.1)

$$|\psi'(w)|^{q-s} (1-|w|^2)^{q-s-\eta} = 0 \left((1-|w|^2)^{(q-s)} (1-|w|^{-\eta}) \right) (|w| \to 1-).$$

This latter term is bounded for any $\eta = \eta(q, \kappa)$ satisfying

$$0 < \eta < (\eta - s) (1 - \kappa)$$

$$(6.2)$$

Hence, for such an η .

$$\int_{\Delta} \int |\psi'(w)|^{r} (1 - |w|^{2})^{r - \eta - 2} \, du dv \leq K_{1} I(s) \leq K,$$

and this proves Lemma 4.

Lemma 5. Suppose that the hypotheses of Theorem 3 are satisfied and $\epsilon > 0$. Then there is a polynomial p(w) such that

$$\int_{\Delta} \int |p(w)(\psi'(w))^{s} - (\psi'(w))^{s-\eta} |(1-|w|^{q-2}) du dv < \epsilon$$

for all s, $\eta \leq s \leq q$, and η satisfies (6.2)

The proof of (6.1) now follows by repeated applications of this lemma. A similar stepby-step argument appears first in the work of Shapiro ([11], Theorem 1). Note that the existence of an η satisfying (6.2) was proved only on the assuption that $q > q_0$. The argument that concludes the proof of Theorem 3 from (6.1) is omitted since it has been indicated by Sheingorn ([12], Prop. 9).

Proof of Lemma 5. Fix some analytic determination of $\log \psi'(w)$ and for $\zeta \in \mathbb{C}$ define $(\psi'(w))^{\zeta} = \exp(\zeta \log \psi'(w))$ as usual. Note that $\psi'(w) \neq 0$ in Δ so that the preceding functions are well defined. For fixed $r, \forall \leq r < 1$,

 $|\psi'(rw)|^{-\eta} \leq C_1 (1-r^2|w|^2)^{\eta\kappa} \leq C_2 (1-|w|^4)^{\eta\kappa}$

for |w| < 1 by the result for $|\psi'(w)|^{-1}$ corresponding to (2.1). From Lemma 4 and Lebesgue's dominated convergence theorem as $r \to 1 -$,

$$\int_{A} \int |(\psi'(w))^{-\eta} - (\psi'(rw))^{-\eta} |\psi'(w)|^{s} (1 - |w|^{2})^{q-2} du dv \neq 0.$$

We choose r, 0 < r < 1, so that the above integral is less than $\epsilon/2$. Since $(\psi'(rw))^{-\eta}$ is analytic in $\{|w| < 1/r\}$ there is a polynomial p(w) so that

$$\int_{\Delta} \int |p(w) - (\psi'(rw))^{-\eta} | |\psi'(w)|^{2} (1 - |w|^{2})^{q-2} du dv < \frac{e}{2}.$$

These two estimates give the result of Lemma 5 and consequently the proof of Theorem 3 is complete.

REFERENCES

- Aharonov, D., Shapiro, H. S., Shields, A. L., Weakly invertible elements in the space of square-summable holomorphic functions, J. London Math. Soc. (2), 9 (1974), 183-192.
- Becker, J., Löwnersche Differentialgeleichung und quasikonform fortsetzbare Funktionen, J. Reine Angew. Math. 255 (1972), 23-43.
- Bers, L., A non-standard integral equation with applications to quasi-conformal inappings, Acta Math. 116 (1966), 113-134.
- [4] Duren, P. L., Theory of Is^p-spaces, Academic Press, N. Y. 1970.
- [5] Gehring, F. W., Väisälä, J., Hausdorff dimension and quasi-conformal mappings, J. London Math. Soc. (2), 6 (1973), 504-512.
- [6] Knopp, M. J., A corona theorem for automorphic functions and related results, Amer. J. Math. 91 (1969), 599-618.
- [7] Lehto, O., Virtanen, K. I., Quasi-conformal Mappings in the Plane, Springer, Berlin 1973.
- [8] Metzger, T. A., On polynomial approximation in Aq(D), Proc. Amer. Math. Soc. 37 (1973), 468-470.
- [9] Metzger, T. A., On polynomial density in $A_q(D)$, Proc. Amer. Math. Soc. 44 (1974), 326-330.
- [10] Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- [11] Shapiro, H. S., Weighted polynomial approximations and boundary behaviour of holomorphic functions, Contemporary problems of the theory of Analytic functions, Nauka, Moscow 1966, 326-335.
- [12] Sheingorn, M., Poincaré series of polynomials bounded away from zero on a fundamental region, Amer. J. Math. 95 (1973), 729-749.

STRESZCZENIE

Niech D oznacza ograniczony obszar Jordana, zas $A_q(D)$, q > 1, przestrzeń Bersa funkcji holomorficznych w obszarze D.

Przedmiotem rozwazan jest poszukiwanie odpowiedzł na pytanie przy jakich warunkach nałożonych na obszar D i wykładnik q wielomiany należą do $A_Q(D)$ i tworzą w niej zbiór gęsty.

РЕЗЮМЕ

Пусть D обозначает ограниченную область Жордана и $A_q(D)$, q > 1 пространство Бэрса функция голоморфных в области Д.

Предметом рассуждений есть отыскание ответа на вопрос при каких условнях наложенных на область D и показатель q полиномы принадлежат к $A_q(D)$ и созданном всюду плотное подмножество этого пространства.