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O pewnym uogólnieniu dobrze znanej klasy 
funkcji jednolistnych ograniczonych

Abstract. Let D as (w : |w| < M) U {u> : |w| > Af, |Arg w| < tra} where 
M > 0, a € (0,1) are any fixed numbers. Let 5 denote the well-known class of functions f(z) = 
Z + OjZ2 + • • . + fz„zn + ... holomorphic and univalent in the disc A = {z : |z| < I), whereas 
F - a conformal mapping of the disc A onto the domain D, such that F(0) = 0, F’(0) > 0.

In the paper we introduce and investigate the basic properties of the class S(M,a) = 
{f € S : f -< F} where f 4 F means that the function f is subordinate to the function 
F in the disc A. In the proofs of the theorems we make use of the definition of subordination, the 
properties of the function F and the properties of the class S(R), R > 1, of bounded functions 
fes-. |/(z)| < r, z e a. so, on the one hand, the paper is an example of applications of the 
results known in the families S(R) to the investigation of new classes of functions, and on the other 
hand, on account of the shape of the domain D, constitutes an attempt to generalize the classes
S(R).

1. General remarks. Let D, 0 € T> / C, be a simply connected domain of the 
plane C, whose conformal radius at the point w = 0 is Mo > 1. Let F be a function 
holomorphic and univalent in the disc A = Ai where Ar = {z : |z| < r}, r > 0, 
such that /(A) = V, F(0) = 0, F’(O) = Mo- Denote by S the well-known class of 
functions

(1) f(z) = z + ajz2+... + anzn+...

holomorphic and univalent in the disc A, whereas by S(R), R > 1, its subclass 
consisting of bounded functions f : |/(z)| < R, z € A.

Consider the class 5(1?) = {/ € S : f -< F] where f -< Fmeans that the function 
/ is subordinate to the function J7 in the disc A. FYom the definition of subordination 
it follows that a function / of form (1) belongs to the class 5(2?) if and only if there 
exists in the disc A a univalent function w(z) = Mq1z + ..|w(z)| < 1 for z € A, 
such that f = F o w. Hence we infer that / € 5(D) if and only if there exists a 
function € S(Afo) such that

(2) /(z) = FWf)!Mo) , z e A .
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Consequently, the functions f of the class 5(2?) map the disc A conformally onto 
subdomains of T> with conformity radius 1, with that /(0) = 0.

Relation (2) establishes a connection between the classes of type 5(1?) and the 
well-known family 5(2V2O). This fact makes it possible to obtain new properties of 
functions of the class 5(2?) from the corresponding properties of the class 5(A/<,) and 
the form of the function F.

Similar questions concerning the obtaining of the results in one class of functions 
from the corresponding properties of another class investigated earlier are encountered 
in the literature quite frequently. One can give many examples of such problems. In 
particular, one should mention here the investigations of various classes of functions 
generated by Caratheodry functions with a positive real part,as well as, for instance, 
report [5] where a relationship between the classes 5 and 5(22) was made use of to 
investigate the latter.

2. The definition of the class S(M, a). In the present paper we shall consider 
a special case of the domain 2?, the function F and, in consequence, the class 5(2?). For 
the reasons given below, it seems interesting and illustrates well the general problem 
mentioned in the previous section.

Let

(3) D = D(Af, o) = {w : |w| < M} U {w : |w| > Af, |Arg u>| < 7ro}

where M > 0 and a 6 (0,1) are any fixed numbers such that the conformity radius 
Al0 of the domain D at the point 0 equals at least 1. In the ’’limit” cases we have

(4) D(Af,0) = Am'D(A2, 1) = C \ {w : Re w < —Af, Im w = 0} .

Let F map the disc A conformally onto the domain D so that F(0) = 0, 
2^(0) = Mq > 1. Consider the following class of functions:

(5) S(M,a) = {f e S : f-< F} .

FYom (2) we get that f 6 S(M,a) if and only if there exists a function 
ip € S(Mo) such that

(6) /(»)« F(?(»)/A/o) , »GA.

FYom (6), the form of the function F and the properties of the function 9? of 
the class S(A2o) we shall obtain a few theorems concerning the class S(M, a). From 
(3) and (4) we infer that 5(Af, a) constitutes a generalization of the class 5(A/). 
It also seems probable that the investigations of the class S(M,a) can provide new 
information for the considerations of the class S(M,m;a) introduced earlier ((3), [4]). 
As a matter of fact, the idea of examining the class S(M, a) has arisen in connection 
with the discussions concerning the very paper [3]. The other of limit cases (4) is 
also interesting. To close with, the function F turns out to be elementary and can 
be determined by using the Schwarz-Christoffel formulae. What is more, one can 
meet it in completely different investigations, namely in Jenkins’ problem ([7]) and 
Netanyahu’s problem for the class S* ((2); see also (1), (9)).
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3. The form of the function F. From the Schwarz-Christoffel formulae we 
deduce that the function defined by

(7) w(z) = trt + log M — a flog —-
I \Jz - 1 + i

1,
+ 21o<5

a\Jz — 1 + i 
Oyjz - i - t

(y/l = 1, logl = 0) maps the half-plane Gi = {z : Re z > 0} conformally onto 
the domain Gj = {w : Re w < Log M, 0 < Im w < «■} U {ttt : Log M < Re w, 
0 < Im w < ax), with that u»(0) = +oo, w(oo = Log M + jri, w(l) = Log M + ani 
and w(l — = —oo.

Of course, the function

<« O’

maps the semicircle AJ = « : |(| <1, Im ( > 0} conformally onto the half-plane Gi, 
with that z(—1) = —oo, z(l) = 0, z«o) = I where
(o = — [a—»^1 — a2J/[a+i\/l — a2 J, and z(0) = 1— In consequence, the function 
F(0 = exp[w(z«))], ( € AJ, maps AJ conformally onto D* = {w 6 D : Im w > 0}, 
with that F( — 1) = — M, F(l) = +oo, F((b) = Me0"" and F(0) = 0. By the 
Riemann-Schwarz symmetry principle, it may be extended to the whole disc A. So,
(7) and (8) imply that the sought-for function F has the form (cf. [2] and [9])

(9) F(<) = M
l-«g(0 [g«) + lp , 
l + o(<) lg«)-lJ ’ e A,

where

(10)

l
«(i + O

FYom (9) and (10) we get

(11) F«) = Af0[< +2a2<2+(2+ a2)a20+•••]. <€A,

where

(14)

(12) Af0 = Af(l — a),-o(l + a),+“ > 1 .

Consequently,the class S(Ai,a) is the family of functions of form (6) where F is 
a function of form (9) and ranges over the class S(A/o) with Mq defined by formula
(12) . What is more, the parameters a and M satisfy the conditions: a € (0,1),

(13) M > (1 — a)o-1(l + a)-“-1 .

Moreover, from (9) we obtain in the disc A

lira F(0 = lim F«) = 4 Mfc(0 , fc«) = </(l - <)’ •
a—0 + o->l-
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Thus

(15) as a -> 0+ .

The convergence in (15) is understood in the sense (cf. a suitable theorem of 
Carathéodory) that any convergent sequence (/„), fn € an —» 0+, is
convergent to a function f0 € S(M), and conversely, if /o € S(M), then there exists 
a sequence (/„), fn € S(M,otn), a„ -» 0+, such that limn-.«, f„ = /o- Analogously, 
from (14) we have

S(M,o)-S(Af,l)~{/eS:/-<4M*} as a -» 1“

(cf. (4)). On the other hand, if, for any arbitrarily fixed a € (0,1), the equality sign 
holds in (13), that is, Mo ■> 1, then the class S(M,a) consists of only one function 
/»F:

S(M,a)=(F), Afo = l.

Moreover, if a = 0+, then F = I (/(() s (, ( g A); if a =■ 1”, then F >= k (the 
Koebe function). In view of (3), it can be found that S(+oo, a) = S. Of course, we 
also have:

a) if 0 < «1 < a2 < 1, then S(M, «i ) C S(M, a2),
b) if is admissible, then S(Afj,a) C S(Aij,a).
As is known, the set H of all holomorphic functions A with the topology of 

almost uniform convergence is a linear topological space. Consequently, directly from 
(6) we deduce that the classes S(M,a) are compact and connected.

4. Covering and distortion theorems. In our further considerations we 
assume, unless otherwise stated, that

(16) « € (0,1) , M > (1 - o)“-*(l + a)“""1 .

We have

Theorem 1. The Koebe domain IC(M,a) of the class S(M,a) is of the form

(17) IC(M,a) = F(A„o/Mo)

where

(18) Ro - Mo (2M0 - 1 - ly/MS-Mo'j ,

Mo is defined by formula (12).

Proof. It suffices to confiné the considerations to wo 6 F(A). The point 
w° t A/es(M,„) /(Û) if and only if (sec (6)) A/o • F-’(w0) t n„6s(M.) V»(A). 
So, from [8]: JWoF-l(wo) $ A«o where Ro is defined by (18). In consequence,
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wo F(Zk/io/Mo)> which, in view of the definition of the Koebe domain, proves equal
ity (17).

We shall next prove

Lemma 1. On the circle |z| = r < 1, the »harp estimate

(19) -F(-r) < |F(«)| < F(r)

take» place.

Proof. One should determine max|,|«,r(min)|F(i)|. Since the function 
( = (1 — *)/(l + *) maps the circle |z| = r onto the circle T with the equation 
( = c + pe'1, t € (-jt.tt), c = \(R + R~l), p = \(R -R~l), R = (1 + r)/(l - r), it is 
necessary to determine

(20) max(min)log |F(«)/«A/| = max(min)Re{log (1 + ())
|»|-r <Gr 1 l-< >

where T - the set of points of the circle T, while

m+i
(21) 1+ «/»«) h(i)-l

h(f) = yi + (^-i)e, >/r=i

Consequently, for any ( gT, from (21) we successively have

(22) Re | log ^|(1 + <)} = log |1 - «/»(Cl - log |1 + «/»(()!+

+ «log|/»(C + 1| - a log |/»(i) - 1| + log |1 + C - log |1 -<| =
*r Z^LzlE. _ -1)2

h(z))h(z) (1 + o/,(z))/»(z) (1 + h(z))h(z)

" (h(z)-i)h(z)+ m+ =

= —2a? Re/
I Joo «(y/o2 + (1 - a3)z2 -I- z) J

Put ( = c + pe“ 6 T) and 

,c+e«'r
(23) «I»«) = —2a2 Re ,Z° z(\/a dz

2 + (1 - o2)z2 + z)
, t e (-*,*).
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From (20)-(23) it follows that the problem raised has been reduced to the determi
nation of the extrema of the function 4» (the integration in (23) is carried out, for 
instance, from +oo to /? along the real axis and, next, from R to ( = c + pc'* along 
a suitable arc of the circle T).

Note that

(24) «'(«)
-2a2 Re/ . . ■ *V *?.,■■■-----r|

1 + (1 - a2)z2 + z) '«»«+/>«

2«’ Im/ z ■ . *~C ------ rI
( z(y/a2 + (I — a2)z2 + z) I««+?«'•

}-

so, ^'(t) = 0 if and only if

(25) Im{(\/a2 + (1 — a2)z2 + «),*(* — c)} = 0 , z€T.

Since the case t £ (—jr,O) is symmetric to the case t € (0, tt), it suffices to restrict the 
considerations to z 6 T, Im z > 0.

Let Im z > 0, z € T, argz = 3. Then arg(z — c) > 23, thus arg(z(z — c)) < — 3. 
Consequently, from equation (25) we get two possibilities:

a) arg(...)i = - arg(z(? - c)) - ir,
b) arg(.. .)i = — arg(z(z — c)) > 3, with that (.. .)i stands for the expression in 

suitable parentheses in formula (25).
Case a) is not possible because the values (.. .)i lie in the first quadrant, whereas 

— arg(z(z — c)) - % < — arg(z(z - c)) - arg(z - c) = - arg z = -3 < 0.
In case b) we have that arg(.. .)> = arg z + arg(l + ^1 — a2 + ^|) > 3 *= argz 

when arg(l + ^1 — a2 + ^|) > 0, which is not possible, either, since Im z > 0; so, 

Im(l + ^1-0» + «;) < 0.

In consequence, the equality in (25) takes place only for z real. Hence the extreme 
points of function (23) are: t = 0 and < = ir. Since from (24) we have

lim 'b'(e)/£

2.’ lim Imi--------- , ----------- --  } > 0
<—0 I (c + pc")(\/(l - a2)(c + pc"}2 + a2 + c + pc'*) ‘

therefore, at the point t = 0, the function 'b attains its minimum, whereas at 
the point t = n - its maximum. So, we have $mi„ = c + p = (1 + r)/(l — r), 
Cmfcx = C - p = (I - r)/(l -I- r), respectively, whence zmi„ = -r, zmM = r. Conse
quently, |F(—r)| < |F(z)| < |F(r)| and, in view of (9) and (10), we obtain estimate 
(19).

Consider a function p(z, A/), M > 1, defined by formula

(26) p(z,M) = [A/(l—z)J+2z—(1—z)^/Af2(l — z)2 +4A/z]/2z , z € A ; v'l = 1.

It is univalent in A; what is more, the Pick function, i.e.

P(z,M) = Mp(z,M) , z€A,
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is an extremal function in many questions investigated in the class S(M). 
Lemma 1 implies

Theorem 2. In the class S(M,a) the following estimate takes place:

(27) -F(H-|«|,Mo)) < |/(z)| < F(p(|z|,Aio))

where F, Mo and p are defined by formulae (9), (12) and (26). The equalities hold, 
respectively, for the function f*(z) = F(p(z,M0)) when z = |z| (estimate from above) 
and when z = -|z| (estimate from below).

Proof. Let f € S(M,a). Then there exists a function € S(Afo) such that (6) 
holds. Consequently,

|/(z)| = |^(»)/M,)|

On the other hand, in virtue of the well-known Pick theorem (¡8)), we have 

—p(—|z|,JWo) < |v?(z)/A/0| < p(|z|, Mo) .

Hence, in view of (19) and the properties of the function F, proposition (27) follows. 
Since the function P(z,Mo) is extremal with respect to |i^(z)| in the class S(Mo), 
therefore estimates (27) are sharp, the function /* being extremal in the class S(M, a).

Remark 1. It is evident that, using the left-hand side of inequality (27), the 
properties of the functions F and p as well as Rouche’s theorem, we shall obtain that 
the equation f(z) = w has in the disc A a solution (one) if only |w| < —F(—Ro/M0). 
One cannot, however, obtain in this way the Koebe domain of the class S(M,a) 
because this class is not ’’rotatory” (if f € S(M, a), then g(z) = e~'* f(e'*z), zfA, 
f € R, need not belong to S(M, a)).

Next, we shall prove

Lemma 2. On this circle |z| = r < 1, the sharp estimate

(28) |F(z)|

takes place. The equality holds when z = |z|.

|F(z)l / 4o2|z| 
s ki + 1

Proof. We shall determine max|,|_r |zF'(z)/F(z)|. For the purpose, let us 
introduce - as in the proof of Lemma 1 - function (21). We shall then get (cf. (22))

<i+e>) - -2«» l’ * y,
J z(y«2 + (1 - a2)z2 + z \

( er.

Since

|zF'(z)/F(z)| = |l + z(log^)'| =

i+i

(29)

= i+
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therefore from (29) we have

|*F'(x)/F(«)| = + ;

thus ____________
max |rF'(r)/F(«)| = mwc J\^ + 1 - ol| .

I«l=r <er v *
But T is a circle with the equation ( = c + pe1', t € (-n, n), so, from the formulae 

for c and p we have

+ 1"a’l = 71«’«’’+ 1-“’I = +1 ’

which ends the proof.
Lemma 2 implies

Theorem 3. If f € S(A/,a), z € A, then

!/(*)! V' + 2(2«’ ~ (/U))l + If'W
(30) |/(z)|_1_w- w • l + |F-‘(/(r))|

The equality in estimate (30) holds for the function f*, defined in Theorem t, when

Proof. As we know ((6)), for a function <p € S(Afo), the estimate

(S1) lv Wl £ 1 - W W M.+W.)l

takes place, with that the equality holds for the function P(z, M). On the other hand, 
if f € S(M, a), then from (6) we have

(32) f\z) = F\q,(z)/M0)-'p'(z)/M0 .

Consequently, from (32), (28), (31) and (6) we get estimate (30). The equality 
holds for the function Fop, that is, /*._____

Since the function ^/l + 2(2o2 — l)ar + ®i/(l+i) is non-increasing in the interval 
(0,1), and

-p(-W,Af0) < |F-»(/(x))| = |V(x)|/A/0 < 1 , 

therefore from Theorem 3 we obtain

Corollary 1. If f € S(M,a),then 

|/'(r)| < 1 + r . ^’(P(r> ^o))

y/l - 2(2o> - l)p(—r, Mo) 4- pa(~7^)
1 -p(-r, A/o) l«|.

This estimate is not sharp.
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5. Rotation theorems. Proceeding as in the proof of Lemma 2, we get

(33) max tug(zF'(z)/F(z)) = m«uc arg 5/jy + 1 - a3 =

l»l-r <6r V ‘

where, as before, T : ( = c + pe**, t € (—%,«■). Hence, after rather toilsome calcula
tions, we obtain

Lemma 3. The function F aatiafiea the inequality

|arg(r«<*F'(rei*)/F(re<*))| <
< arg(l + a2pJ + 2oJcpe’** + a2p2e2ita) ,

(34)

where

(35)

-c(l + 4a2p2) + \A+ 9p2 - 8a2p2
<0 “ arcc°9---------------4p(l + oV’)--------------- ’

c-|(R+ /!-»), jcR-JT1), R = (l+r)/(l-r).

The equality in (34) totes place when re1*0 = (c — 1+ ert° )/(c+1 + e’,#) (from above) 
and when z = re~'*° (from below).

Let f € S(M, a). Then from (6) we have

fM'i /'(*>>(*) _ *"M*)M*)
W /(<M«) F(w(s))

where

(37) w(z) = <p(z)IMq , z € A , ip € S(M0).

Since in (33) to greater values of r there correspond greater values of the maximum 
of the argument, therefore from (36) we have

(38) max
M«r

fW*)
fWu'(z)

)l < arK
ri^F'^e^)

Ffoe**)

where

(39) =maxp(r)| , c = i(F + , p = |(R - ^) ,

Ji - (i + »Zw)/(i-n«»). 
ipo — defined in Lemma 3 .
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Note that

(40) n= max nu = p(r, Mo) . 
MoweS(Mo)

Consequently, from (34), (35) and (38)-(40) we obtain

Theorem 4. If f g S(M, a) and, in formula (6), its corresponding function is 
(37) then the estimate

“''(*)/(«)>
< arg (1 4- a2p2 + 2a2cpe<‘° + a2p2e2i,°)2 , |r| = r ,

holds where c,p,t0 are defined in (35), with that 7? = (1 -t-»/)/(l — rj). The equality in 
estimate (41) from above holds for the function w’(z) = e’*’’p(e~,*<> z, Mo), z € at 
the point z = re'*’0, whereas from below - for the function w*‘(«) = e-'*’op(e'*’0^, Mo) 

c ■“ 1 ”4" pc^®
at the point z = re-'*0 ; <p„ = arg - ----- r- .

c + 1 + pe"°

Remark 2. After computations, from (26), (39) and (40) we get

c-(l+X’)/(l-x’), P = 2X/(1-XJ),
-wg(x+ «"*)/( 1 + xe*'’),

where
X-(R-1)Z(H + 1), R-^l + —±_.

So, according to the notations adopted above, Theorem 4 implies 

Corollary 2. If f € S(Af,a) and w = F“1 o f, then

, \ ' S Xf\3!) » IW'(*) -

< arg(.., Arg 1 = 0 ,

where (.. .)2 - as in (41).

6. Estimates of coefficients. Let a function / of form (1) belong to the class 
S(M, a) and let the function (see (6))

(42) ^(x) = M0F-‘(/(«))

have an expansion in a series of the form

(43) <p(x) = 3 + 6jzJ + 6jiS+... .
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Then from (42), (43), (1) and (11) we have

(44) + 2o2Af0 1 ,
(45) aj = + 4o2fc2Af0“1 + a2(2 + o2)Af0-1 .

Consequently, from (44) and the estimate of the modulus of the coefficient b2 in 
the class S(M0) [(8)] we have

Theorem 5. If f € S(A/,a), then

(46) |a2| < 2(1 + (o2 — 1)A/O-1) .

The equality in (46) w realized by the function f = Fop where p is defined by formula 
(26).

From (45) and the well-known results of O. Tammi ([10], §3, pp. 60 94) we 
obtain

Theorem 6. Let Mq € (l,e). Then, in the cla»s S(M,a), the following »harp 
e»timate hold»:
(47-48)

p2(2 + o2)M0-2 +1-M0-2-4oX-’lS^

Re a < for 0 < o2 < 1 - LogAfo ,
C °3 ~ a2(2 + o2)A/0-2 +4o2M0-1(tr - «2Àf-* ) + 2(o - Mo~' )’ +1 - M~2

i for 1 — LogAfo < o2 < 1 .

In (48) o(a) 6 (Mq1 ,1) is a root of the equation

(49) oLogo + Af0-1(l - a2) = 0 .

Mo it defined by formula (12).

Theorem 7. Let Mo € (e, +oo). Then, in the cla»» S(M, a), the »harp e»timate

Re as < a’(2 + a2M~2 + 1 - A/"2 + 4a2 A/0_1(a - a2Mo"1 )+
+ 2(<r-Ai0“1)2/orO<a< 1

hold», where a — o(oi) € (e“*,l) m a root of equation (49). Mo it defined by formula
(12).

Remark 3. The results obtained, and in particular, Theorems 5-7, generalize 
the well-known results, for example, in the class S(Mo). In the class S(M, 1) we have 
|a2| < 2. In Theorems 6 and 7 the function Fop is not extremal for any admissible 
M, a (cf. (13)).

Remark 4. In analogous way one can obtain estimates of some other functionals, 
for instance, Re (03 + Xa2), A € R. The detailed considerations are omitted.
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7. Concluding remarks - open problems. It is evident that various impor
tant extremal problems defined in the classes S(M,a) have remained open. Also, the 
fact that the function F is starlike has not been made use of.

Whereas parallel investigations were taken up in the case when the domain P is 
of the form

Dj = {w : |w| < M} U {w : |w| > M, |Arg(w + M)| < air}

M > 0, a € (0,1). The partial results obtained and the evident ’’limit” cases of the 
domain Dj seemed to be less interesting than the domain T> and the class S(M, a), 
considered in the paper. Can one give other arguments for such investigations?

In connection with the examinations contained in papers [3] and [4] mentioned 
earlier, the case when T> is of the form

D2 = D2(( Af, m, a) = {w : |w| < m} U {w : m < |w| < M, |Arg ui| < an) ,

where 0 < m < M, a € (0,1), seems to be interesting. The considerations of this 
situation did not constitute, however, the aim of the present paper. Let us add that 
the function F2, corresponding to the domain D2, can be found in paper [1].

During the Xllth Instructional Conference of the Theory of Extremal Problems 
(Bronisławów, 1991) there was formulated a question concerning the purposefulness 
of studying of the situation when T> is of the form D2 = C \ L where L = L(Af, a) = 
{w : Re w > M, Im w = 0} U {w : |w| = Af, |Arg w| < air}. As is known, the case of 
Af = 4/9 and a suitably chosen a leads to the function Fj extremal in Netanyahu’s 
problem (cf. e.g. [2]).
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STRESZCZENIE

Niech D = {w : |w| < A/} U {w : |w| > M, |Arg w| < zra} gdzie M > 0, a G (0,1) 
są ustalone. Niech S oznacza klasę funkcji /(z) = t + OjZ2 + ... + + ■ • • holomorficznych
i jednolistnych w kole A = {z : |z| < 1} i niech F będzie odwzorowaniem konforemnym A na 
obszar D taki, że F(0) = 0, F'(0) > 0.

W pracy tej badane są własności klasy S(M, a) = {f € S : f -< F}, funkcji / podporząd
kowanych w kole A funkcji F. W dowodach korzysta się z własności funkcji F i funkcji klasy S(7?) 
funkcji jednolistnych ograniczonych co do modułu przez R.

(recieved July 29, 1991)




