LUBLIN-POLONIA

VOL. XLV, 5
SECTIO A

Department of Mathematics
University of South Florida

A. W. GOODMAN

The Valence of Certain Sums

Listnoéc pewnych sum

Abstract. Let \mathcal{A} be the collection of functions $f(z)$ regular in $E:|z|<1$ and normalized by $f(0)=0$ and $f^{\prime}(0)=1$, and set $F(z)=(f(z)+g(z)) / 2$. We investigate relatione between k, m, and n, the valences in E of $(z), g(z)$ and $F(z)$, respectively.

1. Introduction. We consider a problem which we will denote by $V(k, m, n)$ where k, m, n are positive integers which may include ∞ as a positive integer.

Let

$$
\begin{equation*}
F(z)=\frac{1}{2}(f(z)+g(z)), \tag{1}
\end{equation*}
$$

where $f(z)$ and $g(z)$ are functions in \mathcal{A} the set of normalized functions

$$
\begin{align*}
& f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{2}\\
& g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
\end{align*}
$$

which are regular in $E:|z|<1$.
Given k, m, and n, positive integers does there exist functions f, g and F such that f has valence k in E, g has valence m in E, and F has valence n i E. We denote this problem by the symbol $V(k, m, n)$ which is a function with the range \{Yes, No\}.

What may appear to be the hardeat case, $V(1,1$, infty) was solved affirmatively in [1]. In this paper, we look at various other combinations of k, m, and n. In the last section, we suggest various extensions and generalizations of the problem $V(k, m, n)$.
2. Some special cases. First we note that $V(k, m, n)=V(m, k, n)$ so that W.L.O.G. we can always assume that $k \leq m$.

Theorem 1. The problem $V(k, k, 1)$ has a solution for each $k=1,2, \ldots, \infty$.

Proof. Let

$$
\begin{equation*}
f(z)=z+h(z), \quad g(z)=z-h(z) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
h(z)=\sin \left(z^{2} /\left(1-z^{2}\right)\right)=\frac{z^{2}}{1-z^{2}}-\frac{1}{6} \frac{z^{6}}{\left(1-z^{2}\right)^{3}}+\ldots \tag{5}
\end{equation*}
$$

so that f and g have the requires normalization. Further, $F(z)=(f(z)+g(z)) / 2 \equiv z$ which is trivially univalent in E. Next, the function $u(z)=z^{2} /\left(1-z^{2}\right)$ maps the interval $(0,1)$ onto $(0, \infty)$ in a $1-1$ continuous manner. Hence there is a sequence $0<z_{1}<z_{2}<\ldots<z_{q}<\ldots<1$ such that $u\left(z_{q q+1}\right)=2 q \pi+\pi / 2$ and $u\left(z_{2 q}\right)=2 q \pi-\pi / 2$ for $q=1,2, \ldots$ Then $\sin u(z)$ alternates between +1 and -1 and hence has infinitely many zeros. The function $z+\sin u(z)$ is positive at $z_{2 q+1}$ and negative at $z_{2 q}$ so $f(z)$ is ∞-valent in E. The same type of argument shows that $g(z)=z-h(z)$ is also ∞-valent in E. Thus the problem $V(\infty, \infty, 1)$ has a solution.

For finite k, one can consider $f(r z) / r$ and $g(r z) / r$ for suitable r, but it is simpler to set $f(z)=z+A z^{k}$ and $g(z)=z-A z^{k}$ with sufficiently large A. Then $V(k, k, 1)$ has a solution for each finite $k, k \geq 1$.

Theorem 2. The problem $V(k, k, n)$ has a solution for each $n=2,3, \ldots, \infty$, and each $k=2,3, \ldots, \infty$.

This theorem extends Theorem 1 from the case $n=1$ to the case $n>1$.
Proof. First $V(\infty, \infty, \infty)$ is trivial. Set $f(z)=g(z)=$ any normalized infinitevalent function.

Next consider $V(\infty, \infty, n)$ with n finie. In this case, set

$$
\begin{align*}
& f(z)=z+A z^{n}+B \sin u(z) \tag{6}\\
& g(z)=z+A z^{n}-B \sin u(z) \tag{7}
\end{align*}
$$

where (as in Theorem 1) $u(z)=z^{2} /\left(1-z^{2}\right)$. If $A>1$, then $(f(z)+g(z)) / 2$ is n-valent. Further, if $B>1+A$, then the argument used in Theorem 1 shows that $f(z)$ and $g(z)$ are both infinite-valent. Hence the problem $V(\infty, \infty, n)$ has a solution for each finite n.

For $V(k, k, n)$ with $1<k<n<\infty$, set

$$
\begin{align*}
& f(z)=z+A z^{k}+B z^{n} \tag{8}\\
& g(z)=z-A z^{k}+B z^{n} \tag{9}
\end{align*}
$$

with $B>1$ and $A>1+B$.
To complete the proof of Theorem 2, we need to settle the cases $V(k, k, \infty)$ with $k>1$ and $V(k, k, n)$ with $n<k$.

For $V(k, k, \infty)$ set

$$
\begin{equation*}
f(z)=\frac{e^{i \alpha}}{2 A}\left[-1+\exp \left(A e^{i \alpha} \ln \frac{1+z}{1-z}\right)\right], \tag{10}
\end{equation*}
$$

where $A>0$ and $0<\alpha<\pi / 2$. Further set

$$
\begin{equation*}
g(z)=\frac{e^{i \beta}}{2 B}\left[-1+\exp \left(B e^{-i \beta} \ln \frac{1+z}{1-z}\right)\right] \tag{11}
\end{equation*}
$$

where $B>0$ and $0<\beta<\pi / 2$. Since $A e^{i \alpha} \ln ((1+z) /(1-z))$ maps E onto an infinite strip of width $A \pi$ that makes an angle α with the positive real axis, then $f(z)$ is k-valent if $2(k-1)<A / \cos \alpha<2 k$. A similar remark holds for $g(z)$ which is m-valent if $2(m-1)<B / \cos \beta<2 m$.

Now set $k=m, A=B$, and $\alpha=\beta$ with $(2 k-1) \cos \alpha=A$. Then both $f(z)$ and $g(z)$ are k-valent in E. Further, $F(z)=(f(z)+g(z)) / 2$ gives

$$
\begin{equation*}
F(z)=C_{0}+\frac{1}{4 A} Q(z) \tag{12}
\end{equation*}
$$

where $C_{0}=-(\cos \alpha) / 2 A$ and

$$
\begin{equation*}
Q(z)=e^{-i \alpha} \exp \left(A e^{i \alpha} \ln \frac{1+z}{1-z}\right)+e^{i \alpha} \exp \left(A e^{-i \alpha} \ln \frac{1+z}{1-z}\right) . \tag{13}
\end{equation*}
$$

A small computation will show that $Q(z)=0$ whenever

$$
\begin{equation*}
\ln \frac{1+z}{1-z}=\frac{(2 q+1) \pi+2 \alpha}{2 A \sin a}, \tag{14}
\end{equation*}
$$

where q is any integer. Since this equation is satisfied for some z in E for each integer q, it follows that $F(z)$ is ∞-valent in E.

For $V(k, k, n)$ with $1<n<k<\infty$ set

$$
\begin{equation*}
f(z)=z+A z^{n}+B z^{k} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
g(z)=z+A z^{n}-B z^{k}, \tag{16}
\end{equation*}
$$

with $A>1$ and $B>1+A$.
This analysis omits the case $V(1,1, n)$ where n is finite. It is clear that equations (8) and (9) cannot be used when $k=1$. The transformation $T(z)=\varphi(r z) / r$ applied to f, g and F in equations (10) and (11) will yield and F with exactly n zeros when r is selected properly. However, this does not mean that $F(r z) / r$ is n-valent, and it is possible that as r decreases from 1 to 0 , the valence of $F(r z) / z$ may have jump discontinuities greater than 1 . For the moment, the problem $V(1,1, n)$ remains unsettled.
3. The unsymmetrical cases. Here we consider $V(k, m, n)$ where $k<m$, and k, m, n are any positive integers including ∞.

Theorem 3. The problem $V(k, m, \infty)$ has a solution for each pair of positive integers k and m.

Proof. The case $k=m$ was settled in Theorem 2. By the symmetry of the problem, we may assume W.L.O.G. that $1 \leq k<m$. We use the two functions $f(z)$ and $g(z)$ defined by equations (10) and (11) where we may have $A \neq B$ and $\alpha \neq \beta$. Then $F(z)=\left((f(z)+g(z)) / 2\right.$ gives $F(z)=C_{0}+Q(z)$ where now

$$
\begin{equation*}
C_{0}=-\frac{e^{-i \alpha}}{4 A}-\frac{e^{i \beta}}{4 B}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(z)=\frac{e^{-i \alpha}}{4 A} \exp \left(A e^{i \alpha} \ln \frac{1+z}{1-z}\right)+\frac{e^{i \beta}}{4 B} \exp \left(B e^{-i \beta} \ln \frac{1+z}{1-z}\right) \tag{18}
\end{equation*}
$$

A small computation shows that $Q(z)=0$ whenever

$$
\begin{equation*}
\ln \frac{1+z}{1-z}=\frac{((2 q+1) \pi+\alpha+\beta) i+\ln (A / B)}{A e^{i \alpha}-B e^{-i \beta}} . \tag{19}
\end{equation*}
$$

Now $f(z)$ and $g(z)$ will be k-valent and m-valent respectively if A, α, B and β satisfy the conditions

$$
\begin{equation*}
A=(2 k-1) \cos \alpha, \quad \text { and } \quad B=(2 m-1) \cos \beta \tag{20}
\end{equation*}
$$

To simplify (19), we impose the further condition

$$
\begin{equation*}
A \cos \alpha=B \cos \beta \tag{21}
\end{equation*}
$$

Then $Q(z)=0$ whenever

$$
\begin{equation*}
\ln \frac{1+z}{1-z}=\frac{(2 q+1) \pi+\alpha+\beta}{A \sin \alpha+B \sin \beta}-\frac{\ln (A / B)}{A \sin \alpha+B \sin \beta} i \tag{22}
\end{equation*}
$$

The right side of (22) gives an infinite set of points that lie on a parallel to the real axis and hence for each integer q, there is a z in E that satisfies (22) if

$$
\begin{equation*}
\left|\frac{\ln (A / B)}{A \sin \alpha+B \sin \beta}\right|<\frac{\pi}{2} . \tag{23}
\end{equation*}
$$

Since $m>k \geq 1$, the conditions (20) and (21) will give

$$
\begin{equation*}
1<\frac{2 m-1}{2 k-1}=\frac{\cos ^{2} \alpha}{\cos ^{2} \beta} \tag{24}
\end{equation*}
$$

and hence $1<\cos \alpha / \cos \beta=B / A$, so $B>A$. Now $A \sin \alpha>0$ so (23) is satisfied if

$$
\begin{equation*}
\frac{\ln (B / A)}{B \sin \beta}<\frac{\pi}{2} . \tag{25}
\end{equation*}
$$

We select $\alpha=0$. Then (20) dictates that $A=2 k-1$ and (21) gives $\cos \beta=A / B$. From $\sin ^{2} \beta=1-(A / B)^{2}$ and a little manipulation we see that (25) is satisfied if

$$
\begin{equation*}
\frac{\pi}{2}>\frac{1}{A} \frac{\ln (B / A)}{\sqrt{(B / A)^{2}-1}} \equiv \frac{1}{A} \frac{\ln t}{\sqrt{t^{2}-1}} \equiv \frac{1}{A} I_{0}(t) \tag{26}
\end{equation*}
$$

where $t=B / A>1$. A computer program shows that for $1<t<\infty$ we have $\max I_{\bullet}(t) \approx 0.4037<\pi / 2$ when $t \approx 2.2185$, the only zero of $I_{0}^{\prime}(t)$. Thus $f(z)$ has infinitely many zeros in E.

The other unsymmetrical cases $V(k, \infty, n)$ and (k, m, n) where k, m, n are all finite, seem to be more difficult.
4. Generalizations. A number of generalizations may be of interest. First, suppose that we fix positive numbers α, β with $\alpha+\beta=1$ and replace (1) by

$$
\begin{equation*}
F(z)=\alpha f(z)+\beta g(z) \tag{27}
\end{equation*}
$$

Then $V(k, m, n)$ denotes the problem: are there functions in A for which f, g, and F have calence k, m, and n respectively.

An affirmative answer in the simplest case $V(1,1, \infty)$ was obtained in [2], but in that work, α and β were restricted to the interval $\left(1 /\left(1+e^{\pi}\right), e^{\pi} /\left(1+e^{\pi}\right)\right)$. Later, $\mathrm{Ji}[3]$ extended this result to the full interval $(0,1)$.

The same questions $V(k, m, n)$ can be asked if

$$
\begin{equation*}
F(z)=f^{\alpha}(z) g^{\beta}(z) \equiv z\left[\frac{f(z)}{z}\right]^{a}\left[\frac{g(z)}{z}\right]^{\beta} \tag{28}
\end{equation*}
$$

Here, of course, we must restrict f, g and F to be the functions with only one zero in E the one of the origin. Again, the simplest case $V(1,1, \infty)$ was settled in [2] in the affirmative for α and β in a certain interval and again Ji [3] extended the result to all α, β in $(0,1)$.

Other compositions, such as

$$
\begin{equation*}
F(z)=\sum_{1}^{\infty} a_{n} b_{n} z^{n}, \quad \text { or } \quad F(z)=\sum_{1}^{\infty} \frac{a_{n} b_{n}}{n} z^{n} \tag{29}
\end{equation*}
$$

may also yicld interesting problems.
The methods used in Sections 2 and 3 may settle some of the easier cases, but a complete analysis of all cases $V(k, m, n)$ in any one of the above problems may be difficult.

REFERENCES

[1] Goodman, A. W. , The valence of sums and pmductn, Canadian Jour. of Math. 20 (1988), 1173-1177.
[2] Goodman, A. W., The valence of certain means, Jour d'Analuse Math. 22 (1969), 365-361.
[3] Ji, Zhou , A note on the valence of cerlain means, (Subrnitted) Journal Sichuan Normal University (in Chinese) and Proc. Amer. Math. Soc

STRESZCZENIE

Niech \mathcal{A} oznacze rodzine funkci $f(z)$ regularnych w $E=\{z:|z|<1\}$ i unormowanych; $f(0)=0, f^{\prime}(0)=1$. Ornaczmy $F(z)=\frac{f(z)+g(z)}{2}, f, g \in \mathcal{A} \mathrm{~W}$ pracy badane są zależnobci pomiqdzy listnoéciami w E funkcji $f(z), g(z)$ i $F(z)$.

(received February 11, 1992)

