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Abstract. This is a survey article on the set *-/(♦) of points where a "derivative’ ♦ attains 
local maxima. A typical example of ♦ is the Bloch derivative F>(z)=(l-|i|’)|/'(r)| of J holomorphic 
in the unit disk. The components of M(F/) are classified into the three: isolated points; simple 
analytic arcs ending nowhere in the disk; analytic Jordan curves. The remaining ł which are mainly 
studied are the spherical derivative \ f |/( 1+1/|’) of f meromorphic in a domain in the complex plane 
and the minus of the Gauss curvature of a minimal surface in the Euclidean space with the parameter 
in a domain in the plane. Parts of this article were presented on October 21, 1992, at the meeting 
of the Minisemester: "Functions of One Complex Variable” (in the Semester on Complex Analysis) 
held at Stefan Banach International Mathematical Center in Warsaw, Poland.

I wish to express my deepest gratitude to Professor Jan Krzyż, the organizer of the minisemester.

1. Introduction. We shall study the set Af($), in a domain in the complex 
plane C = {|ż| < oo}, set where the ’’derivatives”, symbolically denoted by <&, attain 
local maxima. We call A/($) the peak set of $. Most of the results in the present 
paper are extracted from [26, 27, 28] and notation is partially different from that in 
the cited papers.

We shall be mainly concerned with the peak sets of the following three types of
*:

(BD) The Bloch derivative:

F/(r) = (1 — |r|2)|/'(r)|

of f holomorphic in the disk D = {|z| < 1}.

(SD) The spherical derivative:

/* = in/(i+i/ii)

of f meromorphic in a domain G C C.

(GC) The minus of the Gauss curvature: —K of a regular minimal surface x : 
G —♦ 7?.3 in the Euclidean space F3.

Suppose that $ is considered in a domain G C C. Let A/($) be the set of points 
Zo 6 G such that ł(zo) > ♦(*) in a disk {|z - zq| < ¿(*o)} C G (¿(z0) depends on
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z0) and let Af*($) be the set of points zo € G such that $(*o) > $(z) for all z € G. 
Thus A/*($) C Af(<k) is immediate.

In all the described cases, except for the trivial ones, the connected components 
of the peak set A/($) are classified into three types:

(1) isolated points;
(2) simple analytic curves ending nowhere in G;
(3) analytic Jordan curves.
Since $ is shown to be constant on curves of types (2) and (3) we have the same 

classification of the set A/*($). Let be the set of components of A/($) of type
(fc) explained in the above, k = 1,2,3. Similarly for Al£($).

We shall study geometric properties of A/($) for $ of (BD) or (SD). A typical 
one is that if c € Ai^F/) U then the slope of the tangent at each z €
c to c is — tan{0(z)/2}, where 0(z) is the argument of the Schwarzian derivative 
(/"//')'of/at z.

In conjunction with (BD) we shall consider the density of the Poincare metric in 
Section 5. The results in this section are not explicitly stated in any paper of [26, 27, 
28]. Applications of the case (SD) are to know behaviour of solutions of a nonlinear 
elliptic partial differential equation and to know behaviour of the Gauss curvature of 
graphs of harmonic functions. These are summarized in Sections 7 and 8.

Suppose that a c € Af3(4>) exists and let A be the Jordan domain bounded by c. 
Here we assume that A C Gin cases (SD) and (GC). In case (BD), the non-Euclidean 
area of A is expressed by the number of the zeros of /' in A. In case (SD) the spherical 
area of the Riemann image surface (the Riemannian image, for short) of A by / is 
expressed by the number of the zeros and poles of /' in A. Finally, in case (GC) the 
total curvature of the subsurface with parameter restricted to A is expressed by the 
number of the zeros and poles of the derivative g' in A, where g is the Gauss map of 
the whole surface.

2. The Bloch derivative. We begin with case (BD). The Bloch derivative at 
z of a function / holomorphic in D is

*>(«) = (i - Ma)l/*(»)l = (l/(w) - /MIM«’.*))W—*2

where tt(w, z) = tanh_1(|z — w|/|l — wz|) with tanh-1 x = (l/2)log{(l +i)/(l — i)}, 
0 < x < 1, is the Poincare distance of w and z in D. The Bloch derivative appears in 
the proof of the Bloch theorem:

There exists a universal constant eg > 0, called the Bloch constant, such that if 
f is holomorphic in D and /'(0) = 1, then the Riemannian image of D by f over 
C contains an open one-sheeted disk of (Euclidean) radius eg. See [13].
We nowadays call / Bloch if Ff is bounded in D. This term "Bloch function”

prevails, among recent papers, ignoring R. M. Robinson’s earlier paper [19].
If / is nonconstant and holomorphic in D, then 1/Ff is subharmonic in D minus 

the zeros of /'; actually, Alog(l/F/(z)) = 4/(1 - |z|2)2 > 0 there, and 1/Ff = 
exp[log(l/Fy)]. Thus, Ff has "trivial” local minimum at each zero of /' and has no 
local minimum at any other point of D.

We begin with the theorem essentialiy due to J.A. Cima, W.R. Wogen [5], S. 
Ruscheweyh and K.-J. Wirths [20] (they all actually suppose that f is Bloch; see [26] 
and also [4, 21, 24]).
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Theorem 2.1. Suppose that M(Ff) is nonempty for f nonconstant and holo­
morphic in D. Then the components of M(F/) are at most countable and they consist 
of the three types (1), (2), (3). Furthermore, the isolated points of M(F/) accumulate 
nowhere in D.

For g nonconstant and meromorphic in G we denote \(g) = g"/ g', the logarithmic 
derivative of g'. Then the meromorphic function a(g) = A(j)' — 2~*A(^)2 is the 
Schwarzian derivative of g. We observe that if 2 € M(F/) for nonconstant f, then 
f'(z) / 0 and

0 = (5/02) log FZ(2) = 2'tA(/)(2)-2/(l - |x|’) , 

so that, 2 = where

(2-1) K,(2) = A(/X«)/(2A(/)(*) + 2);

here, as usual,

2(0/dz) = (d/dx) - i(d/dy) , 2(0/02).= (d/dx) + i(d/dy) , z = x+iy.

A core of our proof of Theorem 2.1 consequently is an analysis of the closed set

E(ff) = {zeG; z^H(z)j ,

where H is meromorphic in G. Such a function H is called the Schwarz function of 
D(-if) by P.J. Davis [6] under the condition that E(Zf) is a curve. We have

Lemma 2.2. [20, Lemma 1]. If a € G is an accumulation point of E(/f), 
then there is an open disk U(a) C G of center a such that S(/f) fl Ufa.) is a simple 
analytic arc with both terminal points on the circle dU(a). In particular, isolated 
points of E(/f) accumulate nowhere in G.

With the aid of Lemma 2.2 we can easily observe that if E(/f) is nonempty, then 
each component of E(K) is one of types (fc), k = 1,2,3, described in Section 1. We 
let E*(/f) be the set of the components of type (fc), k = 1,2,3. A detailed analysis 
then yields

Theorem 2.3. [26, Theorem 3]. For f nonconstant and holomorphic in D 
with nonempty M(Ff) and for Hf in (2.1) we have

Mv(Ff) C Ei(Hy) ; M2(Ff) = X2(Hf) ; M3(Ff) = Z3(H,) .

.3. The Schwarzian derivative, geodesics, and M3(Fj). Let f be noncon­
stant and meromorphic in G. In case G = D, the function

AT/(2) = 2-1(l-|2|2)2|<7(/)(2)|,
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which is called the Nehari derivative of f at z € D, is significant in Univalent Function 
Theory. Namely, if the Nehari condition

(N) supJV/(z)<l
i€D

holds, then f is univalent in the whole £>; the constant 1 is the best possible [16, 9). 
We shall show that Nf also plays a role in our study of the peak set M(Ff).

By a geodesic in D we mean the intersection of D with a circle or a straight line 
orthogonal to dD. By a geodesic segment in D we mean an arc on a geodesic, arc 
both terminal points of which are included.

Theorem 3.1. [26, Theorem 1]. Suppose that f is nonconstant and holo­
morphic in D with the nonempty peak set Ai(Ff). Then we have the following:

(3.1) sup jV/(z) < 1 .

(3.2) If N/(z) < 1 at z € M(F/), then {z} € Afj(F/).
(3.3) Suppose that c € Af2(F/) U M3(F/). (Then N/(z) = 1 at each z € c by (3.2)J 
Then the tangent to c at z € c is {z + te~'e(t^2; t € H}, where Q(z) = arg<r(/)(z). 
Furthermore, there exits a geodesic segment A = {V’(t); —r < t < t} orthogonal to c 
at z = t/>(0) such that (d2/dt2)F/(^»(t)) < 0 for |t| < r.

The function F/(^>(f)) consequently attains the maximum at t = 0 in the strict 
sense. The part {(z, j/, F/(z)); z = x + iy € M(F/)} of the graph {(z, t/, F/(z)); z = 
z + iy € D} in F3 thus symbolically consists of summits, ridges, and sommas (moun­
tains around a crater). ’

Let A be the family of functions alog((l + p)/(l — p)) + b, where a / 0 and b 
are complex constants, and p runs over all the Mobius transformations mapping D 
onto D. For g(z) = alog((l + z)/(l — z)) + 6 € A, the set Af*(F,) = M(Fg) is the 
real diameter of D. As a result, M(Ff) for f € A is a geodesic because Ff = Fg o p 
by f = g o p.

Theorem 3.2. [26]. Suppose that the Nehari condition (N) holds for f
holomorphic in D. Then M(Ff) is the empty set, a one-point set or f € A (hence 
M(Ff) is a geodesic.)

We can apparently replace M(Ff) by Ai*(F/) in Theorem 3.2. Under condition 
(N) for meromorphic f, F.W. Gehring and C. Pommerenke [8] proved that f(D) is 
either a Jordan domain in C U {oo} or the Mobius image (namely, the image by a 
Mobius transformation) of a band. Theorem 3.2 gives a further analysis in case f(D) 
(C C) is a Jordan domain in C U {oo}.

We know that if f is meromorphic and univalent in D and further if f(D) is the 
Mobius image in CU {oo} of a convex domain in C, then (N) holds. Furthermore we 
know that the equality in (N) holds for each f € A. See [14, p. 63). We next consider 
M3(Ff) in
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Theorem 3.3. [26]. Suppose that f is nonconstant and holomorphic in D. 
Suppose further that c € Afj(F/) eiiaia and let A be the Jordan domain bounded by 
c. Then,

(3-4) J ^(1 - = (*/2>a(/‘) («=«* + iy) ,

where t'b(f') ii the total number of the zeros of f in A, the multiplicities being 
counted.

The left-hand side of (3.4) is the non-Euclidean hyperbolic area of D. It follows 
from Theorem 3.3 that if f never vanishes in D, then Mz(Ff) is empty.

We note here that if MilFj) is nonempty, then MjlJFj) consists of just one 
element, say, c. Furthermore, M2(F/) is empty and isolated points of M(Ff) are 
finite in number and are contained in the Jordan domain bounded by c. See [26, 
Theorem B] for example.

4. Determination of f with preassigned Af(F/). Given a simple analytic 
curve c in D, can we find an f such that M(F/) = c? We consider the case where c is 
the intersection of D with a circle or a straight line [26]. The functions are somewhat 
complicated even in this very simple case. In this section A / 0 and B are always 
complex constants.

(I) A complete circle: c = {|r - a| = r}; a € D, 0 < r < 1 - |a|. We have 
M(Ff) = c if and only if

(jvTi)172 = (2r)’1[1" + r2"{(1 ~ia|2 + r2)i - 4r2>’/2l ’

where N is a natural number. Under the above condition we have 

f(z) = A[(z — b)/(l—bz)]N+1 + B ,

where
b = 2a[l + |a|2 — r2 + {(1 - |a|2 + r2)2 - 4r2}1/2]“1 .

(II) .4n oricycle: c — {|r -pe'"| = 1 -p}; a real, 0 < p < 1. We have A/(F/) =c 
if and only if

[ 2(p-l)
tp(l — eiaz)

/(«) = A exp

(III) A hypercycle: c = {|r — pe'“| = r); a real, p,r > 0, |1 — p| < 1 < 1 + p. We 
have A/(F/) = c if and only if . ,

—2p£ + 2(p2 — r2)
p^2 +(r2 _p2 _ l)( + p dw + B .
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(IV) A rectilinear segment: c = {e'° (cos/3 + iy); — sin/? < y < sin/?} Cl 2?; a real, 
0 < ¡3 < x/2. We have M(Ff) = c if and only if

4 cos /? — 2f 
1 -2<cos/? + <2 dw + B .

5. The Poincari density. Recall that the Bloch derivative has a relation with 
the Poincare density. We call a subdomain G of C hyperbolic if C \ G contains at 
least two points. In this section G is always a hyperbolic domain in C. Then, G 
has the Poincare metric Pc(z)|dz|. The density function, or the Poincare density, Pa 
is defined in G by the identity Pg(z) = l/F^(w), z — <p(w), w € D, where <p is a 
holomorphic universal covering projection from D onto G, in notation, € Proj(G). 
The definition is independent of the specified choice of p and w as far as the equality 
z = p(w) is satisfied. In particular, 1/Pd(z) = 1 — \z|2 and ir(w, z) in Section 2 is the 
integral of Pd(^)|</(| from w to z along the geodesic segment. See [1] and [14, pp. 147- 
149] for general theory of Pg(z)|<2z| (see also [30] for some sharp estimates of Pg in 
geometrical terms); note that 2Pa(z)ldzl instead of P<2(z)|dz| is adopted in [1]. Now, 
log Pg is subharmonic in G because A log Pg(z) = 4Pg(z)2 > 0, z € G, and hence 
Pg = exp(log Pg) is subharmonic in G. Hence Pc has no local maximum in G. Let 
M(1/Pg) be the set of points z € G where Pg attains local minima: Pg(z) < Pg(w) 
in {|w — z| < ¿(2)} C C. Then, A/(1/Pc) = «/»(A/iP^,)) for each <p € Proj (G). Since 
ip1 never vanishes in D, the set Mi(Fv) is empty by Theorem 3.3. Since p is locally 
univalent, there is a one-to-one correspondence between a part of E(P’¥>) and a part 
of M(l/Pa). Applying Lemma 2.2, we consequently obtain

Theorem 5.1. If M(1/Pg) is nonempty, then each component of M(1/Pg) 
is one of the three types (1), (2), (3). The isolated points of A/(1/Pg) accumulate 
nowhere in G.

We can further show that M(l/Pc) in Theorem 5.1 may be replaced by the set 
M*(l/Pa) of points where Pg attains the global minimum. Let A/*(1/Pg) be the set 
of the components of type (Jfc), fc = 1,2,3. We observe that the three types actually 
exist. With a slight misuse of notation we shall sometimes denote Af*($) (k = 1,2,3) 
instead of the union IJce */»(♦) c there is no confusion. This remark is available also 
to the sets Aft(l/Pc), k = 1,2,3.

(I) M(l/Pa) = Mi(l/Pa). Examples of G are many. As a typical one of 
nonconvex bounded domains we choose the interior of the cardioid C = { w+w2/2; w € 
D}. Then, Af(l/Pc) = {7/18} follows from

1/Pc(z) = (1 - 1(1 + 2z)>/2 - 1|2)|1 + 2z|‘/’ .

Here, C is not a Mobius image of the band

B = {—x/2 < Im z < x/2} .

(II) A/(1/Pg) = Af2(l/PG). For B we know that Af(l/Pg) is just the real axis 
because 1/Pg(z) = 2 cos(Im z).
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(III) A1(1/Pg) = MzCi/Po). For the ring domain

we have M(1/Pr) = {|z| = e'^4} because

1/Pfl(«) = 2|z|cos(log |z|) .

Here, it is interesting that for

¡fi(w) = exp(ilog{(l + w)/(l - w)} € Proj (R)

we have Af3(l/Pfl) = y>(M2(F,p)), where

M(FV) = Ah(F„) = {|z + i| = V2} n D .

In all the above examples, we always have A/*(1/Pg) = A/(1/Pg).
Set ¿(G) = supj€£> N^(z) for a 6 Proj (G). The supremum is independent of 

the particular choice of Theorem 3.2 actually has the following version.

Theorem 5.2. If 6(G) < 1, then M(l/Pa) = M*(l/Pc). Further, M(l/Pc) 
is the empty set a one-point set or a straight line.

The peak set A/(1/Pg) under 6(G) < 1 is a straight line if and only if G = f(D) 
for an / € A. The condition 6(G) < 1 in Theorem 5.2 cannot be relaxed. For 
R(a) = {e-’“/2 < |z| < e’“/2} (o > 0) we observe that

1/Pr(«)(*) = 2|z|cos(a-1 log |z|) ,z € R(a) .

Hence M*(l/Pr^)) = M(l/Pft(a)) = Af3(l/PR(a)) is the circle {|z| = exp(aArctan a)} 
and 6(R(a)) = 1 + a2.

See also [29, Theorem 2] for a specified case.

6. The spherical derivative. For f meromorphic in a domain G C C and for 
z € G we set

f#, 1 = / l//(2)l/(1 + l/(z)l2) if Az) / °° •
(Z> U(1//)'WI if/(z) = OO.

The chordal distance of a and b in C U {oo} is

Xia^jzzla-ftKl + lal’rV’ii + H2)-2/2

with the obvious convention in case a = oo or b = oo. Then,

/#(z)= lim X(f(w),f(z))/\w - z| . w—** • ’ \
Note that f#(z) / 0 if and only if z is a simple pole of f or f(z) / oo with 

f'(z) / 0, or /#(z) = 0 if and only if z is a pole of ff(f). If / is nonconstant and 
meromorphic in G, then 1//* is subharmonic in G minus the zeros of /*; actually,
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Alog(l//*(z)) = 4/*(z)2 > 0 there, and 1//* = cxp[log(l//*)]. Thus, /* has 
"trivial” local minimum at each zero of /* and has no local minimum at any other 
point of G.

In contrast with the holomorphic case: = Ff, a difficulty arises at the poles of 
f. If z € A/(/*) and /(z) / oo, then a calculation shows that

0 = (5/dz)log/*(z) = 2-*A(/)(z) -7(J)/'(z)/(l + |/(z)|2) ,

whence
/(z) = /»,(*), *Z = A(/)/(2/'-/A(/)).

Thus, roughly speaking, a core of our study is an analysis of the set 

S(,,fc) = {z€G; ¿(7) = /»(*)} ,

where g and h are holomorphic and meromorphic in G, respectively. Ruscheweyh and 
Wirths’s lemma, Lemma 2.2 in Section 2, needs an unessential change.

Lemma 6.1. If a € G w an accumulation point of %(g,h) and if g'(a) 0,
then there exists an open disk U(a) C G of center a such that E(g, h) Cl 17(a) is a 
simple analytic arc with both terminal points on the circle dU(a).

The condition on g implies the local univalency of g at a. Hence this case is 
reduced to the case g(z) = z. We cannot drop the condition g'(a) 0 in Lemma 6.1.
For example, if G = C, a = 0, g(z) = h(z) = z" (n > 2), then S(y,/i) consists of n 
half lines issuing from the origin.

Theorem 6.2. [28, Theorem 1]. Suppose that M(f#) is nonempty for 
f nonconstant and meromorphic in G. Then, components of M(f#) are at most 
countable and each component w one of the three types (1), (2), (3).

A conjecture is therefore that the isolated points of \f(f#) accumulate at no 
point of G. This is reduced to considering the case g'(a) = 0 in Lemma 6.1.

We note that Theorem 6.2 depends on a local property of /*, namely, that 
of an appropriate pair, g,h, described in Lemma 6.1. We observe, as a result, the 
following: If a quantity in G is defined in terms of /#, where f is defined in a 
suitable neighbourhood of every point of G, then the obvious type of Theorem 6.2 for 
this quantity is true. We shall return to this topic in detail in Section 7 where the 
quantity is w = log(2a_1(/*)2) with a > 0 a constant.

An analogue of Theorem 3.1 is the following, where we set 

2v;(z) = 2-1/*W2k(/)(z)|, zee.

Theorem 6.3. [28, Theorem 2]. Suppose that M(f#) is nonempty for f 
nonconstant and meromorphic in G. Then, we have the following:

(6.1) sup Nj(z) < 1 .
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(6.2) If N*f(z) < 1 at ze M(f*), then {z} € Af,(/*).
(6.3) Suppose that c € A/2(/*)U Afa(/*). (Then, Nj(z) = 1 at each z € c by (6.2).) 
Then {z + te_,e^^2;t € 7?} is the tangent to c at z € c, where Q(z) = arga(/)(z). 
Furthermore, there exits a r > 0 such that the function f*(z + »'te-'®^/2) of t € 
(—r, r) has the strictly negative second derivative at each t.

The set {(z, j/,/*(z)); z = z + iy € c} for c € Milf*) U Mi(f*) is again a ridge 
or a somma.

We can easily find f with the nonempty Afai/*). Actually, for /(z) = zn (n > 1) 
in C we observe that the set Af‘(/#) = A/j(/#) is the circle {|z| = ((n — l)/(n + 
l))’/(2n)}. Apparently, for /(z) = z in C, we have Af(/*) = {0}. A novelty in the 
meromorphic case is the following result on A/j(/*).

Theorem 6.4. [28, Theorem 3]. Suppose that c € Afj(/*) exists for
f meromorphic in G. Suppose further that the Jordan domain A bounded by c is 
contained in G. Then,

(6.4) Jf }*{z)2dxdy = (sr/2)(vA(r) + pA(/') - 2n) ,

where Ua(f') and H&(f') are the total number of the zeros and poles of f in A, the 
multiplicities being counted, and n is the number of the distinct poles of f in A.

The integral in the left-hand side of (6.4) is the spherical area of the Riemannian 
image of A by f. As a result, if /* never vanishes in G, then G does not contain any 
Jordan domain bounded by a curve of A/3(/#).

7. A partial differential equation. Let a real function u> defined in a domain 
G C C be a solution of the nonlinear elliptic partial differential equation

(7.1) (52/5zdz)w + ae“'=0 in G ,

where a > 0 is a constant. If f is meromorphic with nonvanishing /* in G, then

(7.2) W = log(2a-1(/*)2)

is a solution. Conversely, if G is simply connected, then J. Liouville [15] proved that 
for each solution of (7.1) there exists f meromorphic in G such that (7.2) is valid; 
see [2, pp. 27-28], [23] and see also [3]. We consequently obtain the formula (7.2) 
locally for each solution w in a general G. In view of the remark after Theorem 6.2 we 
thereby have the classification of the components of the "peak” set Af(w) of points in 
G where u> has local maxima as well as of the set Af*(w) of points in G where has 
the global maximum.

We suppose, in general, the boundary condition

(7.3) limu>(z) = 0

at each boundary point (ofGinCufoo). We then have [28]



108 S. Yamashita

Theorem 7.1. Suppose that co is a solution of (7.1) under condition (7.3) for 
a simply connected G. Then is a finite set.

First, Af*(u>) C Af(w). Theorem 6.4, on the other hand, shows that A/j(w) is 
empty. Also is empty by (7.3) because /# is constant on A/j(tj) and w is
a positive, nonconstant, superharmonic function in G. Since w is constant (= the 
maximum) on Af’(w), it follows that Af‘(w) consists of isolated points. These points 
cannot accumulate at any point of G. In fact, /* never vanishes in G, and a local 
consideration with the aid of Lemma 6.1 shows that M*(u>) has no accumulation point 
in G.

As a final remark we note that condition (6.1) reads

\(&/dz2)u>(z) - 2"1((a/az)w(z))2| < ac"™, z € M(w) ,

because
*(/)(*) = (P/dz'Mz) - 2~\(d/dz^z))2 ; 

see [2, p. 29] and [3, p. 231].

8. The Gauss curvature. Let a real-valued function h : G -+ P. be noncon­
stant. Consider the graph of h, or the set T(h) of points P = P(x, y) = (i, y, h(x, y)) € 
P3, where 2 = x + iy € G. Suppose that T(h) has the unit normal vector n = n(P) 
at a P. Suppose further that the intersection of T(h) with each plane ng parallel to 
n and containing P, is, near P, a curve passing through P with the vector expression 
c$(s) in terms of the arc length s, so that cj(s®) always expresses P. Note that the 
suffix 6 naming the planes ng ranges over 0 < 0 < 2x. The Gauss curvature of T(/i) 
at P is the product of the maximum and the minimum of inner products:

n(P) ■ {(^/ds2)^)}.»., , 0 < 0 < 2n .

In general, given a twice continuously differentiable h : G —♦ P, we define a priori 
the Gauss curvature at P(x,y) of F(/i) as the value of the function

K = - h2,)/(l + h2 + h})2 nlz = x + iy.

The Gauss curvature explained in the preceding paragraph, in particular, coincides 
with K(z) = K(x,y). A calculation yields

K/4 = [(d2h/dzdz)2 - \(d2h/dz2)\2}/[l + 4|(ah/32)|2] .

As a typical example, let u be a harmonic function in G. Then, for T(u) we have 
K = —/#2, where f = 2(du/dz) is a holomorphic function in G. We thus have the 
classification of the components of ihe peak set M(-K) of points where K has local 
minima. For relating subjects we refer the reader to [7, 10, 11, 12, 22, 25].

9. The Gauss curvature of a minimal surface in P3. We call a mapping 
x : G —» 773 with x = (21,12,13) a regular minimal surface in 7£3 if the following 
hold:
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(HA) Each x* is harmonic in G, k = 1,2,3.

(IS) The parameter u> = u + iv € G is isothermal in the sense that

3
52(3xt/3w)2 = 0 in G . 
t=i

(RE) The function

52 |3x*/3w|2 
*=1

never vanishes in G.

See [17, 18] for general theory of minimal surfaces.
Suppose that a regular minimal surface x : G —» H3 is contained in no plane 

in the sense that there is no plane ir with x(w) € tt for all w € G. Then f = 
2((9xi /3w) — ¿(3x2 /3w)) is holomorphic and not identically zero in G and the Gauss 
map is g = 2(3x3/3w)//, that is, g is meromorphic in G and the unit normal n(w) 
at x(w) is given by the formula

n(,„\ - ( 2Reg(w) 2Im g(w) lg(w)l2 ~
\|g(w)|2 + l ’ |s(w)|2 + 1 ’ |s(w)|2 + l/ '

We have a neighborhood U(wq) of each wq € G such that the subsurface {x(w); w € 
CZ(w0)} is just the graph T(/i) of a suitable h : V(wo) —» 11, where V’(wo) is a domain 
in C; see [18, p.7, Lemma 1.2] for example. The Gauss curvature of T(/i) at the point 
corresponding to x(wq) is just K(wq), where

(9-1)
4g*(w)

|/(w)|(l + Is(w)P)
w 6 G .

We may thus consider Af($) and A/*(4>) for $ = — K.
Since — (32/3z3z)log A = 2<?#2 except for the zeros of g#, it follows that

1/vl —K is subharmonic in G minus the zeros of <?*, so that K has no local maximum 
at any point of G except for the zeros of g#. The set A/(— K) consists of the points 
z € G where K attains local minima.

Following the lines as in the cases of Ff and /#, we have

Theorem 9.1. [27, Theorem 1]. Let x : G H3 be a regular minimal 
surface contained in no plane and with nonempty Then, components of
M(-K') are at most countable and each component is one of the three types (1), (2), 
(3).

The proof depends on the expression of A’ in (9.1), together with Lemma 6.1, so 
that, again, a conjecture is that the isolated points of M(—K) accumulate nowhere 
in G. As before, we can replace M(—K) by Af*(—A).
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We set

H = Q
~g' - Qg ;Qi 2ÿ' + QiS

Suppose that w € A/(—A”). If g(w) / 00 and g'(w) 0, then we observe that
w € £(g,H), while if w is a simple pole of g, then we observe that w € Y,(\fg,Hi). 
Since g#(w) / 0 at tv, these are the whole possible cases. We give here typical 
examples of x : G —> 7£3 for which M*(—K) = M( —K) — j = 1,2,3.

(I) Enneper’s surface-, x : C —♦ 773, where

ii(w) = (l/2)(tx - tx’/3 + txt?3) , 
X2(w) = (l/2)(—v + u3/3 - tx2v) , 
x3(tx?) = (l/2)(tx2 — v2) .

We then have = M(-K) = M3(-K) = {0}.
(II) Helicoid: x : C —» 7?3, where

Xi(tx?) — sinhtxcosv ,
X2(tx?) = sinhtxsinv , 
x3(.ut) = v •

We then have AT(-A') = M(-K) = M2(-K) = {Re txt = 0}.
(III) Catenoid: x : C \ {0}» 7?3, where

3i(w) = (—tx/2)[l + (tx2 + v2)-1] , 
32(w) = (v/2)[l + (tx2 + v2)"1] , 
33(txt) = (l/2)log(tx2 + v2) .

We then have M'(-K) = Af(-A) = M3(-K) = {|w| = 1).
Finally in this section we propose [27, Theorem 2]:

Theorem 9.2. Let x : G —r 773 be a regular minimal surface contained in 
no plane. Suppose that c € M3(—K) exists and further that the Jordan domain A 
bounded by c is contained in G. Then,

-T(A) = *{v¿(g') + pn(i') - 2n) .

Here,
T(A) = 2 yy \dxk/dw\2du dv

is the total curvature of the subsurface x : A -+ R3 and we consequently have 

—T(A) = 4 yy g#2dudv .
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Here, and fl&(g') are the total number of the zeros and poles of g' in A,
respectively, the multiplicities being counted, and n is the total number of the distinct 
poles of g' in A.

There does exist x for which A C G actually happens as described in Theorem 
9.2. A simple example is x : C —♦ 7£3, with the Gauss map g(w) — w2, defined by the 
Weierstrass-Enneper formulae:

ii(w) = (l/2)Re i (1 - g«)2)d< , 
Jo

ia(w) = (l/2)Re i ¿(1 + g«)2)d< , 
Jo

x3(w) = Re Z g«)d( .
Jo

We then observe that M*(—K) = M(-K) is the circle {|w| = 7 } which surrounds
the disk A C C.
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