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Spectral Values and Eigenvalues of a Quasicircle

Abstract. This paper aims at generalizing the notion of Fredholm eigenvalues of a Jordan 
curve T in the case when T is a quasicircle. The properties of spectral values and eigenvalues of a 
quasisymmetric automorphism of the unit circle T and of a quasicircle, introduced here, are studied. 
In particular the eigenvalues existence problem for a quasisymmetric automorphism and a quasicircle 
is considered. This paper improves and completes results from [19] and proves theorems quoted in 
[12].

0. Introduction. Let T be a smooth Jordan curve in the finite plane C. Many 
important problems in conformal mapping and the potential theory can be reduced 
to the solution of a linear integral equation of Fredholm type with the Neumann- 
Poincaré kernel (or its transposition)

(o.i) *((,*) = --ö|-i°g 1C-*1, C.*er,
ir on^

d
where denotes the derivative along the interior normal of T at the point (. For 

on^
details see e.g. [4], [6]. If T € C3 then the kernel fc has a continuous extension on 
T x T, where fc(z,z) = ^jk(z) and k(z) is the curvature of T at z € T. A real number 
A is called a Fredholm eigenvalue of T if it is an eigenvalue of the kernel Jfc, i.e. the 
homogeneous integral equation

(0.2) t(C,^)XC)KI, for a.e. z € T

has a non-constant real-valued solution fi integrable on T. The set of all Fredholm 
eigenvalues of T, denoted by Ai(r), plays an important role as far as the existence of 
solutions of Fredholm integral equation with the kernel k is concerned. In particular 
the smallest positive Fredholm eigenvalue Ao of T determines the rate of convergence 
of the Neumann series for the kernel k. The basic results in the theory of Fredholm 
eigenvalues of a Jordan curve were established by Bergman and Schiffer for analytic 
Jordan curves in [2]. Later on Schiffer, cf. [24], was able to prove many interesting 
properties of Fredholm eigenvalues of a Jordan curve F under the assumption T 6 C3. 
Ahlfors, cf. [1], has proved that Ao > if F admits a A'-quasiconformal reflection. 
Moreover, under some assumptions T admits the unique extremal A'-quasiconformal
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reflection, i.e. the reflection with the smallest maximal dilatation, as pointed out 
by Kiihnau in [14] and Krzyż in [8]. Then Ao = • Another interesting relations
between Fredholm eigenvalues and some extremal problems involving conformal map­
pings with quasi conformal extension were obtained by Kiihnau in [13], [14], [15] and 
by Schiffer in [25]. The new approach to the topic of Fredholm eigenvalues At(T) of 
a Jordan curve T being a quasicircle was presented in [19]. The main idea depends 
on restricting the consideration to the unit circle T where all information about T 
is stored in a sense-preserving homeomorphic self-mapping 7 of T, being a welding 
homeomorphism or a conformal parametrization of T. Then, as shown in [19, The­
orem 5.3 (vii)], all Fredholm eigenvalues of T are strictly related to eigenvalues of a 
linear operator R-, assigned to 7, in the case of T being an analytic Jordan curve. In 
fact, this approach has its roots in a clever idea due to Krzyż [7] who expressed a 
Fredholm eigenvalue by means of a pair of functions analytic in the complementary 
domains of T. The present paper completes and develops results obtained in [19], 
so it can be regarded as its continuation, or its second part. Most results obtained 
here were presented, without proofs, in a special issue to memory of Glenn Schober, 
cf. [12], so the reader may consult this paper for proofs. The detailed references to 
papers [19] and [12] will be given while dealing with respective results. We now give 
some preliminaries concerning the present paper.

Let Qt(K), 1 < K < 00, be the class of all homeomorphic self-mappings of 
the unit circle T — {z € C : |z| = 1} which admit a A'-quasicouformal extension 
to the unit disc A = {z € C : |z| < 1} and let Qt = Ukk<ooQt(A'). For any 
homeomorphism 7 € Qt we set = inf {A" : 7 € Qr(A’)}. Due to Krzyż
characterization, cf. [9], the class Qt coincides with the class of all quasisymmetric 
(abbreviated: qs.) automorphisms of the unit circle T, i.e. all sense-preserving 
homeomorphisms 7 : T —♦ T satisfying

(0-3) Ł-* < |7(/i)|/|7(/2)| < k

for each pair of adjacent closed arcs Ii,h C T of equal length: 0 < |7j| = |/2| < tr 
where the constant k depends on 7 only. We denote by IĄ, 1 < p < 00, the space 
of all functions f : T -» R, p-integrable on T, i.e. ||/||, = (JT |/(z)|’’|dz|)1/p < oo
and we set A“ = {/ e L? : ||/||oo = supess|/(z)| < 00}. The space Lt is a real 

»€T
Hilbert space with the usual inner product (J,g) — /T /(z)p(z)|dz|, f,g € L\. To 
any function f € L\. we can assign an analytic function : A —♦ C given by the 
formula

/*(*) = JT Au)|d«l + I /(u)u"|du|)z" , z € A .

The space H = {/ € A|. : /ń l/^pd-S < 00 and = 0}, where f'& =
equipped with the inner product = Re f'±g±dS, f,g € H, is a real Hilbert
space isometric to the space = {f e IĄ : /A(0) = 0}, cf. [19, Theorem 1.2]. If 
L : H -» H is a bounded linear operator then we denote by A(A) its spectrum, i.e. 
the set of all A € R for which the operator XI - L is not a homeomorphism of H onto 
itself. The spectrum A(A) contains the discrete spectrum A* (A) of A consisting of
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all its eigenvalues i.e. all A € R for which there exists / € H, [|/|]a = 1 such that 
£(/) = A/.

In the paper [19, Theorem 3.1) the linear bounded symmetric operator Ry : H —♦ 
II was associated with every qs. automorphism 7 € Qr- The purely real spectrum 
A(B7) of J?7 was applied to define a spectral value of a qs. automorphism of the 
unit circle T, cf. [19, Definition 4.1). The implicit construction of the operator Ry, 
based on functional analysis methods, enabled us to prove the basic properties of 
the spectrum A(B7) and, consequently, spectral values of a qs. automorphism 7, 
cf. [19, Theorems 3.1, 4.2). On the other hand, in the paper [20, (1.7)], the linear 
homeomorpliism A7 of the Hilbert space H onto itself, was assigned explicitly to any 
qs. automorphism 7 € Qr by the equality

(0.4) A7 = B7AB7-. .

The operator B7 is a linear homeomorphism of the space (H, || • ||h) onto itself such 
that

(0.5) B7(/) = /o7-(/c7)a(0)

for every continuous function f € H and A is the harmonic conjugation operator, 
defined by the singular integral

(0.6) A(/)(x) = —Re P.V. [ ^-du = lira Im/A(rz)
JT Ji 2 — U r—*1“

for every function f € Zip 3 H and for a.e. z € T, cf. [5] or [32]. The basic properties 
of the operator A7 justify calling it the generalized harmonic conjugation operator, 
cf. [20, Theorems 1.3, 1.4, Corollary 2.3). For more detailes about A7 we refer to [20]. 
The relation between operators JZ7 and Ay is given by the following deep equality, cf. 
[20, (2.4)]

(0.7) Ry = I + AAy

where I is the identity operator. This essential equality can be regarded as a de­
composition of the operator Ry and it enables us to apply the results concerning the 
operator Ay obtained in [20] to study the spectrum A(B7) of the operator Ry. In 
particular, we can characterize more naturally and conveniently spectral values A7 
and eigenvalues A* of a qs. automorphism 7 € Qt by means of the generalized hor- 
monic conjugation operator Ay. Thus we state in the first section Definitions 1.1 and 
1.2 which show to be equivalent to those in [19], [12] defining A7, A* by means of 
A(l?7) (see Lemma 1.3 and the equalities (1.6)). Their advantage depends on the fact 
that they enable to apply directly the properties of the operator Ay established in 
[20] which evidently simplify considerations in the present paper. For example. The­
orem 1.4 presenting the basic properties of spectral values and eigenvalues of a qs. 
automorphism 7 € Qt, is a direct conclusion from [20, Theorem 2.2]. As another con­
sequence of [20, Theorem 2.2] we establish at the end of the first section the inclusion
(1.7) and the estimate (1.8) which improve Theorem 3.1 (ii), (iii) in [19], presenting 
basic properties of the operator Ry. The second section is devoted to an eigenvalue
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existence problem. We study the cases A* / 0 and A* = A7. In the third section 
we define in Definition 3.1 spectral values and eigenvalues of a quasicircle as spectral 
values and eigenvalues of a qs. automorphism of the unit circle being its welding 
homeomorphism. This correspondence between spectral values and eigenvalues of a 
quasicircle on the one hand and qs. automorphism of the unit circle on the other 
hand, enables in a natural way to apply results established in the previous sections. 
This way Theorems 3.2, 3.3, 3.4, giving basic properties of spectral values and eigen­
values of a quasicircle, are consequences of Theorems 1.4, 2.4 and 2.5, respectively. In 
the last section we show that if T is a sufficiently regular Jordan curve in the complex 
plane C then spectral values and eigenvalues defined in Definition 3.1 coincide with 
classical Fredholm eigenvalues of F studied by Bergman and Schiffer in [2] and [24].

1. Spectral values and eigenvalues of a qs. automorphism of the unit 
circle. In the papers [19] and [12], the notions of a spectral value and an eigenvalue 
of a qs. automorphism 7 € Qt of the unit circle were introduced by means of the 
spectrum A(7i7) of the operator Ry. In what follows, we define them equivalently but 
in a more convenient way applying the generalized harmonic conjugation operator 
A7.

Definition 1.1. A real number A is said to be an eigenvalue of a qs. auto­
morphism 7 € Qt, if there exists a function f € H with the norm ||/||h = 1 such 
that

(1-1) (A + 1)A(/) = (A-1)A7(/).

The function f is said to be an eigenfunction of 7 associated with the eigenvalue A.

The set of all eigenvalues of 7 € Qt is denoted by A*.

Definition 1.2. A real number A is said to be a spectral value or an approximate 
eigenvalue of a qs. automorphism 7 € Qt, if there exist functions /„ € H, ||/„||h = 1, 
n = 1,2,... such that

(1.2) ||(A + l)A(/„) - (A - 1)A7(/„)||h - 0 as n - 00 .

The set of all spectral values of 7 € Qt is denoted by A7.
The following lemma points out a strict relation between the sets A* A7 and 

A*(AA7), A(AA7).

Lemma 1.3. For every qs. automorphism y € Qt 

(1-3) a€a; i# 1±2€A*(AA7)\{-1}

(1-4) A€A7 iff 1±2€A(AA7)\{-1}

Proof. Assume that A e A*. Then the equality (1.1) holds for some f e H, 
||/||h = 1. Hence A / 1 and letting the operator A act on both sides in the equality
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(1.1) we get

(1-5) = AA7(/)

so (1 + A)/(l - A) € A*(AA7) \ {-1}. Conversely, if A' € A*(AA7) \ {—1} then there 
exists f € H, ||/||h = 1, satisfying (1.5) with A = (A’ — 1)/(A' +1). Letting once again 
the operator A act on both sides in the equality (1.5) we obtain the equality (1.1). 
This means that A £ A* which proves (1.3).

Suppose now that A € A7. It can not be equal 1 because of (1.2) and ¡20, Theorem 
1.3]. Then setting A' = (1 + A)/(l — A) we derive from (1.2) and (20, Theorem 1.3] 
that

||A7„ - AA7(/„)||H = ^1_||A||||(A + l)A(/„) - (A - l)A7(/„)||a - 0 as n - oo .

This means that the operator A' I — AA-, is not a homeomorphism of the space H onto 
itself so A' € A(AA7) \ { — 1}. Conversely, let now A' € A(AA7) \ {—1} be arbitrary. 
Since AAy is a symmetric operator, cf. [20, Theorem 2.2 (i)J, so A' is an approximate 
eigenvalue of AA7, i.e. there exist functions /„ € H, ||/n||H = 1, n = 1,2,... such 
that

IIA'/n - AA7(/„)||h -» o as n —» oo .

Hence, setting A = (A' — 1)/(A' + 1), we get by (1.2) and [20, Theorem 1.3] that

||(A + l)A(/„) - (A - l)A7(/„)||g = |1 - A|||A||||A7n - AA7(/„)||H - 0 as n - oo .

Thus A 6 A7 which proves (1.4).

Applying the above lemma we easily derive from [20, Theorem 2.2] the following 
basic properties of the spectral values and eigenvalues of a qs. automorphism 7 € Qt •

Theorem 1.4. [11, (3.6)] For any qs. automorphism 7 € Qt the following
properties hold:
(i) A7 = 0 iffy e Qr(l) ;

(ii) A7 C A7 ;
(hi) ,/Ae a7 ae«|A|>£$±» ;
(iv) for every v.r) e Qt(1) A7 = A„o7o, and A* = A;o7O, ;

and a; = A*_, = a; ,
' 7 »T°7°«T

(vi) if A € A7 then —A € A7 and if A € A* then —A € A* 
where ¿t(z) = z, 2 € T.

(v) A7 A7-i A’TO7OjT —.»7 --7-

Proof. The properties (i)-(vi) are direct consequences of the respective proper­
ties (ii)-(viii) in [20, Theorem 2.2] and the equivalences (1.3) and (1.4).

Remark. The equality (0.7) yields for every qs. automorphism 7 € Qt

(1.6) A(R.) = {A + 1 : A e A(AA7)} and \*(Ry) = {A + 1 : A € -V(AA7)} .
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The equalities (1.6), (1.3) and (1.4) mean that Definitions 1.1, 1.2 and the definitions 
of a spectral value and an eigenvalue of a qs. automorphism 7 € Qt inserted in 
[19] and [12] are equivalent. This way Theorem 1.4 completes and improves [19, 
Theorem 4.2]. Moreover, by the equalities (1.6) and [20, Theorem 2.2 (viii)] we get 
the inclusion

(1-7) A(^)c11-A'(7),1-^]

which leads in view of the symmetry of the operator Ry, cf. [19, Theorem 3.1 (i)], to 
the following estimate of its norm* 2)

(1.8) ||JM = sup{|A|: A 6 A(R7)} < A(7) - 1 •

The properties (1.7) and (1.8) improve [19, Theorem 3.1 (ii), (iii)].

2. Eigenvalues of a qs. automorphism of the unit circle. In this section 
we restrict our considerations to eigenvalues of a qs. automorphism of the unit circle 
T. In particular we study the eigenvalue existence problem. More precisely, we try 
to characterize qs. automorphisms 7 € Qt for which A* / 0, or A* = A7.

Let r be the Teichmuller pseudometric in the class Qt i.e. 7(7,0) = log K(~f o 
a-1). The closure of a subset X C Qt with respect to r will be denoted by clT(A’). 
We denote by At the class of all analytic automorphisms of T, i.e. homeomorphic 
self-mapping of T which have a conformal extension on some annulus containing T.

Theorem 2.1. If a homeomorphism. 7 € c1t(At) A* = A7.

Proof. Let 7 € c1t(At) be arbitrary. Then there exist analytic automorphisms 
7„ € At, n € N, such that limn-.oo r(7n»7) = 0. Hence, in view of the equality (0.7) 
and [20, Theorem 1.3, Theorem 3.1 (iv)], we get

(2-1)
||fi7 - R,n || = ||A47 - AA7n|| = ||A||||A7 - A7n|| <
(7f(7„ 07-1) - l)min{A'(7),JK'(7„)} = (er(7“,7) - 1)^(7) -» 0 as n -> 00 .

But in view of [19, Theorem 3.1 (vi)] every operator R7n, n € N, is compact. Thus it 
follows from (2.1) that TZ7 is acompact operator, too. Moreover, R-, is a symmetric 
operator, cf. [19, Theorem 3.1 (i)J, so A*(/?7) = A(T?7). Hence, by the equalities (1.6) 
and Lemma 1.3 we get A* = A7 which ends the proof.

Prom this theorem and Theorem 1.4 (i) we immediately obtain

Corollary 2.2. If a qs. automorphism j € c1t(At)\Qt(1) then A* = A7 0.

Remark. It is quite easy to check that c17(At) Qt- So a natural problem 
appears to find the widest subclass X of Qt for which A’ / i as 7 € X \ Qt(1)- It 
is quite possible that X = Qt-

J) cf. [12, (3.5), (i)J
2> cf. [12, (3.5), (ii)]
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Another characterization of the class c1f(At) without the metric r will be consid­
ered in a separate paper. Now, we shall prove by a modified the convolution technique 
used in [18, Theorem] the following

Proposition 2.3. If a sense-preserving homeomorphism 7 : T —» T has a 
nonvanishing derivative at every point ( € T, i.e. 7*(C) = hm,_< / 0,
i,(€T, and log |7'| is continuous on T then 7 € c1t(At)-

Proof. Let P„(z) = - -7——r, n € N. Setting for every z € = {z € C :ir n2z2 + 1
|Ira z\ < 1/n} and n 6 N

f exp( i P„(w-*) log |7'(e,<)|<ft)dw 
Jo J-00

where integrating runs over the line segment [0, z] and

(2.2) 2JTC“1 = i exp( [ P.(x-t)log|7'(e,‘)|df)dx
Jo J-00

we see that u>„ is an analytic function in the strip fl„. Moreover, for every n € N and 
x e R

(2.3) w[,(x) = c„ exp( i P„(x -1) log |7'(e“)| dt) > 0
J—00

and in view of (2.2)

(2-4)
w„(z + 2jt) = c„ i exp( / P„(w-t) log |7'(e'‘)|dt) dw+

Jo J-00
pz+i* aoo
/ exp( / P„(w - <) log |7'(e“)| dt) dw =

JiT J — OO

= 2ir + c„Z exp( t P„(w + 2ir - f)log |-y'(e“)| dt) dw = 2% + w„(z) 
Jo J—00

as z € Hence and by (2.3) we conclude that w„ is a conformal mapping in 
some strip {z € C : |Imz| < e„), n € N. Thus in view of (2.4) the mapping 
z >-♦ exp(tu>n(—tlogz)) is conformal in the annulus {z € C : |log|z|| < £„} for every 
n C N. This way setting 7n(e“) = f € R, we see that all 7„ € At, n € N.
Moreover, by the properties of Poisson integral and by (2.4) we get

II log |7»I “ log It'IIIoo < max|P„(x - t)log |7'(e“)|dt - log |-y'(«**)| “♦ 0

as q —> 00. Hence, setting logfc„ = 2||log |(-y„ O7-1)'| H^, we have

(2.5) lira logfc„ = 2 lim lllog '/"---TiT ti = 2 lim ||log |-y^| — log |-y'| || = 0
n—*oo n—»oo|| ,7 0 7 | ''°° n—»oo"
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Obviously, every homeomorphism -y„ 07-1, n € N, satisfies the condition (0.3) with 
the constant k := k„ so it is a t„-qs. automorphism. Thus applying the results from 
(9] and [16] we obtain that 0 7"’ € Qt^). n 6 N. This together with (2.5) leads 
to

r(7n, 7) = log /<(7„ o 7-1) < log fc2 -» 0 as n -> 00 , 

which proves that 7 € c1,.(At).

The following theorems provide criteria of another sort which guarantee the ex­
istence of an eigenvalue of a qs. automorphism 7 € Or- We remind that a quasicon­
formal selfmapping 99 of the unit disc A is said to be a regular Teichmiiller mapping 
if there exists an analytic function if: A —♦ C and a constant k, 0 < k < 1, such that 
the complex dilatation of y has the form

3^ _ , _0_

Theorem 2.4. Suppose 7 € Qr and there exist non-constant continuous 
functions G,F : A —» C, analytic in A satisfying on T the following equalities

(2.6) ImG = lmFo7 , (1 - A)ReG = (1 + A)ReF o 7

with some real constant A and at least one of Dirichlet integrals |G'|2dS, |F'|2dS 
is finite. Then A € A*. Moreover, if the functions G, F are locally univalent in A 
then |A| u the smallest positive eigenvalue of 7 and the qs. automorphism 7 has a K- 
quasiconformal regular Teichmüller extension p on â with K = ['Àf—î • The c°niplex 
dilatation of ¡p is represented by the formula

(2.7)
*/> _ 1 (G'(z))2

Àl(G'W)’l’

and ip satisfies on A the equality

(2.8) G = loFop

where l(z) = z € C, is an affine mapping. The mapping <p is the unique
extremal quasiconformal extension of 7 i.e. the extension with the smallest maximal 
dilatation.

Proof. Assume 7 6 Qt is arbitrary. Setting E(z) = F(z), z € A, we get by
(2.6) that

(2.9) ImG=-Im£o7 , (1 - A)ReG = (1 + A)ReFo7

on T. Hence, in view of the equality (0.5) and [20, (1.2) and Lemma 1.1] both integrals 
/a lG'l2<i5, Ja |F'|2dS = |F'|2dS are finite if one of them is finite. Thus there exist
functions f,g € H such that

E(z) = /a(^) + E(0) and G(z) = g&(z) + G(0) , z € A .
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Hence and by the equality (0.6) we get on T

ImF = A(J) + Im E(0) and ImG = A(j) + ImG(O)

so, in view of the equality (0.5), the equalities (2.9) take the form

A(p) = -B7A(/) and (1 - A)s = (1 + A)B7(/) .

Then, applying the equality (0.4) and [20, Lemma 1.1 and Theorem 1.3], we obtain 
that (1 — X)g = (1 + X)ByABy-iA(g) = (1 + X)AyA(g) from which (A + l)A(y) = 
(A — l)A7(jf). But G is a non-constant function so ||<7||ib / 0 and the same A € A*. 
Assume now that G. F are locally univalent functions in A. Following the proof 
of Theorem in [8] and using the argument principle and the monodromy principle 
applied to the function F-1 we see that 7 has the homeomorphic extension p on A 
satisfying the equality (2.8) because of the equalities (2.6). By (2.8) we have the local 
representation p = F~l o o G = F_1 fr°m which

(1 - X)dp = o G) (-AG') and (1 - Xjdp = (F"1 )'(/-* 0 G) G7 .

Thus p is a regular quasiconformal Teichmuller extension of the qs. automorphism 7 
to A with the complex dilatation (2.7). It follows from [21, Theorem 2.2] that |A| is 
the smallest positive eigenvalue of 7 and p is an extremal quasiconformal extension 
of 7 with the maximal dilatation K = Moreover, |G']2dS < 00. and in view
of Strebel theorem, cf. [28], [29] and also [17], the mapping p is the unique extremal 
quasiconformal extension of 7.

Remark. The equalities (2.6) are equivalent to the following one 

G-Fo7 = A(G + Fo7).

which used to appear in [19] instead of (2.6).

If 7 is a more regular qs. automorphism of T then the first part of Theorem 2.4 
may be improved as follows

Theorem 2.5. f/7,7-1 € Qr <we absolutely continuous on T then a real
number A € Ay iff there exist non-constant analytic functions G,F : A —» C whose 
radial limits

G(z) = lim G(rz) , F(z) = lim F(rz) for a.e. z € T 
r—»1“ r-»l_

satisfy a.e. on T the equalities (2.6) and at least one of Dirichlet integrals |G'|2dS, 
/a lFTd5 m finite.

Proof. If the radial limits of the functions G, F satisfy a.e. on T the equalities
(2.6) then we prove, in a similar way as in the proof of Theorem 2.4, that A £ A*. 
This time we apply [20, Lemma 1.2] instead of the equality (0.5).
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Conversely, assume that A 6 A* is an arbitrary eigenvalue of a qs. automorphism 
7. Then there exists a function f € H, ||/||h = 1 satisfying the equality (1.1) and 
by [20, Lemma 1.1, Theorem 1.3] the functions AA7(/), B7-i(/) € H. Hence both 
non-constant analytic functions E = (B7-i(/))4 + B(0) and G = (AA7(/))4 have 
finite Dirichlet integrals and in view of (0.6) their radial limits satisfy a.e. on T the 
following equalities

Re£ = B7-.(/) + ReB(0) , Im£ = AB7-«(/) + Im£(0)
Re G = AA^f) , Im G = AAAy(f) = -A^(f) .

Then, setting ReE(O) = —(B7-i(/) 07)4(0), Im£(0) = —(AB7-i(/) 07)4(0) and 
applying the equality (0.4), as well as [20, Lemma 1.1, Lemma 1.2 and Theorem 1.3], 
we get a.e. on T

Im£o7 = AB7-i(/)o7 + Im£(0) = B7AB7-i(/) = A7(/) = -ImG

and using additionally the equality (1.1)

(A + l)Re£ o 7 = (A + l)B7B7-.(/) = (A + 1)/ = -A((A + 1)A(/))
= -A((A - 1)A7(/)) = (1 - A)AA7(/) = (1 - A)ReG .

Hence, substituting F(z) = E(z) we easily derive the equalities (2.6) which ends the 
proof.

3. Spectral values and eigenvalues of a quasicircle. Let T be a Jordan 
curve in the finite plane C and let Q and Q, 9 00 be its complementary domains in the 
extended plane C. Due to the Riemaim and Taylor-Osgood-Caratheodory theorems 
there exist homeomorphisms $ : A -» ft and $» : A. —► Si,, conformal in A and 
A, = {z € C : |z| > 1}, respectively. The homeomorphisms 4s and generate a 
homeomorphism 7 = o $ of the unit circle T onto itself which is said to be the 
welding homeomorphism or the conformal parametrization of a Jordan curve T, cf. 
[19, Definition 5.1]. The set of all welding homeomorphisms of T will be denoted by 
Tt- It is easy to show that any two welding homeomorphisms 7, <7 belong to Ft iff 
there exist Mobius transformations v, rj € Qr(l) such that a — v o^ or). Moreover, 
Ft c Qt(J^) iff r is a A'-quasicircle, K > 1, i.e. T admits a A'-quasiconformal 
reflection, cf. [19, (5.1) and (5.2)]. These properties and Theorem 1.4 (iv) enable us 
to define, in a natural way, eigenvalues and spectral values of a quasicircle by means 
of eigenvalues and spectral values of its arbitrary welding homeomorphism. In fact, 
we shall show in the next section that the so defined eigenvalues and spectral values 
of a quasicircle T coincide with classical Fredholm eigenvalues Ajt(T) defined by the 
Neumann-Poincare kernel k, cf. (0.1) and (0.2), if F is sufficiently regular. This way 
the following definition extends classical Fredholm eigenvalues Ajt(r) to the case of T 
being a quasicircle.

Definition 3.1. A real number A is said to be an eigenvalue or a spectral value 
of a quasicircle T C C if A € A* or A € A7, respectively, for 7 € Tt being any welding 
homeomorphism of T.
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The set of all eigenvalues and spectral values of a quasicircle T C C is denoted 
by A*(T) and A(T), respectively. In view of Lemma 1.3 and the equalities (1.6) 
the above definition is equivalent to those in [19, Definition 5.2] and [12]. Thus the 
following theorem dealing with the basic properties of spectral values and eigenvalues 
of a quasicircle TcC and Corollary 4.3 improve [19, Theorem 5.3].

Theorem 3.2. [12, (3.7) (i)-(v)] If a Jordan curve T C C admits a K-
quasiconformal reflection, 1 < K < oo then the following properties hold:
(i) A(T) = 0 iff T is a circle;

(ii) A*(T) C AiT);
(iii) if X & A(T) then |A| >
(iv) if rj is a homography such that oo $ ^(T) then A(F) = A(r/(r)) and A*(r) =

A‘(r?(r));
(v) if Xe A(r) then -X € A(r) and if X € A*(T) then -X € A’(r).

Proof. Assume that a Jordan curve T C C admits a A'-quasiconformal reflection,
1 < K < oo. Then in view of [19, (5.2)], Tj C Qx(F) and the properties (i), (ii), (iii) 
and (v) immediately follow from the properties (i), (ii), (iii), (vi) of Theorem 1.4. Let 
7 be an arbitrary welding homeomorphism of T. If a homography r), oo 7(F), maps 
the interior of T onto the interior of 7 o T then also 7 € (»7 o T)t and the equalities 
in (iv) are obvious. But if 7 maps the interior of T onto the exterior of 7 o F then 
¿T 07-1 0 ¿x G (70 Dx- This together with Theorem 1.4 (v) leads to (iv) which ends 
the proof.

As a corrolary from Theorem 2.4 we obtain the following counterpart of Krzyz 
theorem, cf. [8].

Theorem 3.3. 3* Let J? C C be a quasicircle and let ii, ii* 3 00 be its comple­
mentary domains in the extended plane C. Suppose there exist non-constant contin­
uous functions G : ii —► C, F : ii, —» C, analytic in ii and ii,, respectively, satisfying 
on T the following equalities

(3.1) ImG = ImF , (1 - A)ReG = (1 + A)ReF

with some real constant X and at least one of Dirichlet integrals \G'|2dS, |F'|2dS
is finite. Then X € A*(T). Moreover, if the functions G,F are locally univalent in ii 
and ii«, respectively, then |A| is the smallest positive eigenvalue of T and, as shown 
in [8], r admits the unique extremal K-quasiconformal reflection <P with K = j^j+‘ 
which satisfies on ii the equality G = I o F o # where I is an affine mapping described 
in Theorem 2.4 .

Proof. Assume # : A —► ii and : A* —> ii, are homeomorphisms conformal 
in A and A., respectively. Then 7 = 1P71 o <p is a welding homeomorphism of the 
quasicircle T. Setting G(z) = G o #(z) and F(z) = (Fo $«(z-1)), z € A, we infer 
from (3.1) that

(3.2) ImG = ImFo7 , (1 - A)ReG = (1 + A)ReFo7

3* This is an improved version of [12, Theorem 3.1]
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on T and at least one of the integrals |G'|2dS, |F'|2dS is finite because of the
conformal invariance of the Dirichlet integral. Hence and by Theorem 2.4 A £ A* = 
A*(r). Moreover, if G, F are locally univalent on ft and ft., respectively, then the 
functions G,F are locally univalent on A, too. Then applying Theorem 2.4 once 
again we get that |A| is the smallest positive eigenvalue of T. The mapping : C —» C 
defined as follows

ff(z) = Q i * € A îl'(z) = € ft, ,

where ip is the A'-quasiconformal (A = T ) re6ular Teichmüller extension of the 
qs. automorphism 7 to A described in Theorem 2.4, is an extremal A-quasiconformal 
reflection in T. Since <p is the unique extremal quasiconformal extension of 7 so # is 
the unique extremal quasiconformal reflection as well and it satisfies on ft the equality 
G — I o F o because G = I o F op on A. This proves the theorem.

Remark. It is easy to show that the equalities (3.1) are equivalent to the fol­
lowing

G - F = A(G + F)

on T so the above theorem is a slightly improved version of [12, Theorem 3.1] being 
in fact a counterpart of J. G. Krzyz theorem, cf. [8], in the case when both functions 
F and G are locally univalent. Then |A| coincides with the Schober constant A(T), cf. 
[26] and also [27].

If T is a rectifiable quasicirele then the first part of Theorem 3.3 may be improved 
as follows

Theorem 3.4. If ft and ft, 9 00 are complementary domains of a rectifiable 
quasicircle V C C then a real number A € A*(T) iff there exist non-constant analytic 
functions G : ft —♦ C, F : ft, —» C whose angular limits F(z), G(z), existing for a.e. 
z € T, satisfy a.e. on T the equalities (3.1) and at least one of the Dirichlet integrals 
f0 |G'|2dS, |F'|2dS is finite.

Proof. Let ft, ft,, <?, £,, F, G and 7 be the same as in the proof of the previous 
theorem. It is a well known classical fact that, if T is a rectifiable Jordan curve then for 
every subset E C T the set $(F) (4s,(F)) has the arc-length measure zero on T iff F 
is of the arc-length measure zero on T, cf. e.g. [23]. Hence 7,7“* € Qt, 7 = o<P, 
are absolutely continuous qs. automorphisms of T. Moreover, there exists a tangent 
at a.e. point ( £ T and for a.e. z G T the curves $(rz), ^,(rz), 0 < r < 1, are 
orthogonal to J1. Thus the radial (or equivalently angular) limits of the functions F 
and G satisfy the equalities (3.2) a.e. on T iff the angular limits of the functions 
F and G satisfy the equalities (3.1) a.e. on T. In addition |G'|2dS = |G'|2dS
and /n. |F'|2dS = |F'|2dS, because of the conformal invariance of the Dirichlet
integral. This way the theorem follows as a direct consequence of Theorem 2.5.

4. Classical Fredholm eigenvalues of a smooth Jordan curve. In this 
section we prove Corollary 4.3 which says that At(r) = A*(T) = A(T) as T £ C3, i.e.
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T is a rectifiable Jordan curve in the complex plane C with a three times differentiable 
arc length parametrization. This justifies to consider spectral values and eigenvalues 
defined in Definition 3.1 as a generalization of classical Fredholm eigenvalues of T 
studied by Bergman and Schiffer in [2] for T being an analytic Jordan curve and later 
on by Schiffer in the case when T 6 C3, cf. [24]. We shall derive Corollary 4.3 from 
the inclusions A*(r) C A*(r) and A(T) C At(r), T 6 C3, proved in an extended form 
in Theorems 4.1 and 4.2, respectively.

Theorem 411. If a rectifiable Jordan curve V C C is of the class C3 and 
fs : r —♦ R w a non-constant measurable function such that

(4.1) <+o° /ora.e. ter

and satisfies a.e on T the equation (0.2) with a real constant A then p is an integrable 
function on T and A € A(r). In particular Ajt(r) C A*(r).

Proof. Let T be a rectifiable Jordan curve in the complex plane C of length d and 
an arc length parametrization ( : [0, d] —♦ C determining the positive orientation with 
respect to its inside ii. We say that T e Cn, n = 1,2,... if ( is n-times continuously 
differentiable on R after its periodic extension. If T € C1 then

(4.2) fc«,f) = € r, < /1.

Assume now that T € C3. Then by Taylor expansion

(4.3) 2!rfc«(s),<(s + h)) = Im(<W'W) + ¡Mm(<«'») + o^s,h)

for s, h € R, 0 < |/i| < d, where ot(s, h)/h —+ 0 as h —► 0 uniformly w.r.t. s € R. It is 
easy to show that the term Im(£'(s)<("(s)) in (4.3) is the curvature of T at the point 
<(s) € r. Let

(4-4)
( *«(-),<(*)) 

K(s,f)=< i ------ „
1 -Im«'(s)<"(a))

as <(a) / <(<) 

as C(s) = <(*)

Hence and by (4.2) and (4.3) we get

(4.5) Æ|'2(s,t)=:^Æ(s,f) =
bm-
* (<(s)-W

1

as <(s) / <(*)

^Im(C(*X») as <(s) = <(<)

By this and the equality Im(£'(s)("(s))2 = 0 we obtain that

:.n lT|r CW(> + h) K}2(s,s + h) +
h*

|<(s + A)-<(s)|*
¿hn«'(s + />)<'(s)«(s + h) - <(s))3) K,'2(s,s) as fc —» 0 ,
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uniformly w.r.t. 3 € R. Thus Kj2(s + h,3 + h') = A'|2(s + h, s + h + (h1 — h)) — +
h,s + h) + A'J2(s + h s + h) -+ A’j2(s, s) as h, h' -+ 0 so A'|2 is a continuous function 
on R2. Hence there exists a constant q such that for all s,f',<" € R

(4.6) |A'(s,t')-A'(s,<")|<?|<'-i"| •

This and (4.3), (4.4) yield the continuity of the function A' on R2. This way the 
condition (4.1) reduces to the following

(4.7) [ |A'(s,<)i/(s)|ds <+oo for a.e. t € R ,
Jo

where r/ = po£:R—»Risa measurable non-constant function, and v satisfies the 
following linear Fredholm integral equation with a continuous kernel A' and a real 
constant A € Ai(T)

(4.8) i/(f) = A Z A(s,f)«/(s)ds for a.e. t € R
Jo

because p is a solution of the equation (0.2). We shall show that v is an integrable 
function on the interval [0, d]. Suppose, to the contrary, that |j/(s)|ds = +oo. 
Then there exists x € [0,d] such that for every 6 > 0 i+{j |p(s)|ds = +oo. The 
function R 3 s w K(x, s) € R is a non-vanishing function on R because T is not a 
straight line. Thus there exists y € [0, d] such that |A'(x, t/)| = 2m > 0. Hence and 
by the continuity of A' |K(s, f)| > m > 0 for all (s,<) 6 [x - 6,x + <5] x [y — 6, y + ¿] 
where 6 is some positive constant, 26 < d. Then for every t € [y — 6, y + we have

Z |K(s,f)i/(s)|ds > Z |A'(s,t)||i/(s)|ds > m Z |p(s)|ds = +oo 
Jo J[x-S,x+i] J[x—6,x+S]

which contradicts (4.7). Therefore |p(s)|ds < +oo. Let for every s,t € R, p(s, h) = 
l/h(K(a,t+h)-K(3,t'))u(s). By the inequality (4.6) |u(s,/i)| < y|i/(s)| for all s, h € R, 
/» / 0 and y|i/| is an integrable function on [0, d]. Then by the Lebesgue bounded 
convergence theorem and the equality (4.8)

(4.9) p'(<) = A lim Z i/(s, h)ds = \ Z A'!2(s,t)i/(s)ds , feR.
0 Jo Jo

Hence

|i/'(f + /») - i/(f )| < IA| sup IK;2(s, t + h) - A-;2(s, t)| J |i/(s)|ds - 0 as h - 0

because of the continuity of the function A'|2. Thus u is continuously differentiable 
on R, see also [7], and the function p satisfies the Lipschitz property |p((i) — p(G)| < 
A|<i ~ 61, 6,6 € T where L > 0 is a constant. Then, cf. [23], the functions



Spectral Values and Eigenvalues of a Quasicircle 95

G : ft —♦ C, F : ft, —» C defined in complementary domains ft, ft, 9 oo of a Jordan 
curve T by the Cauchy integrals

have continuous extensions to ft and ft,, respectively, and their boundary values
satisfy Plemelj’s formulas
(4-10)
cw=i„w+P.v.i/r±ia4c ,

2 € T. On the other hand, by the regularity of the kernel function k and the equalities
(4.2), as well as (0.2)

(4-11) AReP.V,v2_/2i(0- A 
‘ ' 2xtJr < - . 2tt

ÍAjffc«,2>«)Kj = iP(2), zer

Hence and by (4.10) the boundary values of G and F satisfy on T the equalities (3.1). 
Moreover, it follows from the regularity of the function p and by the Green formula 
that the functions G, F have finite Dirichlet integrals Jn |G'|2dS, _fn |F'|2dS, cf. [24], 
Then, in view of Theorem 3.3, A € A*(r) which proves the inclusion At(T) C A*(T) 
as r 6 C3.

It follows from Corollary 2.2 that A*(r) = A(r) if Tt C c1f(At). It seems 
to be a not trivial problem to characterize all quasicircles T C C whose welding 
homeomorphisms belong to the class c1t(At), in terms of a standard parametrization 
of T. Now, we restrict considerations to Dini smooth Jordan curves. We remind that 
a rectifiable Jordan curve T with a natural parametrization £(s) is Dini smooth if the 
argument of the tangent vector at the point ((s) is a Dini continuous function of the 
natural parameter s, cf. [22].

Theorem 4.2/) If ft and ft, 9 oo are complementary domain» of a rectifiable 
Dini smooth Jordan curve T then Tt C cU(At) und A*(r) = A(r). Moreover, if T 
does not coincide with a circle then A*(r) / 0 and for every eigenvalue A € A*(r) 
there exist analytic functions G : ft —» C, F : ft, —> C, F(oo) = 0, and a square 
integrable real valued function fi : T —♦ R such that
(i) /„ |G'|2dS < oo and [F']2dS < oo;

(ii) Angular limits of F and G satisfy the equalities (3.1) a.e. on T as well as pi —
G — F a.e. on T;

(iii)
• A Re P. V. — t du = pi(z) for a.e. z € T .

jrt Jr u - z

4) This is an improved version of [12, Theorem 3.2]
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In particular A*(T) C Ajt(r) as T € C3.

Proof. Let # : A -♦ ft, #» : A. —» Q, be homeomorphisms conformal in A and 
A., respectively. Then 7 = <?7* o $ : T —» T is a welding homeomorphism of T. It 
follows from Warscliawski theorem, cf. [30] or [22], that the derivatives $' and <F, 
have continuous extensions to the unit circle T and

(4-12) min{|<P'(z)|, |$'.(z)|} > 0

for every z € T. Differentiating both sides of the equality <P,(7(e'*)) = #(«’*)> i € R, 
we get #',(7(z))7'(z)tz = tf'(z)tz for every z € T. Hence log I7'| = log |#'| —log |<F, 07I 
is a continuous function on T so in view of Proposition 2.3 and Corollary 2.2 7 £ 
c1f(At) and A*(r) = A* = A7 = A(r). If T does not coincide with a circle then 
A*(r) 0 0 because of Theorem 3.2 (i). Asstime A € A*(T) is an arbitrary eigenvalue 
of T. It follows from Theorem 3.4 that there exist non-constant analytic functions 
G : Í1 —♦ C, F : ÍI, —♦ C with finite Dirichlet integrals (i) (both integrals (i) are 
finite if one of them is finite, cf. the proof of Theorem 2.4) whose angular limits 
satisfy the equalities (3.1) a.e. on T. Without loss of generality we may assume that 
F(oo) = 0. It can be always achieved after adding to the functions F, G suitable 
constants. The analytic functions F, G assigned to the functions F, G as in the 
proof of Theorem 3.3 have also finite Dirichlet integrals in the unit disc A so their 
radial limits F(z) = limr_j- F(rz), G(z) = limr_]- G(rz), for a.e. z € T form 
square integrable functions on T. Hence and by the regularity of 4s',#', on T angular 
limits of F, G are square integrable functions on T as well and so is the function 
p(£) = G(£) — F(£), for a.e. £ € T. By Cauchy integral theorem

< 2irt Jr u- z 
0

,z e fi 

,z € ÍÍ.
and F(z)

,z e fi

because of F(oo) = 0. Hence

G(z) = -^ / ^-du , zeil and F(z) = [ ^-du , z £ Í1.
v ’ 2x» Jr u-z ’ • v ' 2vi Jr u-z

and by Privalov’s theorem, cf. [23], there exists a singular integral P.V. Aj Jr !—^du 
at every point z £ T for which the functions F, G have angular limits. Then the 
equalities (4.10) hold for a.e. point z £ T and so by the equalities (3.1) p is real 
valued a.e. on T which consequently leads to (iii). If T € C3 then by (iii) and (4.2) 
we obtain the equality (0.2) so A £ At(r). Thus A*(r) C A*(l?) as T £ C3 which 
ends the proof.

Corollary 4.3. If a Jordan curve T £ C3 then A*(r) = A*(T) = A(r).

Remark. Due to David results, cf. [3], Krzyż was able to generalize the 
Neumann-Poincare operator for any AD-regular Jordan curves by means of the singu­
lar integral Cauchy operator. This way he obtained another generalization of classical
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Fredholm eigenvalues for AD-regular Jordan curves, cf. [10], [11]. Thus a natural 
problem appears whether the generalization of classical Fredholm eigenvalues consid­
ered by him coincides with that considered here where T is an AD-regular quasicircle, 
i.e. a chord-arc curve, cf. [31].
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