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A Note on a Metric on Dg[0,1] Space

Abstract. The aim of this note is to give a mctric on Dg[0,1] space modeling a metric for

Dg(0,00) of (2]. We show that in order to obtain the Skorohod topalogy in this case we should change
the formula given by Stone.

Introduction. Let (E,r) be a metric space. Denote by Dg[0,1] the space
of all E-valued functions on [0, 1] which are right-side continuous on [0,1), left-side
continuous at 1 and have left-side limits everywhere on (0, 1].

The distance between elements z and y of Dg[0, 1] can be defined as

d(z,y) = }\gf\o;‘ig‘ [t = A(t)] Vv r(z(t), y(A(t))) ,

where A is the set of all continuous, strictly increasing real functions A on [0, 1} such
that A(0) = 0 and A(1) = 1.

Another, a more useful distance in Dg[0, 1} can be defined as
do(z,y) = inf ess sup |log\'(t)| V r(z(t), y(A(t))) ,
A€Ao  0<1<)

where A, is the subset of A formed by Lipschitz functions with Lipschitz inverse.

Topology of (Dg|0, 1), d) coincides with topology of (Dg[0, 1], do) and it is called
Skorohod’s topology (cf. [1]).

A direct application of the metrization of Dg[0,00) given in [2] suggests the
following metric for Dgl0,1]:

1
1) pz,y) = ,\ig{.h('\) V/o w(z,y, A, u)du) ,
where
w(z,y,A,u) = sup g(z(t Au),y(M(t) Au)),
0<t<1

g=rA1l and

A(s) = A(t)

s—t

7(A) = ess sup |log\'(t)) = sup [log
0<t<1

0<t<o<1
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However, the metric (1) docs not induce the Skorohod topology on Dg[0,1] as it
shows the following example.

Example. Let e and ¢’ be distinct elements of E. Define

N §
z,.(t)=lc, , fort€[0,1-2)
le ,forted-1,1)
and
z(t)=e¢ forte€[0,1].
Note that

P(:vnx) < q(_cvc')/n Te ITIE NS
mmplies limp .00 p(Za,2) =0

But the sequence {z,} does not converge in the Skorohod topology as d(z,,z) >
r{e,e¢'),n € N.

In Section 2 we introduce a metric on Dg[0,1] which has no such drawback.
However, before giving the main result we analyse properties of Stone’s type metric
on Dg[0,1] (Section 1).

1. Properties of the metric p. Following the argument of [2] we can get the
following useful fact on p given by'(1).

Lemma 1. If {z,}, {y,,} C Dg[0,1] then limp—oo p(Zn,yn) = O iff there exists
{Mn} C Ag such that

(2 lim y(Aa) =0
and for every € > 0 and a € (0,1]
B m{u € 0, 0(Enpm, Anr) 2 €} =0,
where m is the Lebesgue measure.
Proposition 1. The function p given by (1) is a metric on Dg[0, 1.

Proposition 2. Let {z,.} C Dg[0,1] and z € Dg[0,1]. Then limp—.o0 p(2n,2) =
0 iff (2) holds and

(3) ' i nlingo W(Zp,Z,An,u) =0
&l every continuity point u of z, u € (0,1).
Corollary. If lim,—.cc p(£n,z) = 0 and u is a continuity point of z, then

"li_.ncxnz,.(u) = nan;o zo(u—) = z(u) .
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Theorem 1. Let {z,} C Dg(0,1] and'z € Dg[0,1]. Then limpq—oo A(Zn,z) =0
iff there ezists {An} C Ao such that (2) holds and for T € (0,1)

(4) lim sup r(za(t),z(An(t))) =

n=—00 os

Proof. Assume that limp—co p{Zn,z) = 0. Then there exist {Xn} C Ao and
{un} C [0,1] such that (2) holds and

W(Zn,Z,An,un) =+ 0 withu, =1, n—o00.
Thus
lim sup r(za(t A un), Z(An(t) Aun)) =

ﬂ—®°<

If T € (0,1) then for all sufficiently large n we have up, > TV Aq(T). Therefore (4) is
satisfied.

Conversely, let {A\n} C Aq be such that (2) holds and assume that (4) is satisfied.

Then for u € (0,1) and {u,} C (u,1] we see, after using the triangle inequality and
properties of functions \,, that

(5) sup r(za(t Au),z(Aa(t) Au)) < sup r(za(t),z(An(t) Aun))
0<t<1 0<t<n

+ sup r(z(u),z(s)) Vv sup r(z(An(u) Aup),z(s)) .
u<a<(An(u)An, ) v An(u)Aru€sn

Let now u be a continuity point of z and let us choose {un} such that up, > Aa(u)Vu,

n € N. Then by (4) and (5) we see that (3) holds. Hence the assumption (2) and
Proposition 2 complete the proof.

Theorem 2. Let {z.} C Dg[0,1] and z € Dg[0,1]. If imp—cod(zn,z) = 0
then limp oo p(Zn,z) =

Proof. It is known that {z,} C Dg[0, 1] converges to z in the Skorohod topology
induced by d iff there exists {An} C Ao such that (2) holds and

im sup r(za(t),z(An(t))) =0, (cf. [1]).
=00 g<1<1
Hence we conclude by Theorem 1 that the implication of Theorem 2 is true.

2. The main result. We give a new metric § on Dg[0, 1] which determines the
Skorohod topology.

Definition. For z,y € Dg[0,1] we define

1
(6) §(z,y) = Jnf (YN V /o (w(:,y,A.u)+wn(z.y,k,u))du) ,

where

wi(z,y,\,u) = sup g(z(t Vu),y(A(t) V u))
0<t<1
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and Ag,(-),w(-,",*, ) are the quantities defined in Introduction.
Following the argument of Section 1 we have
Proposition 3. The function § given by (6) is ¢ metric on Dg[0,1].

Now we show that the topology of (Dg[0,1],6) coincides with the Skorohod
topology of (Dg[0, 1],d).

Theorem 3. The metric § determines the Skorohod topology on Dg[0,1].

Proof. Let {z,} C Dgl0,1] and z € Dg[0,1]. Assume that there exists {An} C
Ao and {un}, {va} C [0,1] such that (2) holds, u, — 1,v, — 0 and

m w(zn,z,An,un) = lin;owl(z,.,z,,\,.,v,.) =0

In particular we have

Lim sup r(za(tAun),z(An(t)Aun))=0

n=0op<t<1
and at the same time

lim sup r(:r,.(t Vun), Z(An(t) V) =

TR0
Let T € (0,1). Then by the assumptions for all sufficiently large n

tn 2 TV A(T)

and
va STAX(T) .
Hence
“lﬂnmozup r(za(t),z(An(t))) =0, Te€(0,1),
and
-l_x_.ngo Tsup r(za(t),z(Aa(t))) =0, Te€(0,1).
Thus we get

lim sup r(za(t),z(An(t))) =
n—=®p<i<
which together with (2) give the Skorohod convergence of {z,} to z.
Now let limp oo d(zn,z) =0, {zn} C Dg[0,1), z € DE[O 1). Then there exists
{An} C Ao such that (2) holds and

lim sup r(za(t), z(Aa(t))) =

'I—'CI)O
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Therefore, by (5) with u, > An(u) V u for every continuity point u of z, u € (0,1),
we get

lim sup g(za(tAu),z(Aa(t)Au))=0,
R0 0<i<1

which implies that

(M lim w(za,z,An,u) =0

n =00

for every continuity point u of z.

Similary, we see that for every continuity point u of z, u € (0,1), and {un} C [0,u)
we have

w1(Zn,Z,An,u) = sup g(za(tV u),z(Aa(t)Vu))
0<i<1

S sup ¢(za(tVu),z(Aa(tVu)Vuy))
0<t<1

+ sup g(z(Aa(tV u)Vup),z(Aa(t)V 1))
0<t<1

S sup g(za(t),z(An(t) V ua))
u<t<1

(8) +  sup  g(z(Aa(u) Vun),z(s)) Vg sup (z(u), z(s)) .

W Sa<An(u)Ve eA(Au(w)Vu) <<

Letting now u, < uAA,(u), n € N, we state that the first term of the last inequality
(8) tends to zero. Therefore for every continuity point u of z, u € (0.1), we have

im wy(za,z,An,u)=0.

Thus by (2), (7) and (8)
WiRyfnz) 2l

which completes the proof of Theorem 3.

Now we note similarly as for Dg[0,00) that the metric space (Dg[0,1],8) is
complete and separable whenever (E,r) is complete and separable.

Theorem 4. If (E,r) is complete and separable, then (Dg[0,1],6) is complete
and separable.

Proof. Assume that {z&} C Dg[0,1] is a Cauchy sequence. Then there exists
subsequence {y,} = {21, } of {za} such that

8(Ynryyn+1) <27, neN.

Therefore, we can choose {An} C Ag,{un},{va} C [0,1] such that limp—ao un =1,
limv.l—-oo Up = 0 &nd

(9) '7('\n) \ w(yn.ynﬂ,/\..,u..) v wl(yn.yn+w\mvn) <2™™, neN.
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Note that there exists uniformly on [0, 1] the limit

Hn(t) = '.‘lifgo('\n+k 0---0Ant10Aa)(t) (cf. [1])

Hence using (9) we get

1(ua) £ Y v(A) s 27 .

Thus u, € Ag,n € N. Taking into account that

sup q(yn(3 (t) A un), yn+1(pnti(t) Aug)) S27°
0<t<1

and

2t aWa(B (D) V va), Uns1(pngi () VEa)) €27, neN (d (2], p121),

and (9) we see that y, o u;! converges uniformly on [0, 1] to a function y € Dg|0, 1]
as (E,r) is a complete space. But limp—o 7(u;') = 0 and

lim sup r(ya(u,'(t)),y(t) =0,
R—=00 p<t<1
imply that lim, o 6(yn,y) = 0.

Finally, we note that (Dg[0, 1], §) is a separable space as the set of the functions
given by

[ @iy, tE€[tn-trta) n=1,2,....k—1,
z(t) = ll
Qyyy te [tk-h 1]

with {a,} being a countable dense subset of E, where 0 =ty < t; < :-- < t; =1 are
rationals, 11,...,i5 € N,n € N, is a dense subset of (Dg|0, 1], 6).

3. The conditions for compactness and relative compactness. We
present here the conditions for compactness of sets in Dg[0, 1] using our metric &

(6).
In the proof of that result we need the following proposition (cf. Proposition 6.5
{2], p. 125 and [3)).

Proposition 4. Let (E,r) be a metric space. Suppose that {z,} C Dg[0,1},z €

DEgl0,1),t € [0,1], {ta} C [0,1], and limp—~oo tn =t. Then limp—o0 6(zn,z) = 0 iff

(1) limp—oo M(zn(tn).2(t)J A r(za(ta), z(t=)) = 0.

(i) If limpaso r(zn(tn), 2(t)) = 0, sq 2 t, for each n, and lim, oo 5p = t, then
limp oo F(zn(sa), z(t)) = 0.

(iii) If Bmp—oo M(zn(ta),z(t=)) = 0,0 < s, < t, for each n, and Limp—co 30 = 1,
then limp oo r(zn(sn),z(t-)) = 0.

and iff (a) holds and

(iv) If sn < ta < vp for each n € N, limp—oo Sn = limp—eoovn = t, and
limp—oo F(Zn(3n),9) = limpeeoo 7(Zn(vn),g9) = O for an element g of E, then
limp —oo r(zn(tn), 9) =0.
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The proof of Proposition 6.5 of [2] and Corollary [3] needs only small changes.
Let z € Dg[0,1] be a step function. Write

So(z) =0,

Se(z) = inf{t € (Sa=1(z),1) : z(t) # z(t=) Vvt =1}

whenever S;_;(z) < 1, and

Se(z)=1 U Saa(z)=1k=12,....

Lemma 2. Let I' C E be a compact set and let n be a positive number. If
A(T.n) is the set of step functions z € Dg[0,1) such that z(t) € T for all t € [0,1]

and Si(z) — Sk-1(z) > n,k > 1, whenever Si—1(z) < 1, then the closure of A(T,n)
s compact.

Proof of Lemma 2 can be given by the argument used in the proof of Lemma 6.1
of 2], p. 122.

Now for z € Dg[0,1] and > 0 we define the modulus of continuity w'(z,7) as
follows -

W'(z,n) = :21; m?x. :e|s|u,‘,’. .“)r(z(s),z(t)) H

where {t;} ranges over all partitions of the form 0 = tg < t); < -+ < tp—) < tp =1
with min;s.-s,.(t.- - t.‘-l) >n,neE N. .
The following theorem contains the conditions for compactness in Dg|0, 1].
Theorem 5. Let (E,r) be a complete space. Then the closure of A C Dg[0,1]
13 compact iff:

(a) For every rational t € [0,1) there ezsists a compact set Ty C E such that z(t) € T,
forallz € A,

(b) limy .o sup, ¢ 4w'(z,n) = 0.

Proof. Suppose that A satisfies (a) and (b). For I € N choose 1 € (0,1) such
that

1
3“9“"(3"") < 7 ’
zZ€EA

and m; € N — {1} such that iinT < m. Write

o= Cj

1=0

and put 4; = A(I‘(‘),m), where A(T?, ;) is defined as in Lemma 2. )
Then for every z € A there exists a partition 0 = g < t) < -++ < tn = 1 with
miny<i<a(ti = ti=1) > n; such that )

2
max  su r(z(s),z(?)) < 5 .
12 et ) !
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Define
¢ fl(([mlt-]+1)/mt) ’ tist<ti+lv i=0|ly-'-1n_11
O = a((mitmas] + Dfmi) =1,

Then 5
sup r(zi(t),z(t)) < 5
t€(o,1] I

and . 2
Sznx)s2 [ sup glzit)z(t))du < 3 .
Jo tefo,1) ‘

Hence A C A‘/ J By Lemma 2 the sets A;, | € N, are compact. Taking into account
that A C (ien 4 /! we see that A is totally bounded and hence has a compact closure.
Suppose now that A has a compact closure. Then the standard analysis with

using Proposition 4 gives (a).
Now we show that (b) holds. Let 3 > 0 and {z,} C A be such that

(10) W(za2)28, nEN.

By compactness A there exists z € Dg0, 1) such that limp_—o0 6(zn,z) = 0 which is
equivalent to lim,—.qo d(Zpn,z) = 0. Therefore, there exists a sequence {An} C A such
that .
lim sup [Aa(t)-¢t|=0

=22 ¢el0,1)
and
(11) Jim b r(za(t), 2(Aa(1))) =

Let n > 0. For each n € N put
va(t) = z(Aa(t)), t€(0,1]

and

fn = SUD [z\n(t+n) An(2)] -
0<e<

Taking into account the inequalities
w'(z,n) S w'(y,n) +2 sup r(z(s),u(s)) ,

2€[0,1]

w'(y,9) Sw'(z,m) +2 sup r(z(s)u(s)) ,
and the fact that the function n — w'(z,n) is right continuous (cf. [2], p. 123), we
get
lim sup w'(za,n) = lim sup w'(yn,n)
n-—00 fn—e00

<lim sup w'(z,7,)

m—>00

(12) < Jim w'(2,7a V1) = w'(2,7) -
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Letting n — 0 we see that the right side of (12) tends to zero which contradicts to
(10).

Now, we give conditions for relative compactness of a family of stochastic pro-
cesses with sample path in Dg|0, 1).

Theorem 6. Let (E,r) be the Polish space, and let {Xq} be a family of processes

taking values in Dg[0,1]. Then {X,} is relatively compact if and only if the two
follounng conditions hold:

(a) For every n > 0 and rational t € [0,1), there ezists a compact set [y ¢ C E such
that

(13) inf P(Xa(t) €Ty, ) 217
(b) For every n > 0 there ezists § > 0 such that
(14) sup P(w'(Xa,8) 2 1) S 7 -
L]
Proof. If {X,} is relatively compact then by Theorem 5 and the Prohorov’s
theorem ([1}, p. 58), we immediately obtain (a) and (b).

Conversely, let ¢ > 0 and choose § > 0 such that (14) holds with n = £/4.
Let m € NN (1/6, ).

Write i
= |Jla--2i/m -
1=0
Note that
sup P (O{xo(f/m) t r"‘) Ss.
Hence -
(15) inf P(Xo(i/m) € T*/,i = 0,1,...,m) 21~ % .

Put 4 = A(T,¢) (cf. Lemma 2). Let z € Dg[0,1] be such that w'(z,6) < ¢ and

Z(¢/m) € I*/* for i = 0,1,...,m, and choose a portition 0 =to < t; <+ < tn_; <
ta =1,n € N, such that min;gic, > 6 and

(18) n'i’?sx- .,;e?::?hm"(l‘(S).z(t)) <

W™

Now, select {y;} C T with r(z(i/m),y;) < &, i =0,1,...,m. If we define 2’ € A by

z'(t) [ Vmeo)+1 L tica St<t,i=1,...,n
b V[nt--l|+1 ,t=1
then we have

sup r(z(t),z'(t)) <
0<t<1

N ™
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Therefore

§z,z')<e¢
which implies z € A¢. Consequently, inf, P(Xo € A¢) > 1 — ¢, so the relative
compactness follows from Theorem 4 and the Prohorov’s theorem ({1}, p. 58).
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