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Typically Real Functions in Subordination and Majorization

Abstract. This paper deals with the relation between subordination and majorization under 
the condition for both superordinate functions and majorants to be typically real.

1. Introduction. Let ff(ij) denote the class of all functions holomorphic in fi 
and let

A(a,r) = {z € C : |t — a| < r} , A(r) = A(0,r) , A = A(l) .

Suppose that f,F € B(A(r)). If there is an « € B(A(r)) such that w(0) = 0, 
w(A(r)) C A(r) and f = F o w, then we say that f is subordinate to F in A(r) or 
that F is superordinate to f in A(r), and we write : f -< F in A(r).

If now |/| < |F| in A(r), then we say that / is majorized by F or that F is a 
nuyorant for / in A(r).

It was M.Biernacki [3] who first examined connections between the relations

{f ■< F in A(ri)} and {|/| < |F| in A(r2)},

under some restrictions imposed on classes in which the functions f and F can vary. 
If F is equal to the identity mapping, then, according to the Schwarz lemma, the both 
relations are equivalent.

Let A C B(A). For simplicity, we denote the closed convex hull of A by co (A), 
and the set of all extreme points of A by £A, and let c(A) be the cone generated by A, 
i.e. c(A) = {Xf : A > 0 , f e A}. Next let N = {/ € ff(A): /(0) = /'(0) -1=0}. 
Suppose that A, B are subsets of c(N) such that
1° there exist fo,go € A and Fo,Go € B for which /0 -< Fo and |p0| < |Go| in A,
2° there are r, p € (0,1) for that the implications

(1) {/ € A , F € B , f -< F in A} =* {|/| < |F| in A(r)} 

and

(2) {/ € A , F € B , |/| < |F| in A} =>{/ < F in A(p)}

hold. Then the problem is to determine rmaj(A,B), the radius of majorization 
in subordination for the pair (A, B) which is the largest r g (0,1] such that
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(1) holds, and rsub(A, B), the radius of subordination in majorization for the 
pair (A, B) which is the largest p € (0,1] such that (2) holds. The problem of 
finding rmaj(A, B) (resp. rsub(A, B)) is sometimes named as the Biernacki (resp. 
Lewandowski) problem for the pair (A, B). The set

B(A,B) = {r € A : {/ € A , F € B , / -< F in A} |/(z)| < |F(r)|}

one could call as the set of majorization in subordination for the pair (A, B).
Clearly,

rmaj(A, B) = max{r € (0,1] : A(r) C B(A, B)} ,

and if both A and B are invariant under rotations, then £>(A, B) is the disk 
centered at the origin. By definition,

^maj(sub)(A, B) — ^majlsubji Al i ^1) aI1d B( A, B) C 2?(Ai,Bj) 

whenever Aj C A, Bi C B.
There are corresponding problems for derivatives. Namely, we may study the 

implications

(3) {/ € A , F € B , f -< F in A} => {\f'\ < |F'| in A(r)}

and

(4) {/ e A , F € B , l/l < |F| in A) => {|/'| < |F'| in A(p)}.

Let S denote the familiar class of all univalent functions from N and let

S* = {/ € S : /(A) is starlike w.r.t. the origin } ,
Sr = {/ € S : f is real on ( — 1,1)} , S¿ = S* C Sr

and
T = {f e N : Im /(z)Im z > 0 for all z € A}.

These compact classes have been thoroughly studied and their basic properties 
are well known. For instance, S* = {/ € N : Re{zf /f} > 0 on A} and T is identical 
with co ({<?« : — 1 < t < 1)) = co (S¿), where

(5) <¡t(z) = z/0- — “2dz + *2) f°r kl < 1 , — 1 < t < 1.

Moreover, ST = {qt : — 1 < t < 1} and, according to [13], ST = SSr. As to the 
mentioned problems we have

(6) rmaj(c(S),S) r0 [=’ rsub(c(S),S),

where r0 = 0.3908... is the unique solution to

log[(l + r)/(l — r)] + 2arc tan r = 7r/2 , 0 < r < 1 ;
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(7) rmaj(C(S‘),S‘) '=' V2 - 1 S r.ub(c(S*),S’) ;

(8) rroaj(C(7V),S) *=’ (3 - x/5)/2 S rmaj(c(lV), S’) ;

(9) r8ub(c(JV),S) [=] r, [=] r,ub(c(2V),S‘) ,

where ri = 0.2955... is the unique real solution of the equation r3 + r2 + 3r — 1;

(10) {/ € c(N) , FeS, / -¡Fin A}=> {|/'| < |F'| in A(3 - v/8)} ;

the radius 3 — \/8 is best possible and cannot be increased even then if we reduce the 
classes c(N) and S to c(S*) and S*, respectively, see [19, 7, 8];

(11) {/ G , FeS,\f\<\F\ in A}} =► {|/'| < |F'| in A(2 - V5)} ;

the radius 2 — \/3 is best possible and cannot be increased even then if we reduce the 
classes F(A) and S to c(S*) and S*, respectively, see [16, 17].

For details and a large list of similar results see [5, 9]. Golusin [6] found that 
the maximal domain of univalence for the class T is the lens-shaped set A(—i, \/2) ("I 
A(i, \/2) and hence the radius of univalence for the class T is equal to \/2— 1. Moreover 
Kirwan [12] proved that the same number is the radius of starlikeness in S. Hence 
the implications (1) - (4) are sensible for B = T and A = c(T) or A = c{N). 
Unfortunately, these results following (7) - (11) are not sharp.

The main sharp theorem concerns the explicit description of the set 2?(c(T),T), 
see Theorem 1. From this we shall deduce that rmaj(c(T),T) = 0.3637..., see The
orem 2. The proof of Theorem 1 is based on an integral representation for bounded 
typically real functions [20-23] and a detailed description of the sets {zf'(z)/f(z) ; 
f € T}, z € A [14, 22-23]. Finally, we shall show that (4) holds with A = Ff(A), 
B = T and p = 2 — v^, and that the radius 2 — i/3 cannot be increased, see Theorem 
3.

2. Elementary observations. From (7) - (11) it follows

Proposition 1.
(i) rm»i(<:(Sft), S^_) = rsub(c(S^), = \/2 — 1.

(«) rmaj(C(JV),Si) = (3-xZ5)/2.
(iii) r,ub(c(JV), SJJ = ri, where rj is defined in (9).
(iv) {f G c(S£) , F G Sr , / -: F in A] => {|/'| < |F'| in A(3 - v/8)}, and the 

radius 3 — \/8 is best possible.
(v) {f € c(S^) , F G S£ , |/| < |F| in A} => {\f | < |F'| in A(2 - ^3)}, and the 

radius 2 — \/3 is best possible.

Proof. On account of (7) - (11) it is sufficient to consider such pair of holo- 
morphic functions with real coefficients which show that the results (7) - (11) are 
sharp. Namely, like in [1, 3, 8, 16] let us examine the functions fe = (1 — e)g2e-i f°r 
0 < £ < 1 and st,x(^) = {(1 - e)[l + IA|(l + e)z]/[l + |A|( 1 - e)z]}z/(l - Az)2 for 
— 1 < A < 1 and 0 < e < (1 — |A|)4. Clearly, for all 0 < e < 1 we have fe G c(S^) 
and fe -< fo in A. If \/2 — 1 < r < 1, then d(|/«(ir)|2)/de > 0 at the point e = 0, i.e.
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rmij(c(S£),S£) <75-1. If now 3 — \/8 < r < 1, then df'e(r)ld£ > 0 at the point 
£ = 0, i.e. (iv) holds. Next observe that for all —1 < A < 1 and 0 < £ < (1 — |A|)4 we 
have ge<\ € c(S^) and |j£,a| < |9o,a| in A. If 72 — 1 < r < \p < p and a = ir/\, then

lim Re{[pe,A(a) -<7o,A(a)]/[£a?i,x(«)]} = -Re{(l - r»)2/(l + ri)2} > 0 ,
<-»o+

so the subordination ge\ -< go,\ in A(p) fails to be true, i.e. rsub(c(SgJ, SJJ < \/2 — 1. 
If now 2 — \/3 < — Xp < p, then d[g'e A(p) — S^>(p)]/de > 0 at the point £ = 0, i.e. (v) 
holds.

Golusin [7] observed that </i(x2) < |?i(x)| for — p < x < 0 implies that p < 
(3 — v/5)/2, whence rmaj(c(7V), S^J < (3 — 75)/2. Finally, Lewandowski [15] noticed 
that the inequality ri < p < 1 leads to f(—p) > q-i(p), where /(z) = z^_i(z). Since 
g-i(A(p))flR = (9_i(—p),g_i(p)), the subordination f -X g_i in A(p) does not hold, 
i.e. rsub(c(2V), S£) < Fj.

Proposition 2.
(i) (75 - l)2 < rmij(c(T), T) < 75 - 1,

(ii) (75 - 1)(3 - 7§)/2 < rmij(c(7V), T) < (3 - 75)/2,
(hi) (75 - l)2 < r.ub(c(T),T) <75-1,
(iv) 0.1224 • • • = (75 - l)r, < rsub(c(7V), T) < Fj, where Fj is defined in (9).
(v) {/ € c(N) , FeT, f -< F in A} => {|/'| < |F'| in A((75 - l)3)}.

The best possible radius is no larger than (75 — l)2.
(vi) {/ € ff(A) , FeT, \f\ < |F| in A} => {\f | < |F'| in A((75 - 1)(2 - 75)) .

The best possible radius is no larger than 2 — y/3.

Proof. Since C T, all the upper bounds result from Proposition 1. The 
estimation from bellow we motivate as follows. For any g € H(A(p)) and r > 0 
consider the new function 0r(z) = g(.rz)lr which is in ff(A(p/r)). Hence for every 
r > 0 the condition ”/ -X F in A(p)” is equivalent to ”/r -X Fr in A(p/r)”. Indeed, if 
/ = Fow and |w(z)| < |z| for |z| < p, then fr = Frour with |wr(z)| = |w(fz)|/f < |z| 
for |z| < p/r, and conversely. Similarly, for every r > 0 the condition ”|/| < |F| 
in A(p)” means ”|/r| < |Fr| in ^(p/r)”. By the Kirwan result [12] we have that 

S* and € c(S*) whenever FeT and f e c(T). Thus all the lower
bounds are simple consequence of the facts (7) - (11).

3. Auxiliary lemmas. Let P(a, 6) denote the set of all probability measures on 
the compact line segment [a, 6] and let 6X mean the Dirac measure at the point a. The 
lemmas below will be used to obtain Theorems 1-3. Nevertheless they are interesting 
in themselves. The first result concerns nonvanishing typically real functions, and 
hence bounded typically real functions. Let us recall that for the class T we have

(12) T={j\dv(t):veP(-l,l)} ,

the Robertson representation.

Lemma 1 [20-23]. The class

To = {/ e ff(A): /(0) = 1 , 0 € C \ /(A) , Im /(z)Im z > 0 on A)
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u identical with the set {f/g_i : f € T}. Hence, w € /f(A) with w(0) = 0, |u>(z)| < 1 
and Im u>(.z)Im z > 0 on A if and only if u € and (1 + u)2q-i/(l — w)2 € T.

Remarks. The proof of Lemma 1 one can find also in [10]. We let add that 
To = co (So)r, where the class (So)r. consists of all nonvanishing univalent functions 
f € /f(A) real on (—1,1) and normalized by /(0) = 1, and where (S0)r = {/ G 
(So)r : /'(0) > 0}. By Lemma 1 we have £Tq — {qt/q-\ : — 1 < t < 1}. Furthermore, 
£(So)r = {qt/q-i : -1 < < < 1} and

¿(S0)r = {qt/q-i : -1 < f < 1} U {9t/9l : -1 < t < 1} ,

see [13], and £(So)r = <’’(5o)r, the set of all support points of the class (So)r, see 
[10]. Like in the theorem 4.3 [10] we can get that

<t(S0)£ = {(1 - A)g,/g_i + A : 0 < A < 1 , -1 < s < 1} .

It suffices to consider the functionals

!.(/) = -6(1 + W'(0) + 12s/"(0) - /"'(0) , -1 < s < 1 ,

that assume theirs maxima over (So)r at the functions g,t\ = (1 — \)q,/q-i + A € 
(So)r, respectively, where 0 < A < 1. In fact, for all t € [—1,1] we have

■£»(9</9-i) = 2(1 + <)£,(gt) = —48(1 + t)(f — s)2 < 0 = L»(<7»,a)

and Re L, is not constant on (So)r- Thus, for —1 < s < 1 and 0 < A < 1 the 
functions g,t\ 6 <t(So)r-

As a corollary to Lemma 1 we get

Lemma 2 [20, 22-23]. Let F € T. Then

f € c(T) , / -< F in A

if and only if there is p € P(—1,1) such that f = F o where

(13) «i(wM(«)) = y J(1 +*)9t(*)/2]<ip(t) •

The next result concerns quotients of some integrals.

Lemma 3 [14, 22-23]. Lei w < 1 or Im w / 0, let a = 1, b = 1/(1 — w), 
d = w/(w — w), r = |d|, and let

(14) (1 — tw)-2 dp(f)/ Z (1 - tw)_1 dp(<) , p€P(0,l).
Jo Jo
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The set Dw — {y?(w,/z) : /z G P(0,1)} is a compact convex circular region. More 
precisely,
(i) If w < 1, then Dw is the line segment joining a and b.

(ii) If Re w < 1, Im w 0, then Dw = A(d,r) O A(a + b — d,r), i.e. dDw = CUC', 
where C = {</?(w,6a) : 0 < A < 1} and C* is the reflection of C in the point 
(a + b)/2. In particular, for Re w = 1, Im w / 0 we have Dw = A(d,r).

(iii) For the case Rew > 1, Imw/0 see [14, 22-23].

In [14], it was described the set {zf'(z}/f(z) : f € T} for every z € A. Its 
boundary, except for real z, consists of at most four circular arcs. In particular, it 
was proved

Lemma 4 [14]. For |z| < 2 — \/3 and F € T, we have the following sharp 
estimation

|zF'(z)/F(z)| > (1 - |z|)/(l + |z|) .

The radius 2 — \/3 is best possible.

Now we deduce a characterization of the set D(c(T),T).

Lemma 5 [22, 23]. D(c(T),T) = Dri(-D), where

D = {z G A : Z?w(,) C {( : Re( > 0} } , w(z) = 4z/(l + z)2

and Dw is defined in Lemma 3.

For the convenience of the reader ( items [22-23] are in Polish ), we give
Proof. Observe first that (—1,1) C D(c(T),T) 0 D O (-£>) as functions from 

c(Tj are increasing on (—1,1), and for — 1 < x < 1 the set Dw(z) is the closed line 
segment with ends 1 and (l + x)2/(l — x)2. According to Lemma 2, z € £>(c(T),T)\R 
if and only if z € A \ R and |F(w(J(z))| < |F(z)| for all F € T and /z G P( —1,1), 
where is defined in (13). By the maximum principle, z G 2?(c(T),T) \ R if and 
only if z G A \ R and |F(£)| < |F(z)| for all F G T and ( G 9{wM(z) : /z G 
P(—1,1)}. However, from Lemma 1 or 2 it follows that for each z G A \ R the set, 
{[1 +wm(z)]2/[1 — tcM(z)]2 : /z G P(—1,1)} is the closed convex hull of the circular arc 
[—1,1] 9 t '~t (<lt/— 1 + 2(1 + t)qt(z), i.e.

3{w„(z) : /z G P(-l,l)} = (w(M) : -1 < < < 1} U {-w(-z,t) : -1 < t < 1} ,

where

(15) W«,t) = 9l-1((l+t)gt(C)/2)for |<|<1 , -1 < t < 1 .

So, z G D(c(T), T)\R if and only if z G A\R and max{|F(w(z,t))| , |F(—w(—z,t))|} 
< |F(z)| for all F G T and — 1 < t < 1. Since F G T whenever ( f-> — F(—Q is in T, 
we get that D(c(T),T) = D O (—D), where

D = {z G A : |F(w(z,t))| < |F(z)| for all F G T and — 1 < t < 1} .
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We want to show that D = D. Let F € T. By (12) there is a v € P(0,1) such that F — 
l
/q2,-idv(s), and from (15) it follows that w((, t)+l/w(£, t) = 2(£+l/£+l—<)/(l+<), 

i.e. g2i-i(w(C,t)) = (1+t)9a(1+,)-i«)/2. Hence

F(w(z,t)) = (Aw/4) [ (1 — Xsw) ^dv^s) , where 2A = 1 +1 and w = w(z) 
Jo

Thus

D = {z € A : gv,z(A) < 9U,X(1) for v € P(0,1) and 0 < A < 1} ,

where we have denoted

9p,»(A) = |y A(1 — Asw)-1dp(s)| and w = w(z) .

Next observe that the condition

(16) Qv.iW < ) for all v £ P(0,1) and 0 < A < 1

is equivalent to

(17) 9^(1) > 0 for all v € P(0,1) .

Indeed, the implication (16)=>( 17) is trivial. Now, suppose that (17) holds and let 
v € P(0,1), 0 < A < 1 and h(s) = As for 0 < s < 1. Then v = v o h-1 G P(0,l), 
v((A, 1]) = 0 and

0 < q~ ^(1) = 2Re|y (1 — Tw)“2di/(r) y (1 - rw)_1di'(r) J

= 2Re|y (1 — sAw)-2di/(s) J (1 — sAtju)-1di/(s)| = 9piX(A)/A .

Since A € (0,1] and v G P(0,1) were arbitrary, the functions A >-> gPll(A) increase on 
[0,1], i.e. (16) holds. Thus (16) and (17) are equivalent and hence D = D because 
Re <p(w, v) = 9^,(1)/(29„iX(1)). The proof is complete.

4. Main results.

Theorem 1 [22-23].
(i) The set D(c(T),T) is symmetric about the coordinate axes and starlike with respect 
to the origin, (ii) The set D(c(T),T) U { — 1,1} is compact and its boundary is the 
union of Jordan arcs Ti, T2 with common ends: ±itan(Zo/2), where

T, = {z : (1 + z)/(l - z) = P>(t)e*‘ , x/8 < |t| < t0} , j = 1,2, 

pi(<) = v/cos(2t)/(\/2|sin(2t)| - 1) , p2(t) = l/pi(<)
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and, to = 0.7064... w the unique solution of the equation: pi(t) = 1, tt/8 <t< 7r/4.

Again, since items [22-23] are in Polish, we let the reader to know
Proof, (i). Let fr mean the function z t-» f{rz)/r, where f € and

r € (0,1) U { — 1}. If f € c(T), F € T and / -< F in A, then fr € c(T), Fr € T 
and fr -< Fr in A for all r € (0,1) U { — 1). Thus, if z € 2?(c(T),T), then also 
z € D(c(T),T) and rz € D(c(T),T) for all 0 < r < 1 and r = —1.

(ii). Apply Lemmas 5 and 3. Then O(c(T),T) = D Cl ( — D) and the image of D 
by means of the function 1 + 4<y i is the set

il = {1/(1 - w) : w e C \ [1, +oo) and Dw C {( : Re < > 0} } ,

where Dw is determined in Lemma 3. The inequality Re ip(w,6() > 0 for 0 < t < 1 
implies that Re w < 1, so in the case Im w / 0 the boundary arcs of Dw have 
equations:

[0,1] 9 11—+1/(1 — tw) , [0,1] 9 A i—» [1 — A + A/(l — w)2]/[l — A + A/(l — w)] .

Since Rew < 1, the first arc lies in the closed right halfplane. Imposing on the second 
arc to be in the closed right halfplane we get that

ii = {u + :v : u > 0 , v € R and |v| < \/2u + \/tz(l + tz)}

In fact,
il = {u + iv : u > 0 and p(tz, v, A) > 0 for 0 < A < 1} ,

wherep(u,v, A) = A2[(tz — l)2 + v2](tz + l)+A[(tz — l)(tz + 2) — u2] + l. Sincep(u,v,0) = 1 
and p(tz, v, 1) = u(u2 + r2) > 0, we have il = ill U Q2 U Q3, where

ill = {tz + w : tz > 0 and A„lV > 1} ,
Q2 = {tz + iv : u > 0 and A„,v < 0} ,
il3 = {u + iv : 0 < A„,„ < 1 and p(tz, u, A„iV) > 0}

and p'A(tz,t>, AUi„) = 0. After easy calculations we obtain that

ill U {u + tu € Q3 : 0 < tz < 1} = {tz + iv : 0 < u < 1 , |v| < \/2tz + -y/iz(l + tz)}

and

Q2 U {u + iv € TI3 : u > 1} = {tz + tv : u > 1 , |v| < \/2u + ^/tz(l + tz)} .
Thus

ii = {pe" : |f| < tt/4 , p > 0} U {pe" : tt/4 < |i| < ir/2 , 0 < p < p?(t/2)} 

and hence

D = {{pe" - l)/(pe'* + 1) : |t| < tr/8 , 0 < p < oo}U
U {(pe'‘ - l)/(pe“ + 1) : ?r/8 < |<| < tt/4 , 0 < p < pi(t)} .
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By Lemma 5, the proof is complete.

Remarks. Using a computer one easily checks that the set D(c(T), Tj is convex. 
Unfortunately, it seems that a direct proof of the fact that the curve Tj UTî is convex 
can involve some heavy calculations. We let add that by Theorem 1 the following 
proper inclusions hold

D(ir/8) C D(c(T),T) C D(t0) U {-i tan(<0/2) , t tan(t0/2)} ,

where we have denoted

D(a) = {z € C : |arg[(l + z)/(l - z)]| < a} =
= A(—¿cot a, 1/sina) Cl A(i cot a, 1/sin a) .

Theorem 2 [22-23].

rmaj(c(r),T) = [(13 - 2\/9 + 5\/ÏÔ)/(13 + 2^9 + ôv'ÎÔ)]1/2 = 0.3637...

Proof. Putting tan< — x>/2 we find the minimum of the function 

t ~ 1(^(0^* - i)/(Pl(t)e“ + i)|2 =P(t)

in the interval (ir/8, tt/4). To this end, note that p'(<) has the same sign as the 
polynomial x x(2x2 + l)(6a:2 — 8a: + 3)(2a:2 + 4a; — 3) and that the minimum of p 
is assumed at the point t = arc tan (>/5 — \/2) = 0.6879....

_ Theorem 3. {/ € /7(A) , F € T , |/| < |F| in A} => {|/'| < |F'| in A(2 -
\/3)} and the number 2 — \/3 is best possible.

Proof. Because of Lemma 4, the proof is the same as in [16, 17].
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