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Remarks on Biernacki’s Generalization of Cebysev’s Inequality

1. Biernacki’s inequality. M. Biernacki [1] has proved the following result:

Theorem A. The inequality
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holds sf p,f,g are integrable functions in (0,1) such that p(z) >0 (z € (0,1),
and the functions f; and g, , given by

_ J p(vg(t) dt £(2) = ST p(t)f(t) dt
o p(t)ydt o p(t) dt

attain extremal values sn (0,1) at a finite number of common posnts and are also both
increasing or both decreasing in (0,1) . If one of the functions fy, g is increasing
and the other one decreasing, then the inequality in (1) is reversed.

(2) 91(z)

This theorem is an extension of a result from his previous paper [2].
Moreover, some previous related results are due D. N. Labutin [6], [7] (see also

(8] or [9, pp. 253-254]).
Recently, R. Johnson (5] has proved:
Theorem B. If
3) (fi(2) = f(2))g1(z) — 9(z)) 2 0

holds for 0 <z <1, Cebysev’s inequality

(4) /0 pt) dt / p(t)f(D)g(t) dt > / p(1)£(t) dt / p(t)g(t) dt

holds for 0 < z < 1 . If the opposite inequality in (3) holds, then the opposite
inequality in (4) is true.
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Moreover, Theorems A and B are equivalent, i.e. (3) is equivalent to fi(z) -
91(z) 20.

A special case of Biernacki's inequality was obtained in [4].

The inequality (1) is valid if f; and g, are monotonic in the same sense, i.e. if f
and g are monotonic in mean in the same sense, while the reverse inequality is valid
in (1) if f; and g; are monotonic in the opposite sense.

This is a consequence of the following identity:

(5) Z(f,9)= /0I p(z)(fi(z) = f(2))91(z) — 9(2)) dz

where fy,g1 are given by (2) and

1 1 1 1
©6) 2(f,0)= / p(t)f(t)a(t) dt - / p(O)f(t) dt / p(t)g(t) dt/ / pit) dt .

Moreover, it is obvious that this identity implies Biernacki’s inequality, i.e. The-
orem A.
The following discrete analogue of (5) is also given in [4]:

(7) Za(a,b) = Y (PePe-1/Pu)AiBs
k=2

where
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A simple consequence of (7) is the following discrete analogue of Theorems A
and B:

Theorem C. Suppose px >0 for k=1,2,... ,n.If
(8) ABi>0, k=2,...,n,
then the Cebysev inequality
(9) Zn(a,b) 20

1s true. If the reverse inequality in (8) holds, then the reverse inequality sn (9) 1s also
true.

Now, let
M(I) = Pi(A(ab;p) — Ar(a; p)Ai1(b;p)) »

where Py =3 ., pi, Al(a;p) = 1/Pr ¥ piai y ab=(arby,...).
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The following result is given in [10]:

Theorem D. Let I and J denote non-empty disjoint finite sets of distinct
positive integers. Suppose that a = (ax), b= (bx) and p = (px) with px >0 and
k€ IUJ are sequences of real numbers. If the pairs
(10) (Ar(a;p), As(aip)) and (Ar(b;p), As(b;p))
are similarly ordered, then
(11) MIUJ)> M)+ M(J) .

If the pairs (10) are oppositely ordered, then the inequality (11) is reversed.

Set I'={1,...,k—1}, J = {k}. Then the pairs (10) become (Ax—;(a;p),ax)
and (Ak—1(b;p),bx) where Ax_; = A; in this case. These pairs are similarly
ordered if AxBj > 0 . Therefore, we have the following generalization of Theorem 6

from [10}:

Theorem 1. Let p be a positive sequence. If a and b are real sequences such

that (8) holds, then

(12) Zn(a,b) > Zpn_y(a,b) > ... > Z3(a,b) 2 0.

If the inequalities (8) are reversed, then the inequalities in (12) are also reversed.
Moreover, the following result was also obtained in [10]:

Theorem E. Let I and J denote non-empty disjosnt finite sets of distinct

positive integers. Suppose that a; = (aw), ..., ar = (ark) (kK € TU J) are sequences
of non-negative numbers and p = (px) (k € IUJ) are positive sequence. If the pairs
(13) (Ar(am;p), As(amip)) (m=1,...,r)

are ssimilarly ordered, then
(14) N({IuJ)>N(I)+ N({J),
where

N(I) = Pi(A;(a; -+~ ar; p) — Ar(a1;p)- - Ar(ar; p)) .

Set again: I = {1,... ,k—1}, J = {k}, then the pairs (Ak_,(a,,;;p),a,,.k) (m=
1,...,r) should be similarly ordered, i.e. we should have either

(15) Ap-1(am;p) < ams (m=1,...,r)

or

(16) Ar-1(am;p) 2 ame (m=1,...,r).
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So, we have :

Theorem 2. Let p be a positive sequence and let a; (1 = 1,...,r) be non-
negative sequences such that for every k —2,... ,n we have either (15), or (16).
Then
(17) Zolay,. .. ar) 2 Zq_y(ay,...,a,) 2 ... 2 Zy(ay,... ,a;,) >0,
where

n n n n )
Zn(ay,...,a,) = Zpkalk"‘ark - ZPkalk "'ZPkark/ (Zpk) .
k=1 k=1 k=1 k=1

2. Inequalities for functions with non-decreasing increments. Now we
shall give some similar results for functions with non-decreasing increments, i.e. we
shall give some extensions of results from [11].

A real-valued function f on an interval T C R" is said to have non-decreasing
increments if

fla+h) = f(a) < f(b+h) - f(b),
whenever a€ T, b+heT ,0<h€eR",a<b(a<bmeansa, <b,i=1,...,r).

We write
I) Plf{_zpl 1) —Zplf{fl)a

161 €l
Ay(z;p) = ZP.:. An(zip) = Zp.r..
Iier

The following theorem is a special case of Theorem 4 from [11]:

Theorem F. Let p = (pi)ierus be a positive sequence, where I end J are
non-empty sets of positive integers such that INJ =0, z, €T (1 € TUJ), and let
f:T — R be a continuous function with non-decreasing increments. If

(18) Al(z;p) < As(zip),  or  Af(z;p) 2 As(z;p),
then
(19) F(IuJ)< F(I)+ F(J).

Set again I = Iy ={1,...,k—1}, J={k} . We get
Theorem 3. Let f: T — R be a continuous function with non-decreasing
increments, and let p; (i =1,... ,n) be positive numbers. If z; € T , 1 =1,...,n

and

(20) Ag_a(z;p) L 24, or Ag-1(z;p) 2 2k
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forall k=2,...,n, then

(21) F(In) S F(In-1) ... S F(I2) <0.

A special case F(I;) <0 is a further extension of Theorems 1 and 2 from [11]:

Theorem 4. Let f,z; and p;, i =1,...,n satisfy the conditions of Theorem
3. Then

(22) f (Pi Zp.';r.) < o Snfa).
" =1 " =1

Remark. The Jensen - Steffensen inequality for functions with non-decreasing
increments is given in [3] and [12], while its reversion and majorization theorem are
given in [12].

Remark. Functions
f(z,y) =zy (z,y €R) and f(z1,...,2;)=21--2+ (21,...,2, ERY)
have non-decreasing increments, so, Theorem 3 gives Theorems 1 and 2.
3. P—convex functions. Let f be a real-valued function defined on [a,b]. The

k — th order divided difference of f at distinct points zo,...,z; in [a,b] may be
defined recursively by

[z:] f(=) = f(=i)

and

[10,--- )zk]f(x) =3 [Il)--' ,Ik]f(.’t) = [IOa-.. ’Ik—l]f(z) ‘

Ik — ZTo

If f is a real-valued function of two variables defined on [a,b] x [c,d] , we can
define the divided difference of order (k,m) by

[30,-.. ,.‘tk] [yOy'-' ’ym]f(zvy) o [201--' ’Ik]([yo"" ’ym]f(z’y))
= [yoy- -+ »¥m} ([Zo,--- yZk) f(z,9)) .

We say that f is convex of order (k,m) if

[zoy-. ,zk) [¥0y.-- yym] f(z,y) 20

forall a<zp<...<zy <b and c<y<...<ym <d.

Moreover, a function f is P-convex if it is convex of orders (2,0), (1,1) and
(0,2) .

For example, the following inequalities are valid for P-convex functions [13]:
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Theorem G. (Majorization theorem). Let py,...,pn , 71 < ... < zZp, 1 <
«o.fyn, w1 <...<u, and vy <...< v, be real numbers such that z;,u; € [a,d
and y;,v; € [c,d] for 1=1,... ,n,and z <u, y < v, where we write, for ezample,
z<u if

Yopwi<) pui, k=20, and Y pri=) piui.
i=k =k =1

1=1

If f 1s a P-convez function, then

(23) ZPif(Iiyyi) < ZPnf(“hvi) .

Theorem H. (Jensen-Steffensen inequality). Let a <z, <...<z,<b, c<
Y1 <...<yn<d and pi,...,pn be real numbers such that

(24) 0P <P, (k=1,...,n=-1), P,>0,

and let f:[a,b] x [c,d] — R be a P-convez function. Then
(25 i.i s _l_z": .ap: <__l_i f(z )
) f P. 2 PiZi , P. - Pivi | = P, - Pi irYy) -

Moreover, similarly to the proof given in [13], we can prove a reverse Jensen-
Steffensen inequality, i.e. the following theorem is valid

Theorem 5. Let a <z < ...<zp, <b,c<y1 <...<yan <d and
Ply--- ,Pn be real numbers such that P, > 0 and esther

(26) 0<P, <P (k=1,...,n-1),
or
(27) 0<P. <P, (k=2,...,n),

where Py =P, — Pi_y, (k=2,...,n) . Further, let 1/P, 3.~ pizi € [a,}],
1/Py Y 0, pivi € [c,d] , and let f:[a,b] x[c,d] — R be P-convez. Then the reverse
inequality in (25) 1s valid.

Proof. This is a consequence of Theorem G. Namely, we have to set z =
z,...,2) , y=(y,...y), u =z and v =y, where z =1/P, Y pizi and
[Padon, pivi . If the conditions in our theorem are satisfied, then we have
and y < v . We shall prove that z < u , i.e.

—

1
u

Qi<

<
1

n N
(28) 7 ZP.' Z pm(zm —2:) 20 (K
i=k m=1

2,...,n)
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(for k = 1 we have an obvious equality).

Since due to [13]:

n n k-1 n
Zpi me(l‘m _Ii)=pkzpi(zi _Il+l)+Pk—l Z ﬁ:{f:-l =&i
1=k

m=1 1=1 1=k+1

the inequality (28) is true.

Now we can start from Theorems H and 5 for n = 2 and, as in [11] and Section

2, we can get that Theorems F, 3 and 4 are also valid in case r = 2, for P-convex
functions (instead of functions with non-decreasing increments). In fact, the same
can be said for all results from [11].
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