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Introduction. Denote by S the family of functions
F@)=z+ T App?" 1)
n=2

holomorphic and univalent in the disc £ = iz dlizli< l} ,and by Sy the subclass of the
family S cnsisting of functions with real coefticients.

Let Sg (M), M > 1, be the subclass of Sg composed of functions bounded by M, i.e.
those satysfying the condition

IF(z)I<M, z€E.
It is known that, for each function F € Sg (M) ([7], [10]),

A2F<P3'M lfM>l ',
A4F<P4'M if M>ll,

where P, p, P4y are, respectively, the second and the fourth coefficients of Taylor
expansion (1) of the Pick function Py (z) given by the equation
z
WO I :eE, @
Py (2) (1-2)
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and satysfying the condition Pps(0) = 0. It is also known ([5], [6]) that, for each N =
= 2,4, 6, .., there exists a constant My > 1 such that, for all M > M) and each function
F € Sg (M), the estimation

ANF<PN m 3)

takes place, where Py s is the N-th coefficient of Taylor expansion (1) of the Pick
function Pyy(z) given by equation (2) and satysfying the condition Pys(0) = 0.

Note that an analozous result for any odd & is not valid since, as early as ¥ =3, in the
family Sg (M) the sharp estimation

AspS1TH2N =4AM ™ '+M™? for eSKM<+oo “)
holds, where X is the greater root of the equation X log A = =M ~ !; the Pick function
does not realize the equality in estimation (4).

In the proof of result (3) one makes essential use of the fact [1] that, for each function
FESg,
App<P, .,-n=23,4,.,

where P, . = n is the n-th coefficient in Taylor expansion (1) of the Koebe function

Ko (2)=P.(2)= , ZEEFE, ©))

z
(1-zy

In the present paper we consider a real, linear and continuous functional on the family
SR (M) such that its maximum on Sg is attained for Koebe function (5). By making use
of the differential functional equation for extremal functions it, will be proved that,
when M is sufficiently large, the maximum of such a functional on the class Sg (M) is
attained for the Pick function Py (z) given by equation (2) and satisfying the condition
Pyr(0) = 0. This result is a generalization of those obtained earlier in papers 3], [12],
[13],[5). [6] (sec also [4]).

The fundamental theorem. Let K, K > 2, be any positive integer and A, n =2, 3, .., K,
real numbers. Consider in the family Sg (M), M > 1, a real functional

d>(F)=n 3’52 M ApF (6)
such that
max ®(F)=d(K,) ™
F e SR

where ¥}, is the Koebe function (5).
The functional ¥ is continuous, the family Sg (M) compact in the topology of almost
uniform convergence; consequently, for each M > 1, in the family Sg (M) there exists at
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least one function realizing the maximum of the functional ® . In the sequel, each func-
tion F,, for which Fma)é e ® (F)=d(F,), will be shortly called extremal.
€ S5R

From condition (7) and the linearity of the functional ® it follows that
Oz 1) <P (z 1)=P@F,),tE(-1,1), (8)
where

s(z, ) ———— .,
1-21z 422

Making use of the form of the coefficients of the function s (z, z) as well as conditions
(6) and (8), we obtain that the parameters A,, n = 2, 3, .., must satisfy the inequalities: .

§ ( sin n¢

n=2 sin ¢

-n) A, <0, e®=t+iv1-1

<<, V1=1, ()
b [(D**!'-1]a\, <0, t=-1. (10)
n=2 ]

We shall prove the following
Theorem. Let K, K > 2, be any positive integer, and Ay, n =2, 3, .., K, real numbers.

K
Let ®(F)= X X\, Anfr bea functional defined on the family Sg (M), M > 1, such that
n=2
. mas)‘( D(F) = O(H,) where I, is Koebe function (5). Then there exists a constant My,
SR

M, > 1, such that forall M >M,,,

max S(F)=d(P, (11)
FE% (F)=®Py)

where Py is the Pick function defined by equation (2) and satisfying the condition
Ppg(0) = 0. Eistheonly function realizing equality (11).
Proof. It is known (2] that each function w = f(z) = 7 F(z), where F is an extremal

function in the family Sg (M), M > 1, satisfies the differential-functional equation:

(-z:—)2 Mw)=f@), o<z <1, (12)

where
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(2 o
A?F) Ang) A I%‘ 1 A;
Mw)= v A + v At + v, Ak (W+;v‘)+ Yz A+
3) (3) (K -1)
LA AKFx o P ST
le Nt M’\ Kk W o Dite —A?{—‘T Ag -
4(K =1) AK)
*K, F A KF 1
+ ———2Ax WK ¥ )+ AWK -3,
A!K—Z WK—2 MK.——'. wK—l

JV@) =25\ 243503 +3 A4 M + .. +(K-1DAgprg)+ (A +24,p 0, +

+3A3p 0+ ... + (K"I)AK_LFAK)(Z'F1/Z)+(K3 +2Ar 0 t+

(13)
+3A3r s+ .+ (K-2)Ax _a, FAC (@ +1/22)+ o + Oy +
+24: M) X TP H KT e @ T yZE Ty
P=2 mi A?F)x+A§?x++A’?F);\) - A&)x+
- i A3 T... cos x
0<x< ¥ M 3 M 3 M K 72 a
(3) (3) : ey
L Akr AT
+ 7 A4+...+- Ag)cos2x + ..+

MK- = 2“’\1(—1 +

K -1 K
AN T A4 K)

' KF
+ ———Ng)cos(K-2)x + ————Agcos(K-1)x ,
MK—: MK—-:

FM@= T A " m=2,3,. , n=mm+1,..
n=m

The functions J)L(w) and J¥ (z) take non-negative real values on the circles |wl=1 and
| z]= 1, respectively. Each of these functions has on the respective circle at least one zero
of even multiplicity. Let us still notice that ifJ?L(w,,) =0, then i\ (Wo) =0, M(1/w,) =
=0,M(1/w,) =0, and if (z,) = 0, then alsoP* (z5) = 0, JY'(1/2,) =0 and J*(1/Z,) = 0.

From condition (7) it follows that, for any € > 0, there exists a constant M ' > 1 such
that, forall M >M "andeachz € A,

K Pr@- o @) 1< e (14)
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where A is an arbitrary compact set containingin its inside all zeros of the function J]",, @),
while [\*(z) is given by formula (13) and I, (2) is defined as follows:

Mo @=[20 42303 +3- 40+ .. +(K-1DKAg |+ N, (z +1/2) +

+M[22 z+1/2)+ (22 +‘l/z’ N+ .+ Ap - [(K-2P @ +1/2) +(K-3)* (22 +

(15)
+1/2)+ .+ 2 @K 12Ky e @K 1K e (K- 1P @+

+UD+ K- @@+ 1)+ .. +2 @K 412K+ @K 12K )

We shall determine the zeros of the function J¥” o (2) on the circle | zl=1. Without
loss of generality, let us assume that K is even (in the case where K is odd, the proof
runs analogously). Since

N N
5 (N—m+1)’z""*‘=l/z~ p) (N_m+l)2zN—m+l=
m=2 m=2

N

z / ’
) 2) z]=

= l/zN:};:: n? 2" =1/zN [((':é'l 2"y 2y 2)=1/27 [(( zz_ :

@-1p

=

[(N=1) 22 =N - 2N—-1)z +N? -z~ N +2 =N+ 1

therefore, proceeding in an analogous way with all the addends of JT‘O (2), after some
transformations we get:

(z+1)

m Lo (2) (16)

JWo (2)=

where
Lo @)=2; [z +1/2)= 2]+ X3 [(2* +1/2) - 2]+ My [(2° +1/2°) + (z +1/2) - 4] +

A (@ + 12+ (P +1z) =41+ A0 o @K T+ 12N )+
: 17
+ @K+ 12K Y@+ 1) - (K- F Ak (@K T 12K D+

+@X A+ 12K ")+ @+ YK )
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Adopting in (17) z= e, 0< ¢ < [I, after transformations and making use of inequalities
(9) and (10), we obtain that the only zero of the function L, (2) of the circle 1zl=1is
the point z =1 which, in view of (15), is not a zero of J]¥%, (2). '

So, finally, from formula (16) it follows that the function ¥}, (z) has mthe cicle |z1=1
one double zero z =—1 and K — 2 zeros both inside and outside this circle.

Let us surround all zeros of the function JI%, (z) with sufficiently small disjoint disc.
From the Hurwitz theorem as well as condition (14) we deduce that there exists an M" >
> M’ such that, for all M > M", zeros of the function UI"(2) given by formula (13) lie,
respectively, in chosen neighbourhoods of zeros of the function /¥, (z), with that in
each of these neighbourhoods the number of zeros of both those functions, considering
miltiplicities, is the same.

Ris known [2] that the function JW(z) has on the circle 1z)=1 at least one zero of
even multiplicity. Let 2 # — 1, 1Z1= 1, be one of these zeros. Then, for M >M", it lies
in the vicinity of the double zero z = — 1 of the function f{*, (2). Since fY*(2) is a non-
-negative f*~ction on the circle | z | = 1, the multiplicity of such a zero is at least 2;
besides, in the same neighbourhood there must lie a zero z of multiplicity at least 2, which
contradicts the fact that the function JY* (z) must have exactly two zeros there consider-
ing mutiplicities. Consequently, Z = — 1 is the only zero of the function JY' (2) on the
circle IzI=1.

So, from the form of {"(z) it results that, for M >M", this function can be represented
as follows:

z+1)

N @)= ———L() (18)
zK -1

where L(z) is some polynomial of degree 2K — 4, and L(z) # 0 for |zl = 1. From the
properties of the function JY (z), given before, we know that if L(z,) = 0, then also
L(Z,)=0,L(1/z5)=0and L(1/Z,)=0.

From equation (12) we infer that the images w = f(Z) of zeros %, 1Z1< 1, of the
function J\*(z) are zeros of the function J¥, (w) since f'(®) # 0, whereas from the very
form of the function JY, (w) it follows that also the points W, 1/W, 1/%’6 are its zeros.
Moreover, it is well known [2] that the function J\L(w) has on the circle |wl=1 at
least one double zero w,. From the above properties of the function M (w) we deduce
that, forM >M",

(w=wo) A
Mw)y= ——2—Zw) (19)
wk -1
A A
where w, =— 1 or w, = 1, and L(w) is some polynomial of degree 2K —4, and L(w) #0

for lwl=1.

We have thus demonstrated that, for M > M", each function w = f(2) = 1/M F(z),
where F is an extremal function, satisfies the equation (12) where M (w) and J*(2) are
given by formulae (18) and (19), respectively.

Using now the Royden theorem [8], the theory of I'structures [9] as well as the fact
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that, for the classes Sg (M), the image f(£) of the disc £ under the mapping w =f(z) =
= 1/M F(z) is symmetrical with respect to the real axis, one proves that, for M > M",
each function w = f(z) = 1/M F(z), where F is an extremal function, maps the disc
1z1< 1 onto the disc Iwl<1 lacking a segment on the real axis with a) one end at the
point w, = — 1 and the other at some point of the negative real half-axis between — 1 and
0 or b) one end at the point w, = 1 and the other at some point of the positive half-axis
between 0 and 1. Consequently, from the property of the Pick function Py, (e.g. [6]) and
from the Riemann theorem it follows that the only such function is in case a) the function
pm(z) = 1/M Py (z), while in case b) the function —py (—2)=—1/M Py (- 2) =

=z+ I (—1)"""' P, pz" where Py is a Pick function.
=2

One knows (e.g. [6]) that A}im P, m=n,n=2,3,...From this and inequality (10)
it follows that there exists an M, >M" such that, for all M > M,,, the inequality

§ mbow> S -t u

n=2 n=2

is satisfied. So, finally, the only extremal function in the family Sg (M) for M > M, is
the Pick function Py given by equation (2) and satisfying the condition Pp(0) = 0.

Remark. Proceeding in the way similar to that given above, one can prove that if the
functional ® of the form (6) is such that

max  B(F)=0F,), Ho(z)=—Ho(~2),
FeSg

where ¥, is Koebe function (5), then there exists an /?40 > 1 such that forall M >M,,

F?%";(M) q)(I;‘)-'= q’(;,M), ;M(z)':_PM(_Z) .

where Ppy is the Pick function defined by equation (2) and satisfying the condition
Py(0)=0.
In virtue of the Toeplitz theorem on the general form of a linear functional ([11},

p. 36), the estimation of the functional ® (F)= I M\, A,F remains an open problem;
n=12

however, the method applied in this paper allows one to consider functionals depending
on a finite number of coefficients (see [2]).
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STRESZCZENIE
Niech SR(M), M > 1, bedzie rodzing funkcji
F(z)=z+ T A n Fz"
n=12

holomorficznych i jednolistnych w kole jednostkowym E, majacych wspdtczynniki rzeczywiste i
takich,ze |F(2)I<Mdlaz€E.

Niech K > 2 bedzie liczbg catkowita oraz Ay, n = 2, 3, ., K, niech bedg liczbami rzeczy wistymi.
W pracy rozwaza si¢ funkcjonaty rzeczywiste postaci

K
®F)= T AN A
n=2 " nF

w rodzinie SR (M) takie, ze

ma;( ®(F)=®(3¥,), gdzie SR = SR(=) oraz Xo(z)=2(1 —2) ?
FESR

Dowodzi si¢, Ze istnieje stata M, > 1 taka, ze dla wszystkich M > M,

max O (F)=®(Ppy),
FESp (M)

gdzie Ppyg jest funkcjg Picka okreflong wzorem (2).
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PE3IOME
Mycts SR (M), M > 1 cemeficTBO OAHHAHCTHRIX BYHKIMA
F(z)y=z + E A g
(2) nel nFz
B ¢IMHONHYHOM KpyTe E, HMewowmx neficrBHTenbHbe KoeddHueHTLI, TakHX yTO | F (2) |< Mpansa
zZ€E€E.
Mycrs K > 2 uenoe 4Hcno, Ay n =2, 3, .., K, NeAcTBHTENBHBIE WMcna. B 3ToR pabote paccmarpu-
BaeTcA neRCTBHTENbHbIE ) YHKUHOHAILI BHOA
- K
® =X A
(F) .y nAnF
B ceMH S (M), 1 KOTOpBIX

max ®(F)=®(¥,), roe Sp=SR(=) » ¥o(z)=z(1-2)°.
Fesg

BhIKa3aHO, ¥TO CYeCTBYeT NOCTpoHHas My > 1 Takad, qro i Beex M > M,

max (P =0Py) .,
FesSp)

rae Py pynxuna [Muxa onpenenetnag popmynot (2).
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