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1. Introduction. In a recent paper [5], some non-normal asymptotic results in MANOVA 
were derived using a theory of convergence in distribution of multiply-indexed arrays. 
With the notation of that paper, M(k X p) denotes the matrix of means of the kp-nml( 
populations, 2 their common convariance matrix, and H the hypotesis that M has the 
form XiBi, where X, (k X r) is given of and rank r. When// is not true,M can be written 
uniquely the form

M = X\Bi +A/2 (1)

where XtBt — PtM, = (/—M ¥= 0, and = X^X^Xi)- 1 is the orthogonal 
projector (o.p.) matrix onto the r-dimensional subspace £2, = ft (Xi) C Rk • (2).

In the associated discriminant analysis, which is discussed in the case when X\ = 1 by 
Kshirsagar [4] and generally by Bartlett [2], the number of useful discriminant functions is 
equal to the rank of M2. Bartlett’s test of the hypothesis

Hq = « ,

where q is a given integer, 0 < q <p = min(p, k—r), is based on the p — q smallest e.values 
of 1, where Sj is theS'.S./’. matrix used for testingH and S the withinclass estimate 
of 2. Hsu [3] has obtained theasymptotic distribution of these e.values when//fl is true, in 
the case when the populations are normal and the sample sizes n,..., njt maintain the pro­
portions as n = "Stii increases. We show below that in the non-normal case the e.values
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converge in distribution (in the generalized sense of [5]) to Hsu’s limiting distribution,
viz. the distribution of the smallest p — q e.values of W'W, where «>

IV
(p -<Z) x (* -r-q)

~ /V(0, f(p —</)(*— r — <?)) .

and discuss some approximate-testes of Hq when all the sample sizes are large.
Hsu [3] and Anderson [ 1 ] also discuss the asymptotic distribution of the q largest e.values

of SjS~ 1 and the associated e.vectors. In the present context, however, these quantities 
do not seem to have much practical importance, since the corresponding population 
quantities depend on nt, ... n^. The definition of discriminant functions that depend 
only on M and S, their estimation, and the associated asymptotic theory in the non-normal 
case are discussed in [6] and [7].

2. Initial transformations. We begin by making a series of linear transformations of 
the data.

First, we transform to Z2 — Y A, where A is a symmetric matrix such that/l2 = S" 1. 
Then Var(Z, ) = inp, and the matrix of means of the new variates is

MA = XlB,A + M2A .

We now assume that Hq is true, i.e. that the unknown matrix M2 has rank q. Then 
r(M2A) = q, and there exists an orthogonal elementary operation matrix/? such that the 
first q columns of M2AE are linearly independent, i.e. such that M2AE has the form 

M2AE = (M3,M3Q, (2)

where M 3 is k X q of rank q, C is? X qt and qt =p — q.
Transforming now to Z2 = Z2E, when Var(Z2) = /np, and the corresponding matrix 

of means is

MAE = XtBtAE + (M3, M3C)

Next, we construct a p X p orthogonal matrix as follows. SinceIq* + C'C>0, there 
exists a <7h X <fi symmetric matrixB2 such that B2(l + C'C)B2 -I.

Writing now / x

(4)

and H2 — C3B2, then H'2H2 = lqx, and there exists H2(p X q) such that H = (//,, H2) 
is orthogonal.

Finally, we transform to Z = Z2H. Then Var(Z) = /„p, and the corresponding matrix 
of means is MA EH = XlBlAEH + (M2AEHi,M2AEH2).

From (3) and (4),
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M2AEH2 =M3(I, C) C\B2 = 0 ,

whence, writing Mo = MAEH, Bo = BXAEH, and

Mx =M1AEHl (5)
then

Mo =XlB0 (6)
Summing up, ,

the rows of Z = YAEH are independent,E(Z) = XM0 and Var(Z) = Inp. (7) 

Writing now
T, = Z'(P-P0) Z=AiSxAx 

and
T=—^— Z' (I—P)Z =A'XSAX , 

n — k
where

Ax -AEH,
then

r.r-’ ,

whence T, T~ 1 and S,S “* have the same e.values.

Furthemore, since EH is orthogonal, then T, and Sj 2 "1 have the same e.values. (8)

3. The e.values of S, 2“ 1. We now recall from [5], § 4.3, that

P-Po =XN~m(I-PN)N- 'nX'

where Py Xx(X[NXx) X\Nin is the o.p. matrix onto ther-dimensional subspace 
&N ~ 11 ) C Rk, and also that (/ —Pf/) was written in the form

V-pN)=HNH'N,

where Hf/ is fc X (k — r) and H'f/Hf/ -Ik—r- 
Then

T, =Z'XN- n(f-PN)N' inX'Z = Z'NNin{I-PN)^ZN,

where NZf/ = X'Z.
Write now

WN = NU2(Zn-M0)

UN=H'NWN
(9)
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Then
7, = (WN + NlaM0)' HNH'N{WN + NxnM0) =

= U'NUN + (U'nH'nNx/2Mq + M^N1 *HNUN) + M'oN1 nHNH'NNx *Mo .

Since by definition of H^, H>N(NV2Xi) = 0, it follows from (6) that

H'nNx nMQ = (B, 0), where B = H'nNx nMl . (10)

Thus, if we now write
UN = (UltU2)

where £/j is (k — r) X q and U2 is (k — r) X g!, then

r,
U[UX + (U'lB+B'U1) + B’B 

, U'2Ui+U2B

(11)

U[U2 +B'U2 

U'2U2

We now show that r(B) = q for every N,
Note first from (1) and (5) thet each column ofAf, is contained in Slf. Further, since 

the columns of Hjy are a basis of fljV. then the columns of are a basis of J2j-.
It follows that 4/, can be written in the formM, = NxnHtfCn, and since Nl 11HN has 
/ull column rank, r(Cy) = r(Ml) = q. Thus B = H^N H^Cn also has rank q, since 
H’nNHn is non-singular.

It follows that for eachJV there exists a q X q .symmetric matrix F such that

FB'BF = Iq. (12)

Now consider the e.values of S2 S ~1. From (8), these are the solutions of IF, — \I I = 
= 0, and hence also the solutions of

'F 0
(T, -V) = 0,

0 Ia

which, after simplification, has the form 

Vn + Iq~\F2
= 0

V,12

where = FU'iUiF + F(U\B + B'UX)F and Vi2 = FU[U2 +FB'U2. 
Finally, premultiplying by
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The e.values of 7\ are the roots of&y(X) = 0, where

gN(k) =
V12

v[2 (xr* - Vn ) (Zfc _ r - BF2B') U2 - V22 - X/, t
(13)

and FI2 = U2 (UXF2U[ + UXF2B' + BF2U[) U2 .
4. The asymptotic distribution of the e.values of ”t. Let Xt > X2 ... > Xp > 0

denote the e.values of Sr 2“ 1. Since r(Sx) < p = min (p, k—r) for every TV, then Xp + i = 
= ... = Xp = 0 for every N. We determine here the asymptotic,distribution of + j,.., Xp 
when Hq is true.

(i) We show first that lim F = 0. From §3, (/ — Pn)Ny'1 Mx = —
W * -

-Nin Xx (X'xNXx)~' X'xNMx =N'n[Mx -AfJ where Af, =Xx(X'xNXx)~ 1 X\NMx. 

Thus, from(10),£'£ ~M[ N1/2 (I-PN)NinMx = (Af, -MX)'N(MX -AfJ. Forgiven

N, write now n0 - min(«i,.., nk),F = (/\, 
ofB'B. Then

x'B'Bx
Ttfj = inf ----- ;---- > n0 inf

X X X Xz- **

... fa), and let TT/if denote the smallest e.value

x’(Mx —Mx)x

x'x

But since the columns of Mx and Af, are respectively in Î2, and then (Af, — 
-Mx)' (Mx -MX)=M'XMX + À/JÀf,,and hence

iXMij
■nN>n0 inf ------ ;------ =«o>'»

X XXs* e*

where v is the smallest e.value of M'XMX. Since r(Mx) — q, then v > 0 and lim 7Tjy = °°.

Finally, from (12), for i = 1,.., q, 1 =fi'B’Bfi > ltufifi, whence lim F = 0.
~ ~ N*-

(ii) Next, we determine the asymptotic distribution of Fjy = FB'U2.
By inspection of the proof of theorem 4 in [5], it follows from (7) and (9) that

D
UN —► Af(O, Ip (k - ry), and hence, from (11)

Ux N(0,IqÇk - ry) and U2 N(0,Iqt (* _ r)) (14)
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Thus from theorem 1 in [5], the c.f. ff/(Tj) of l/2 is given by

fjv(7’,) = £[exp(/rr(r;fZJ))] = exp( 1/2 7> (Tj T,))+/jy (T,),

where lim /yv (7\) = 0 uniformly in any bounded region 
N ~

CC(15) 

Consider now the c.f. 0/v(T2) of Kyy, viz.

^(Tj) = E [exp (/ Tr (T2 VN))] = fyy (5FT2) =

= exP( l/2 7>(riFB'5Fr2))+/jV^FT2) =

= exp( 1/2 Tr (T'2T2')) + fN (BETi) , using(12).

For fixed T2, choose in (15) C = {Tj; Tr (T[ Tx) < Tr (T2 T2)l .Since 

Tr ((BFT'2)(BFT2)) = Tr (T2T2) for every N, it follows from (15) that, for fixed T2,
lim <t>N (E2) = exp ( 1/2 Tr (T2 T2)), and hence, from theorem 1 in [5], that

AT «♦ *
D D

FB’U2 —* V ~ N (0, Iq t q). A similar argument shows that FB'U2 —* Vo ~N (0, ).
(iii) Consider now

U'2 (/k-r-BF2B') U2 = U2 (I—QN) U2 , 

where, from (12), QN = BF2B' is a (X — r) X (X — r) o.p. matrix of rank q. A repetition

W'W, whereof the proof of theorem 4 in [5] then shows that f/2 (/ — BF2B') U2
IV ~N(0,/(p_ qUk-r- </))•

(X-r-q) X (p-<7) W

(iv) Finally, consider the polynomial &v(X), of degree p, in (13). Using (14), the 
results of (i) and (ii), and theorem 2 of [5] it follows that

K12 =F(U[U2) + FB'U2 0+ K= K.

Similarly K,, —* 0, V22 —> 0, whence K12 F2 —► 0 and Va Kn —► 0, and, for fixed

KXtrf*)-* f(X), where

*(*) =
V ~ I tv'tv-x/tfi (16)

0 W'W-\Iq

Since g(X) has degree p — q, it follows that the q largest zeros X!, X^ ofgyy(X)
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converge in probability to + °°, and + i, Xp converge in distribution to the p — q 
largest e.values £1 >L2 ... of W'W.

5. The asymptotic distribution of the e.values of SlS" '. As in §4.4 of [5], denote by 
£, > fi2 ... > the p largest e.values of 5,5" 1, and write

- (£q ♦ »,... £p)’

Theorem. When Hq is true,

where Lq - (Lït... Lp

D

_ q)', Lx > Lj ... > Lp _ q are the largest e. values of W'Wand

W
{k-r-q)* ip — q)

N (0, f(p — q) (k — r — q)) •

Proof. From (8), 7\T~l has the same e.values as StS~1. Let Ajq be a precisely defined 
p X p symmetric matrix such that Ay = T~ 1 (i.e. when IT I#= O,?ljy = 0(7) for some 
well-defined 0).

Then?lnTxAn also has the same e.values asSjS-1. Write now

Ay = I , where A B is q X q ,
I A 22 I

and F = j4fjl F.
The e.values of 5,5"1 are then the roots of the equation.

f’ o\ (f 0

\B'N(ANTxAN-\r}BN\ |=0,

0 7 / \° 7

which, after simplification has the form

F„+/?-XF’F Fia+XWn

Fn+XW;, U,iUl-\(I+A'ttAniAa)

where

= 0,
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K„ = K„ + F'412Kj2 + Ku^F + F'Xnt/it/jylJjF, 

K,2 = (K,2 +F'X12i/^2)C,

C ^An —A^Au1 At2,

and ^i2 —•"/** ^4 j/X .

Finally, premultiplying by

I 0

-k;2 i

and simplifying, the e.values of StS~ 1 are the solutions of

K„ + /(7-XF’F K12 + XK',j
/iyv (X) = = 0

X(F;2FF' + ki,)- Kj'jK,, \CU'2(I—BF2 B') U2C-V22 - 

— X(/ + 412-4u2.4i2 + Kj 2 Wl2]

where V22 =C[(FB'U2)'V0 + Vo (FS't/2)] C and Ko = Ft7j + F'Al2U2.

D
Now consider T. From (7)-(8) and theorem 5 of [5], T —> Ip. It follows then from 

D
(17) and theorem 2 of [5] that AN —> Ip. Using now the results of § 4, and repeated use 
of theorem 2 of [5], it foUows that

D D D D D D D
4 n * Iq, ^4i2 * 0, A22 * Iqt, F ► 0, Kn * 0, KJ2 *• V, Wl2 * 0,

C—* Iqi, Ko —► 0, V22 —* 0, and, for fixed X,/iyy(X)—> g(X) of (16)

and the theorem follows as in §4 (iv).
6. Significance tests of Hq. Since the limiting distribution obtained above is the same 

as that of theorem 6 in [5] with p and k replaced by p — q and k — q, it follows from 
theorem 7 of [5] that one can write down various statistics for testing Hq, each of which
converges in distribution to X^, Writing# = 1 + (8,/n — lc) and £} = £,•/#,

•
so that 8'i,i'p are the ordered e.values of SxSq 1, these statistics are

£ £/, £ £/, (n — k)( fi # —l)andn£ £zt#.
^♦1 <7+ i q ♦ I q* 1

The last of these is essentially Bartlett’s statistic, which replaces n by a correction factor 
(on the same order) that is appropriate when normality is assumed.
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STRESZCZENIE

W przypadku rozkładu różnego od normalnego bada się zbieżność według rozkładu (w sensie 
wieloskładnikowym, określonym w [5] wartości własnych w tekście Bartletta [2J dla liczby funkcji 
dyskryminacyjnych w multidyskryminacyjnej analizie. Ponadto rozważa się asymptotyczny rozkład 
statystyk testowych gdy wszystkie próby $4 duże.

РЕЗЮМЕ

В случае распределения разного от нормального исследуется сходимость по распределению 
(в мультииндексном смысле определенном в [5]) собственных значений из теста Бартлетта 
[ 2] для дискриминантных функций в мульти дискриминантном анализе. Кроме того рассмат­
ривается асимптотические распределения тестовых статистик, когда вое объемы выборки 
являются большими.




