ANNALES UNIVERSITATIS MARIAE CURIE-SKEODOWSKA
LUBLIN-POLONIA '

VOL. XXXV, § SECTIO A . 1981

Instytut Ekonomii Politycznej i Planowania
Zaktad Zastosowari Matematyki
Uniwersytet Marii Curie-Sktodowskiej
Instytut Matematyki
Uniwersytet Marii Curie-Sktodowskiej

Czestaw BURNIAK, Janusz GODULA

On Functions Angularly Accessible in the Direction of the Imaginary Axis
O funkcjach katowo osiggalnych w kierunku osi urojonej

06 yrrnoBo-noCTHXMMbIX GYHKILMAX B HAIIPaBiie HHK MHUMOR ocH

Introduction. Suppose that C denotes the complex plane, N is the set of natural
numbers and a € (0,1) is a fixed number. Now, let us assume the following notations:

m m

A=, 0= fw: >0 <am(w—w)< T B+ o)}
+ m n

A" (Wp,0)= {w:;(l—a)<arg(w-—wo)<5(l+a)}.

where w, € C. A simply connected domain D # C is called a-angularly accessible in the
direction of the imaginary axis, if for cvery fixed point wo € C\D, either 4* (wo, a) € C\D,
or A~ (wp, @) ¢ C\D. The family of all such domains different from the whole plane C is
denoted by T,, while by T, (0) we denote the subfamily of T, which consistsof all
domains containing the origin.

Let So be the class of functions f analytic and univalent in the disc £ = E,, where
E, = {z: jz| <r_§ . The class of all functions f € Sy such that f(E) € T, is denoted by /.
T, is the family of domains convex in the dircction of the imaginary axis, while fq
the well-known class of functions convex in the direction of the imaginary axis.

In this paper we give a necessary and sufficient condition for a function of §o to
belong to I, (Theorem 2). In the case a = 0 with an additional restriction such a theorem
appears in a paper by M. S. Robertson [6], while without any restriction in a paper by
W. Royster and M. Ziegler [7]. A different proof of results stated in the paper by
W. Royster and M. Zicgler {7] is given in a paper by Cz. Bumiak, Z. Lewandowski and
J. Pituch [1]. :

Main results. We start with a density theorem for T,. Our reasoniag is a modification
of that given in a paper by K. Ciozda [2] for the limit case a = 0.
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Theorem 1. Each domain D, D € T, is a kernel in the sense of Carathéodory, of a
decreasing sequence of domains obtained from the plane by remov-ing a finite number
of angles of the form A* (w,a)or A (w, a).

Proof. Let n, € N be a number such that F, = (C\D) n E, # @, where £, =
={z:|z|<n},ne{no,no+l,...}_anch' T,. 1

Since F, is a compact set and F, c Ej,, therefore there exists an € — net, e =—,i.e.

n

a set of such points {w, yours Weo Vi ue, v,} c F, that for each w € F), there exists a
- 1
number /' € { 15250, s} such that [w —wpr | <— oranumber!” e { 1, 2,.., r} such
n
1
that | W — vpr | < — | After a suitable change of order of points wy, v; we may choose
n

positive integers k, I, k < s, I < r, soastbobtain the inclusion

c L ! =
AW oy We, Yy e, W) € m\jl A (W, a)u pk_)l A (vp. ).

k !
LetGp= \J A" Wma)u U 4 (vp. a). It follows from the above construction
m=1 1

p-

1
that the distance of each point of the set F, from the set G, is less than —. In ananalogous
n

manner we form a set G+ , such that G, ¢ Gp 4+, and the distance of each point of the

set F,; 4 ; from the set G, + ; is less than . In this way we define a decreasing

n+

sequence of domains D, = C\Gp. Since D ¢ D, forn e i‘no, ng + 1, } .o €N,

therefore D c fz\ Dy

n=n

So,D =IntD c' Int "fj\"o Dy . We will show that D = Int "’f)'o Dy Suppose that

D # Int nf-}' Dp. Then there exists point wp € (Int "f)l D)\ D and a number § >0

=n, =y
such that E(wp, 8) c Int "f)l D, where E(wp, 8) = EW: |w—wy | <83 . Thus
=My

E(ws, 5) C nf"'\l Dn, ie. dist (wy, C\ D)= dist (W, Gp) >8,n & {ng, no + 1.d

=n,

1
But wo, € C\D, and consequently, for sufficiently large n, W € Fjp and dist(wy, G,) < —.
n

1
We may choose the number n in such a way that — < & which leads to a contradic-
n

tion because dist (wo, Gp) 2 & forne {no, ng+1,.. .SoD=Int () Dp,. Since
ne=n,
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Int /) D, isakerncl of sequence (D,); our theorem follows.
nen,
Theorem 2. Let f be a function non-constant and analytic in E. Then f € I, if and only
if there exist numbers u, v,0< u< 2n, 0 Kv < m, such that

| arg {—iei“ (1—2ze" ** cosv + z2¢” 2“‘)f'(z)j |<'(1—a):2,zeE, (1)

where arg (—i)=— -g— ’

Proof. 1., Let fe I,. We assume f(0) = 0 i.e. f(E) € T (0). From Theorem 1 it follows
that there is a sequence of domains containing the origin each of which is obtained from
the plane by delcting a finite number of angles with measure an, a € (0, 1) whose bisectors
are parallel to the imaginary axis. This sequence converges to the kernel D = f(E). Let us
first suppose that D = f(£) is a domain which is obtained from the complex plane C by
eliminating a finite numbers of angles of the form A* (w, a) or 4~ (w, a). We will
approximate the domain D with an increasing sequence of polygons whose sides form

L
with the real axis angles of absolute measure less than (1 — a) 5 Suppose first that the
boundary of D is the sum of segments of half-lines which form sides of angles:
A* (Wi, a)=Af,.., A" Wk, a) =A; or A~ (v, a) = Ay,.., A~ (v, @) = A7, where

Re w, <...<Rewg,Rev, <...<Rew),k,I,EN.There exists a number M; >0 such that
all the vertices of the polygon dD arc contained in the strip | Imw |<M, . Let wg, w,; be
common points of the line Im w=M, , and the left side of the angle A; and the right side
of the angle A}, k» respectively. The right side of the angle is a sxde in the right half-plane
determined by the bisector of the angle. Analogously, let vg, v , be common points of
the line Imw = —M, and the left side of the angle 4} and the right side of the angle A, q
respectlvely Next, let w J=1,2,..,k—1be cornmon, points of the right side of the angle
A, and the left side of thc angle A,, 1. Let v/, i=1, 2,..., 1 — 1 be common points of
the right side of the angle A; and the left side of the angle A+ 1. Moreover, let P, be
the common point of the straight line Im w = — M, and a straight line containing the
point w, and subtending with the positive direction of the real axis an angle of measure

L

(1 —a) -5; let P, be the common point of the line Im w = —M, and a straight line
n

containing the point wy which subtends an angle of measure (1 + a) ;with the positive

direction of the real axis. If C\ D does not contain angles A* (w, a) then we denote by
P,, P, common points of Im w = M, and the straight line containing the point ve Which

n
forms with the positive dircction of the real axis an angle of measure (1 + a) ; and the
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straight line containing the point v,' which forms with the positive direction of the real
L
axis an angle of measure (1 —a) ;,respectively. Let us form a polygonal line I'; with

vertices:
e ’ r ’ ’ ’ .
(i) wy =, Py, Vg, Vo, V-1, V| = Wk, Wk _q,..., W1, W, When D is bounded

(i) Py, Vo, vy, Vo, w,, wo', P, , when D is unbounded from the left
(iii) »,, v,',-., v, v,', /4 Wk, Wk...., vy, when D is unbounded from the right

(iv) P vo', Vi, v,',..., n, v, /18 Wk, Wk,..., Wy, Wo, P, , when D is unbounded from
both sides

v) P,P,, Wk, Wk, ..., Wy, wo', P,, when none of the angles A~ (w, a) is contained
inC\ D

(Vi) Py, Vo, Vys Vi sees VI VL, P,, P, when none of the angle A* (w, a) is contained
inC\ D.

It follows from the above construction that M, > 0 may be chosen in such a way that the

polygonal line T, is the boundary of a Jordan domain D,, D, € T, (0). We form a

sequence (Dy), D, € T, (0), of domains constructed in the previously described manner

while replacing M, by a sequence (M,), M, —* + o for n =* + o which is an increasing

sequence of domains such that U D, = D = f(E). Hence D is a kernel of (D,,) in the
sense of Carathéodory.

Let (f,) be a sequence of functions f, €S, such that arg f,;(O) =arg ' (0), fn (E)=D,.
It follows from the theorem of Carathéodory that f, - f locally uniformly in £. There
are real numbers Yy, Op, Un € <0, 2m), 8 € <0, 2m), Y, —0, >0 such that £, €®mer,
and Re f;, (€'®n) is the greatest, and f, (¢’ n) € l",, and Re f, (¢/¥7) is the least among
the numbers in question. Assume that 6, = py —v,, Yy = gy + vy, Wherev, € (0, ),
iy € (0, 2m). At any point of I'y = 9f(E) (except for the vertices) we consider the
normal vector. From the construction it follows that this vector forms with the positive

m L m
direction of the real axis an angle of measure a —2-, orm —a;—, or -5 in the case ‘upper part

am
of I'y’,and 7 +

T 3 2
,or2m— a—2- , or;n in the case ‘lower part of I',". Points £, (")

and [, (e“‘") uniquely determine the parts of I';. Denote fy (ef“"f) =w,j=1,.,k
@@y =w' j =0, 1, ki fu (€M) = vy, m = 1,..., I fn (€M) = v, m=01,.,1
where Y K75 <7; <7 <. <K<y < Wi Wi <... <wy <wy <wg S Yy + 27,

At the points of dE where f,, admits analytic continuation (see G. M. Golusin [3]) we
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may consider the normal vector ¢/, ({). Moreover, at §, (which corresponds to a vertex
of 'p) the harmonic function arg(§ — &, ) has a jump. Hence

" k
S (= ayforge \J (o wu (w5, ¥n + 2m)

=]

~

arg [— ie™f (€)= | - -121 (1—a)forpe \kj (wj, wj- 1)V (Bn, wi)

/=1
©)
0 forge (Opn, Yn + 27) whenk =0
for ‘upper part of I'," and
i I .
;(l—a) f°f¢EH (ri-1. 7
arg [ ie®f, (€)= 0 forp € (Yn, 70) U (V. On)
T 1
—=(l—a)forge ‘UI i 1)
C Ofor¢pe (Yp, 6,) whenl=0
for ‘lower part of T',".
Let us consider the function
. - [“
ie 'Mz
h(z;p,v) = ,z€E. 3)

[1—ze 1=V [1— 2 HBe o)y

The boundary of the domain h(E; p, V) is the sum of two half-lines contained in the
imaginary axis which omit the origin. We easily examine that

lmh(el¢,;p,v)>0 for pe (u—v,u+v)
lmh(ei°;y,v)<0 for pe(ut+ v,u—v+ 27)

where u € (0, 27), v € (0, 7). Thus

-§=argi for ge(u—v,u+v)
arg [h(e'®;u,v)] = + @

—-2-'-=arg(-1i) forge(u+v,u—v+ 27).

From (2) and (4) it follows



48 Czestaw Burniak, Janusz Godula

’
"
— (1 —a) for
2( )

k !
pe /L-Jx (Wi w)v J (-1, 7)Y (wo, ¥n t+ 2m)

i=1

Ofor¢e (Vn. Y0) VU (7/. 0n)

ig ¢! sl

opE®)
r - f »
Oy | 0 (n O When =0

Oforpe (6,, yn + 2r) whenk =0

Z(=ayf
— —({1—a)for
2

k I
pe U (W, wj-1)v U @ 77)Y On wE).

Jj=1 i=1

Considering (3) we have:
. i . ; P d .
| arg {—fe‘"ﬂ (1—2e®e~8n cos v, + e24%e™ 2 "‘")f,,(ew)‘} I<(1—a) 1 (5)

for ¢ € (w’lu wn +2m \ Wy yaeey Wik, ,wo',---, wir Yisees T 76"--) 71' ’ 9!!! ¢n3 . B)’
Theorem 5 of the paper [5], B. 188, we have

larg §—ieln (1 —22¢™#n cos vy + 22¢” 2m) [T @) § 1< (1 - a) %.zeE. 6)

Since f; — f locally uniformly in E and the sequences (i, ), (¥n) are bounded, there
exists a subsequence (ng) such that up, ~ p,vp, v, (k = + ). From (6) with n = ny
for k = + oo, we obtain

larg{—iei"(l—2ze"“ cosv + z’e""“)f'(z)} I<( —a)%,zeE. ©))

We know that any domain of T, (0) can be approximated in the scnse of Carathéodory by
canonical domains (Theorem 1). Passing to the limit again we conclude that for fe S,,
J(0) = 0 such that f(E')e T,(0) there exist numbers u € <0, 2m), v € <0, m) which satisfy
(7) and the first part of Theorem 2 follows.

2. Conversely, let f(2), f(0) = 0 be an analytic and non-constant function in £ for
which (7) holds.

a) If the sign of equality appears for some point z € E, then by the maximun principle
for harmonic functions we obtain



On Functions Angularly Accessible in the Direction of the Imaginary Axis ' 49

. 5 =
—ie' (1—2ze" ¥ cosv + 22" 2y f'(2) = ce 117D T,

Thus

L1 c z—¢ tuew)
2 =e:‘(l-a)2———-——_—ln e-ztv " —
1) 2siny z—e' W™ V)

1.f(0)=0.  (8)

For v =0, v = m we must take the limit function of the form

-iu
n ze
f)=iet ig-a) g %€ "

1 —ze™ Iu
Therefore f(E) for v € (0, m), is a strip whose edges form with the imaginary axis an angle
T
of measure a ; .Forv =0o0rv =n, f(E) is a half-plane whose boundary forms an angle

m
of measure a ?with the imaginary axis; i.e. f(E) € T, (0) and the mapping is univalent.

b) Let us now assume that equality in (1) does not take place at any point in E. Thus
i "
| arg {—ie"‘ (1 —2ze" ™ cosv+ z2¢” 27M) f'(z)} 1<(—a) > 9)

It follows from the definition & (* ; u, v) that the function H given by -

. z—elBtY)
In e' 2w
2siny z —ef(-"" v)

h
H(z)=6fz—:-§ld§=

maps the disc £ on the strip { w:Ad<Imw< B} ,Where —ee< 4 <B < + oo, For
every fixed t€ (A, B) let us consider a straight line L; : w=w(s) =5 + fi, s€ (—os, + o).
H™ ' (L,)isaJordan arc : z; = z,(s) = H ™' (s + ti) contained in E with end-points at
e'=") and ef(H*¥) respectively. Hence H(z,(s)) = s + ti and

. 1 |
i1 et (10)

_d‘s"zt(s)

The condition (9) is equivalent to
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£ n
| arg -17,—[<(l—a)—2-, ze E, (63))

@
@

From (10) and (11) we obtain

d . n
I arng(l:(S)) I<(- a) Phisa o, + ). (12)
Hence a tangent vector to the curve z;(s) forms with the positive direction of the real axis
n n
an angle larger than — (1 — a) ; and simultaneously smaller than+ (1 —a) ; From

convexity of H and from (11) it follows that f is a close-to-convex function, hence
univalent (see W. Kaplan [4]). Therefore, if ¢ varies from 4 to B, then the curves z = z;(s)
have end-points e/* * ¥} ¢!(#=¥) in common only and they sweep out the disc E. Hence
fDty, 1)) € Ty, where ty # t,, 4, t, € (A, B); D(1, t,), D(t,, t,) c E, denotes a
domain bounded by the arcs z = z',x (), 2 =2¢,(5), s € (—, + ). Hence f(E) € T,,
ie.fel,.

In the second part of our proof we have exploited some ideas from the paper by
Cz. Bumniak, Z. Lewandowski and J. Pituch [1]. The proof is completed.

Theorem 3. If fel,,0<a< ),and f(z) =z + a,z* +...,a, # 0, there exist numbers

n n
B v a ?<u<(2—a) -2-,0<v<1rsuch that

la, —e™ ¥ cosv | < (1 —a)] cos Sl h I (13)
z 20—a)

n n
Proof. By Theorem 2 there exist numbersu,v;a -5<u<(2— a) 5—, 0< v < 7 such that

\ p n
| arg {—fc“‘ (1—2ze™ '™ cosv + z’e'”")f (z)} I<(1—a) = zeE.

Put F(z) = — ie" (1 — 2ze” ™ cosw + z2e™ 2#) f' (2) . Thus the condition (1) has the
form '

1
1-a Y
| arg [F(2) ] |<—2-,

which implies Re [F(z)]'_'T 2 0. Therefore, there is a function p (Re p(z) > 0, p(0) = 1),
such that

u- = 2L =

F(z) = [cos —————— p(z) + isin _"_‘__’_.] s d
2(1—a) 2(1—a)
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and consequently

n u—- n e
. [° ’2( 2 POy ! Sy e
—ie™() —2ze" 1 cogp + z%e” ) -
which gives
2(a, — e~ ! ¥ cosv)
P (0)= e
(1 —a) cos s = exp [—aa.(2u . ]
2(1—a) 2(1—a)

2 n
Since | p'(0) | <2, wegetia, —e” M cosv|< (1 —a)l cosi———l.Thisproves our
statement. 2(1—-a)
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STRESZCZENIE

W pracy tej rozwaza si¢ klas¢ funkcji katowo osiggalnych w kierunku osi urojonej. Podane ‘sy
warunki konieczne i dostateczne na to, by funkcja nalezata do tej klasy.

PE3IOME

B 3TOR paBoTe pacCyXIACTCR KIIACC YITIOBO-BOCTHXHMMAIX GyHKunil B HanpaBneHUH MHKMOR ou.
Jlasiy Heo6xomMMBie M OOCTATOYHMC YC/IOBM VIR NpPHHANICKHOCTH QYHMKUMH K ITOMY KNaccy.






