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On Functions Angularly Accessible in the Direction of the Imaginary Axis

O funkcjach kątowo osiągalnych w kierunku osi urojonej

Об углово-достижимых функциях в направлении мнимой оси

Introduction. Suppose that С denotes the complex plane, N is the set of natural 
numbers and a e (0,1> is a fixed number. Now, let us assume the following notations:

where w0 e C. A simply connected domain D =#= C is called a-angularly accessible in the 
direction of the imaginary axis, if for every fixed point w0 e C\D, either A * (w0, a) <r C\D, 
or A~ (w0, a) c C\D. The family of all such domains different from the whole plane C is 
denoted by Ta, while by Ta (0) we denote the subfamily of Ta which consists of all 
domains containing the origin.

Let SP be the class of functions f analytic and univalent in the disc E = Eit where 
Er = {z: | z | < . The class of all functions/e So such that f(E) e Ta is denoted by Ia.
To is the family of domains convex in the direction of the imaginary axis, while Io is 
the well-known class of functions convex in the direction of the imaginary axis.

In this paper we give a necessary and sufficient condition for a function of So to 
belong to Ia (Theorem 2). In the case a = 0 with an additional restriction such a theorem 
appears in a paper by M. S. Robertson [6], while without any restriction in a paper by 
W. Royster and M. Ziegler [7]. A different proof of results stated in the paper by 
W. Royster and M. Ziegler [7] is given in a paper by Cz. Bumiak, Z. Lewandowski and 
J. Pituch (1].

Main results. We start with a density theorem for Ta. Our reasoning is a modification 
of that given in a paper by K. Ciozda [2] for the limit case a - 0.
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Theorem 1. Each domain D, D e Ta is a kernel in the sense of Caratheodory, of a 
decreasing sequence of domains obtained from the plane by removing a finite number 
of angles of the form A * (w, a) or A (w, a).

Proof. Let «0 e N be a number such that Fn = (C\£>) n En ¥= 0, where 7^ =
= {z:|z | <n] , iie [n0, n0 + 1, ...J _andD c Ta. j

Since Fn is a compact set and Fn c E„, therefore there exists an e - net, e =—, i.e.
n

a set of such points { w, ws, p,vr J c Fn that for each wtF„ there exists a

number t' e {l,2,...,s} suchthat |w —uy< |<—oranumber/"e { 1, 2,...,r{ such 
n J

that | tv — vp' | < — . After a suitable change of order of points w,-, w we may choose 
n

positive integers k, l,k<s, Kr, soastOobtain the inclusion

r ■) k I
.... ws, p, vrJ c (J A+ (wm,d)u A~ (vp, a).

m = l p = l

Lei G« = 0 A* (wm, a) u O A~ (vp, a). It follows from the above construction
m -1 p » i

1
that the distance of each point of the set F„ from the set Gn is less than —. In an analogous 

n

manner we form a set G„+ , such that G„ c Gn+ i and the distance of each point of the

set Fn + , from the set Gn + t is less than -------- . In this way we define a decreasing
n + 1

sequence of domains Dn = C\G„. Since D c Dn for n e | n0, n0 + 1, ... J , n0 eN, 

therefore D c A Dn-

So, D = Int D c Int D„. We will show that/) = Int Dn. Suppose that
n » n„ n = n„

O=/=Int Dn. Then there exists point w0 e (Int D„)\D and a numbers >0
n ■ n, n-n„

such that E(w0, 8) c Int /^1 Dn, where E(w0, 8) = ?w:| w — w0 | <6 I. Thus
n- n, J

D(w0,8)c D„,i.e. dist(M’0,C\D„)=dist(w0,Crt)>6, ne j n0. "o + 1,-I
n, 1 o

But w0 e C\D, and consequently, for sufficiently large n, w0 &Fn and dist(w0, G„) < —.
1 n 

We may choose the number n in such a way that — < 6 which leads to a contradic-
n

tion because dist (w0, G„) >6 for ne ) n0, n0 + 1..........SoD = Int Dn. Since
1 n- n.
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Int Pl Dn is a kernel of sequence (£)„); our theorem follows.
„« n„

Theorem 2. Let f be a function non-constant and analytic in E. Then fe.Iaif and only 
if there exist numbers m, v,O<p<27r,O<i'<jr, such that

1 arg ze'M (1 — 2ze"'M cosp + z2e" 2/M)/'(z)jj |<(1— a)—,ze£, (1)

where arg (— i ) = —

Proof. 1. Let /e /a. We assume /(0) = 0 i.e. /(£) e Ta (0). From Theorem 1 it follows 
that there is a sequence of domains containing the origin each of which is obtained from 
the plane by deleting a finite number of angles with measure atr, a e (0, 1 > whose bisectors 
are parallel to the imaginary axis. This sequence converges to the kernel D = f(E). Let us 
first suppose that D = f(E) is a domain which is obtained from the complex plane C by 
eliminating a finite numbers of angles of the form A* (w, a) or A~ (w, a). We will 
approximate the domain D with an increasing sequence of polygons whose sides form

with the real axis angles of absolute measure less than (1 — a) —. Suppose first that the

boundary of D is the sum of segments of half-lines which form sides of angles:

A + (w,, a) = AA + (wjt, a)=A^ or A~ (»,, a) = /If,..., A" (17, a) =A/, where

Re u»j < ... <Re w^Rei;, <„.<Re p/,k, I,&N.There exists a numberM\ >0such that 
all the vertices of the polygon bD are contained in the strip 1 Im w I <. Let w0', be 
common points of the line Im w = Mx, and the left side of the angle/if and the right side 
of the angle /if, respectively. The right side of the angle is a side in the right half-plane 
determined by the bisector of the angle. Analogously, let pJ, v \ be common points of 
the line lmw = — Mt and the left side of the angle/If and the right side of the angle Af , 
respectively. Next, let w- J = 1, 2,..., k~ 1 be common, points of the right side of the angle 
/if and the left side of the angle Af+ i, Let vf, i — 1, 2,..., I — 1 be common points of 
the right side of the angle /If and the left side of the angle Af+ |. Moreover, let P\ be 
the common point of the straight line Im w = — and a straight line containing the 
point vv0 and subtending with the positive direction of the real axis an angle of measure

w
(1 —a) —; let P2 be the common point of the line Im w = — Af, and a straight line

, rr
containing the point which subtends an angle of measure (1 + a) ywith the positive

direction of the real axis. If C\D docs not contain angles A * (vv, a) then we denote by 
Pit P2 common points of Im w = Af, and the straight line containing the point vf which

jr
forms with the positive direction of the real axis an angle of measure (1 + a) — and the
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straight line containing the point v/ which forms with the positive direction of the real 

77
axis an angle of measure (1 — a) ^respectively. Let us form a polygonal line r, with 

vertices:
(i) w, = v,, vi, v2, Vj,..., v/_ i, vi = wk, wi _ iw,', w,, when D is bounded

(ii) Px, vo, v,, v/,..., Wj, Wg, P,, when D is unbounded from the left

(iii) Vj, v/,«., vj, vj, P2, Wk, Wk,..., v,, when D is unbounded from the right

(>v) Pi, Vg, vt, vi,»., vi, vi, P2, wi, Wk,..., Wj, w0', P,, when D is unbounded from 
both sides

(v) P,, P2, wi, wk,..., w,, w^, Pi, when none of the angles/!" (w, a) is contained 
inC\D

(vi) Pi, v0', Vi, vi,..., vi, v{, P2,Pi, when none of the angle A + (w, a) is contained 
in C \ D.

It follows from the above construction that M, > 0 may be chosen in such a way that the 
polygonal line T, is the boundary of a Jordan domain Dit Dt e Ta (0). We form a 
sequence (D„), Dn e Ta (0), of domains constructed in the previouslydescribed manner 
while replacing by a sequence (M„), M„ + °° for n + °° which is an increasing

sequence of domains such that Dn = D = ffE). Hence D is a kernel of (Dn) in the 
sense of Caratheodory. " “ 1

Let (/„) be a sequence of functions/,! e50 such that arg /„’ (0) = arg /' (0), f„ (P) = Dn. 
It follows from the theorem of Caratheodory that /„ '** / locally uniformly in E. There 
are real numbers e <0, 277>, e <0, 2Tr>^n — 6„ >0 such that/„(e'e«)e rn
and Re /„(e'9") is the greatest, and f„ (e",'n) e and Re/„ (e^*) is the least among 
the numbers in question. Assume that 6n = — vn, i//„ = + v„, where vn e (0, Itt),
H„ e (0, 277). At any point of = 3/„(P) (except for the vertices) we consider the 
normal vector. From the construction it follows that this vector forms with the positive

77 77 77
direction of the real axis an angle of measure a — , or tt — ay, or — in the case ‘upper part

a77 7T 3 m
of r„’, and 77 +------ , or 277 — a—, or—7r in the case ‘lower part of rn’. Points/,, (e'0«)

2 2 2
and /«(e'^«) uniquely determine the parts of Tn. Denote = w/> / = 1»—, *5
fn(eiu3i) = Wj J = 0, 1.....= vm, m = 1,..., /;/„(e'7'”) = v«, m = 0,1,..,/

where <J/„ <yj <7i <7i <...<7z<7/<0«<w*<wjt <...<Oi'<o, <too'<+ 277.

At the points of 3P where f„ admits analytic continuation (see G. M. Golusin [3]) we
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may consider the normal vector Moreover, at f0 (which corresponds to a vertex
of T„) the harmonic function arg(f — f0 ) has a jump. Hence

- (1— a) for 0 e O (<*>/. co/) u (o0, ipn + 2ir) 
2 /»i
tr k

- - (1 - a) for 0 e (J (a>f. u>j. , ) u (0„, w*)
2 /■ t

0 for 0 e (0„, V'n + 2tf) when k = 0
(2)

for ‘upper part of r„’ and

arg

for ‘lower part of r„’.
Let us consider the function

h(z;/r,p) = -

^-(l-a)for0e (J (7/'-i,7f)
2 i ■ l

0 for e 7o') u (7A 0„) 

—-^(1 — a) for 0e U (7f,TA)

0 for 0 e 0n) when I — 0

ie~ i,lz

[ 1 - ze' i(*~ *')] [1 - ze' ’>]
(3)

The boundary of the domain h(E', n, v) is the sum of two half-lines contained in the 
imaginary axis which omit the origin. We easily examine that

Im/i(ez^;pi, p)>0 for 0e (p — v,n + p)

Im/i(e'‘*;ja,»')<0 for 0e(pi+ p,g—p+ 2ir)

where g e (0,27r), i> e (0, tr). Thus

arg[fc(e/0;M,«')] = '

— = argi for <t>eÿj—v,n+v) 
2

(4)

----- --  arg (—if) for <(>e (u. + v, n~ v + 2ir).
2

From (2) and (4) it follows
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— (1 — a) for
2

* /
06 u (gj/, gj/) u O (7/. ,, 7,) u (gjo, Ą)n + 2rr) 

/=i i»i

arg-
vn)

Ofor0e(V/„, 7o)u (7/. 9„)

0 for 0 e (ip„, 0n) when I = 0 

0 for 0 e (0n, \pn + 2rr) when k = 0

------(1 — a) for
2

Jfc, /,
0 e O (gj/, gj/- i) u \J (yt, 7/ ) u (0„, GJJt) 

7=1 /=1

Considering (3) we have:

I arg (1 - 2e/*e‘/»*» cosp„ + e2<*e" 2/*«)/„'(e,*)J | <(1 -a) | (5)

for 0e <0„, 0„ + 2ir>\ a>jt,.GJo'..... GJjfc, 7i.......7/. 7o...... 7/'. 'I'n\ ■ By
Theorem 5 of the paper [5], p. 188, we have

| arg —ze/M" (1 —2ze"’M" cosp„ + z2«'2'Mz»)/"n'(z)J | < (1 —a) —,z e£. (6)

Since fn~* f locally uniformly in E and the sequences (p„), (yn) are bounded, there 
exists a subsequence (zijt) such that p.„k -* ji, vnk -> u, (A: -* + °°). From (6) with n = n* 
for k -* + °°, we obtain

1 arg | —ie'M (1 —2ze~ZM cosp + z2e" 2 ,M)/'(z)J |<(1-a)-, ze£ (7)

We know that any domain of 7'a(0) can be approximated in the sense of Caratheodory by 
canonical domains (Theorem 1). Passing to the limit again we conclude that for/eS0, 
/(0) = 0 such that/(£■)& Ta(0) there exist numbers/! e <0, 2ir>, v e <0, rr> which satisfy 
(7) and the first part of Theorem 2 follows.

2. Conversely, let /(z), /(0) = 0 be an analytic and non-constant function in E for 
which (7) holds.

a) If the sign of equality appears for some point z e£, then by the maximum principle 
for harmonic functions we obtain
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— iei>l (1 — 2ze~cos v + z2e” 2 (z) = ce “1 *.

Thus

/(z) = e±'<I-°>2 —-lnle-2'”--------—— ],/(0) = 0. (8)
2 sinp r —/>' u*z — e’

For v = 0, v = n we must take the limit function of the form

/(z) = ie±i <* ’ °>
£ cze~l,t 

1 ~ze~

Therefore/(F) for v e (0,it), is a strip whose edges form with the imaginary axis an angle 

7T
of measure a — . For p = 0 or v = n,f(E) is a half-plane whose boundary forms an angle 

2
of measure a — with the imaginary axis; i.e. /(F) e Ta (0) and the mapping is univalent. 

2
b) Let us now assume that equality in (1) does not take place at any point inF. Thus

I arg ie,,x (1 —2ze-<M cosp-t- z’e" 2'M ) /'(z)^ |<(1 —a) — (9)

It follows from the definition h (• ; g, p) that the function H given by

z h(f) 1 . z —e’(F+p)
F(z) = / —-di = -- -------- ln[e”2,p-------- ----------  ]

o f 2 sinp z —

maps the disc F on the strip w ; A < Im w < B , where — A <B <+ For 
every fixed te (A,B) let us consider a straight line Lt: w = w(s) = s + ti.se (— + °°).
H~ 1 (Ff) is a Jordan arc : zt = zf(s) = H~ 1 (s + ti) contained inF with end-pointsat

and e'^ + respectively. Hence H(zt (s)) = s + ti and

tf'(z,(s)) (10)

The condition (9) is equivalent to
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l<(l-a)p zeE. OD

From (10) and (11) we obtain

d it
I arg—/(zt(s)) | < (1 — ci) —, se (- + °°).

ds 2
(12)

Hence a tangent vector to the curve zt(s) forms with the positive direction of the real axis

an angle larger than —(1 — a) — and simultaneously smaller than+ (1 —a) —. From 
2 2

convexity of H and from (11) it follows that f is a close-to-convex function, hence 
univalent (see W. Kaplan (4J). Therefore, if t varies from A to B, then the curves z = zf(s) 
have end-points e'^ * in common only and they sweep out the disc/?. Hence

Z2)) e Ta, where * t2, tlt t2 e (A, B)-,D(t2, t2), D(tx, t2) c E, denotes a 
domain bounded by the arcs z = zfj (s), z = zf a (s), ss (-«, + °°). Hence f(E) e Ta, 
i.e.fela.

In the second part of our proof we have exploited some ideas from the paper by 
Cz. Bumiak, Z. Lewandowski and J. Pituch [1]. The proof is completed.

Theorem 3. 0<a< I,and f(z) = z + a2z2 + a2 ¥= 0, there exist numbers

it it
p, v; a — < p < (2 — a) —, 0 < v < n such that

. 2p- it
| a, —e 1,1 cos v 1 < (1 — a)J cos------------- | .2 ' 2(1-a) . (13)

it it
Proof. By Theorem 2 there exist numbers/r,p;a —<p<(2— a) — , 0< < tt such that 

2 2

| arg (1 — 2ze" 'M cos v+ z2e~ 2 (z)J | < (1 — a) —, z e E.

Put F(z) = — ie1*1 (1 — 2ze~ cos + z2e~ 2 (z) . Thus the condition (1) has the
form

l«iglF(z)]TrrK^,
_i__  2

which implies Re (F(z)]1 ~a > 0. Therefore, there is a function p (Re p(z)>0, p(0) = 1), 
such that

F(z)
2p — it

2(1-a)
p(z) + i sin

2(1-a)
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and consequently

Z'(0 =

_ 2д - rr 2ц - it , „
Гc0sT7—T P(2) + ' sin —T 11

2(1-a) 2(1 -a)

which gives

P(O) =

—fe'M(l —2ze" cosp+ z’e“ 2/д)

2(e, -e-/M cosp)

2ц — n — ю.(2ц- it)
(1 —a) cos ------7 exp [----- —----- ------  ]

(14)

2(1-a) 2(1-a)

, /u , z 2ц— it
Since | p (0) | < 2, we get j a2 —e~ ** cos v | < (1 — a) | cos------------- 1. This proves our
statement. 2(1 — a)
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STRESZCZENIE

W pracy tej rozważa się klasę funkcji kątowo osiągalnych w kierunku osi urojonej. Podane są 
warunki konieczne i dostateczne na to, by funkcja należała do tej klasy.

РЕЗЮМЕ

В этой работе рассуждается класс углово-достижимых функций в направлении мнимой оси. 
Дамы необходимые и достаточные условия для принадлежности функции к этому классу.




