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On Almost Sure Convergence of Asymptotic Martingales

Abstract. The aim of this paper is to give a characterization of almost sure convergence for
sequences of random variables, which do not necessarily have first moments. An example of such
characterization was given in [5], where a notion of a D,-amart was introduced. In this work we
show that every D,-amart converges a.s. A proof of this fact can be also found in [5], although it
was not mentioned by the author. In the second part of this paper we give proofs of conditional
lemmas of Borel-Cantelli. Then we use them to prove a conditional version of the Kolmogorov's

strong law of large numbers, in which assumption that expectations exist was reduced.

Let (Q, A, P) be a probability space, {F,,n > 1} an increasing (i.e. F;, C Fn41)
sequence of sub-o-fields of a o-field A. We denote by T a set of all bounded stopping
times (P(r < M) =1, where M depends on 7). A sequence {X,,n > 1} is adapted
to {Fa,n > 1} if X, is F,-measurable for every n > 1 .amarts can be found in [6],
[7]. In the definition of an amart we assume that

(1) E|Xn| < o0,

where E(-) denotes the expectation.

In [5] a definition of a D,-amart was given, with omitted assumption (1) and
unchanged properties of an amart.

In [11] a notion of a conditional amart was introduced. Properties of conditional
amarts were examined in [10] and [11]. In the definition of a conditional amart the
assumption (1) was replaced by a weaker one.

Let T € T,i.e. [r =n] € F, forn > 1 and P[r < M] =1 for some M (depending
on 7).

The definition of a conditional expectation with respect to a o-field F C A
of a nonnegative random variable can be found in [9]. Let X+ = max(X,0) and
X~ = max(—X,0), then X = X* — X~. If min(EFX* EFX~) < oo as., then
EFX = EF Xt —EFX- . A fact that max(EFX* EfX~) < 00 a.s. is equivalent
to EF|X| < 0o a.s. If one of these conditions holds, we write X € LL. Similarly, we
write X € L% if EFX? < o0 as.

Deflnition 1 [11]. An adapted sequence {X,,n > 1} of random variables is
called a conditional amart (with respect to a sub-o-field F), if
1. XpeLL,n2>1,
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2. Anet L(EFX,,X),r € T, converges to zero for some random variable X, where
L denotes the Levy-Prokhorov metric.
If F = {0,Q}, we obtain the definition of an amart.
In general, the assumption 1. is weaker than X, € L! (E|X,| < o), n > 1.
Let I denote a class of continuous decreasing functions v defined on (0, 00) and

satisfying the following conditions:

a) imyx—o v(A) =0, limy—o v(A) = +o00,

b) There exists a € (0,1) such that sup,, "‘l%‘)"' =Cq < 0. [2]
Let

(2) 1X1l, = inf{y: i‘;l;P[|X| > M/v(A) <7}

and let D, denote a set of random variables such that X € D, iff limy ﬂ%%:‘l =0.
If X € D,, then || X||, < oo and a metric space (D,,p) is complete and separable,
where p(X,Y) = || X = Y||,. Proofs of these facts can be found in [4].

In [5] a notion of a D -amart was introduced.

Definition 2. An adapted sequence {Xn,n > 1} of r.v.s is called a D,-amart
iff
3. X, € D,,n > 1, for some function v € I,
4. for every € > 0 there exists 7¢ € T such that || X, — X,|| < efor 7,0 € T, 7,0 > 719
a.s.
Let r(X,Y) = inf{e > 0: P[|X — Y| > €] < €} denote the Ky-Fan metric.

Theorem 1. There ezists a constant Vy such that r(X,Y) <V | X -Y],.

Proof. From the definition of || X||, we have

S -y
Ve>0 sup X —VI2MX Vi, +e)l o\ yy 4o
A>0 v(A)

Thus for an arbitrary A > 0 and € > 0
P[IX = Y| > max(}, v(A)(IX = Y|, + )] € max(X, o)X = Y], +¢) -
Let Vo = minx>o(max(A, v(A))), then
PIX-Y|>WIX-Y| )]sV |X-Y], ,

8o
r(X,Y)<VlX -Y|,

and the proof is complete.

Corollaries.
1. If {Xn,n > 1} is a sequence of random variables such that || X, — X||, —
0,n — oo, for some r.v. X, then this sequence converges in probability to X, i.e.

P
Xn — X ,n — o0.
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2. If a sequence {X,,n > 1} is a D,-amart, then it satisfies a condition
(3) Ve>03rg € TVr,0 > 10 as. (X, Xs)<e.

We shall show that (3) implies almost sure convergence of {X,,n > 1}.

Theorem 2. If {X,,n > 1} is a sequence satisfying (3), then for every sequence
{Tn,n > 1} such that 7, € T,n > 1, and 7, = 00, n = 00, Xy, gy ,n — 00,
for some r.v. X.

Proof. If a sequence satisfies (3), then it satisfies also the Cauchy’s condition.
Completeness of the space (®,r) (where ® denotes a set of random variables) implies
the existence of a r.v. X such that r(X,,X) = 0,n — oo.

Let {rn,n > 1} be an arbitrary sequence satisfying the following conditions:

Tm€T,n>1, a.nd'r,.—P-»oo. Then
VkeNankVn>nkP[T,.<k}<§11.

We may assume that the sequence {ng,k > 1} isincreasing. Denote Ay = {n : ng_; <
n < ni}, where ng = 0. We have N = U2, Ai. Define a sequence {r,,n > 1} in the
following way: if n € Ay, then 7, = 7, if Ta > k and 7}, = k if 7, < k. It is easy to
see that P[r}, # 7] < 3¢ for n € Ay, thus P[r} # 7,] = 0,n — oo.

It is easy to see that X, L.x ,n — oo, iff X, i X,n — oo, because
r(Xrp, X) < r(Xroy Xey) + 7(X0y, X) < Plry # o] 4 7(X oy, X)

and similarly
r(Xr,X) < Plr, # m] + r1(X:,, X) .

The condition (3) implies X,/ L , n — o0o. This completes the proof.

Theorem 3. Let {Xn,n > 1} satisfy (3). Then this sequence converges almost
surely to some random variable X.

Proof. The space (®,r) is complete and therefore there exists a random variable
X such that r(X,,X) — 0,n — oco. Let X* = limsup X, and X, = liminf X,,. Then
(see [1]) there exist sequences of bounded stopping times {7n,n > 1} and {o,,n > 1}
such that 7, > n,o0, 2 n, lim X, = X* a.s. and lim X,, = X, a.s. Obviously

r(X* X)) <r(X*, Xr, )+ (X, Xo,) + 7(Xe,, Xs) = 0, n — 00,
by (3), so r(X*, X.) = 0 and the proof is complete.

Corollary . Every D,-amart converges a.s.

Indeed, every D,-amart satisfies the condition (3), so it converges a.s.
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A proof of this fact follows also from (3) and the second part of theorem 1 [5].
The converse to the above theorem can also be proved.

Theorem 4. Let {X,,n > 1} be an adapted sequence of random variables. If
{X,} converges a.s. to some r.v. X, then it is ¢ D,— amart for some function v € I.

Proof. Let Y = sup|X,|. By hypothesis, Y < 0o a.s. There exists a continuous,
decreasing function v defined on (0, 00) satisfying the conditions a) and b) such that
Y €D, (see [4], 5])

Obviously | X,| <Y as. and |[X| <Y as., so X, and Y belong to D,. Similarly

for an arbitrary finite stopping time r X, € D,. Let 7 and o be finite stopping times.
|X, — X,| <2Y, so, by b)

PIX, - Xo|>N _ . PRY>N _ . Pl¥> 2]

b ofas 1
A—o00 v(,\) ~ A—o0 v(A) A—00 v(A)
o e = | el Y o
4 P O oy 0

V37

where m is so large natural number that o™ < % Thus X, — X, € D,.
Let n > 0 be an arbitrary constant. We want to find n € N such that for all
bounded stopping times 7,0 > n a.s.

P(IX, — X,| > An]
v(A)

f an 7’
%) <9
for every A > 0, because it implies | X; — X,|| < ¢, what completes the proof.

It is obvious that (4) holds for v()) > ‘% Because limy_.o,v(A\) = 0o and v is
decreasing, there exists a, such that v(A) > % for 0 < A < a,. Take m € N such that
a™ < 7, where a fulfils the condition b). Thus, by b), v(An) < v(Aa™) < CTv(N),

thus
Pl|X, — Xo| > M) P(|X, — Xo| > Anj
v(X) v(An) '
what tends to zero as A — oo by the definition of D,. Let us choose b, so large that
the right side of the last inequality is less than I for A > b,. Thus (4) holds also for
A > b,

I‘}'ow let A € [ag,by] . v(A) > v(by) > 0, so it is enough to find such n
that for r,0 > n as, 7,0 € T, PIX:—X:| > Ang] < 2v(b,) . We have
P[|XT — X,| > An] < P[|X; — X5| > aqn] . Because X, converges almost surely
to X, limp—co P[sup, >, |Xm — Xi| > agn] = 0. Let us choose n so large that
Plsuppmpn [ Xm = Xaf > a,n] < #v(b,). Obviously for all bounded stopping times
7,0 2 nas. P[|X; — X,| > ayn] < }v(by), what completes the proof.

The following theorem is also true.

<Cg

Theorem 5. If {X,,n > 1} is an adapted sequence of random variables con-
verging a.s. to X, then there ezists a sequence of disjoint sets {Bn,n > 1} such that
B, € Ayn > 1,P(U3,By) = 1, {Xpn,Fa,n > 1} is a conditional amart with respect
to a o-field F = 0(Bn,n > 1) and EF sup, 5, |Xa| < 00.
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Proof. sup|X,| < oo a.s. since X, converges to X a.s. Let 4 = [|X,| <
k, n > 1], k > 1. Obviously A, C 4; C ... and P(U °,4n) = 1. f By = 4,
and B, = A,\A,—; for n > 2, then {X,.,F,,,n > 1} is a conditional amart with
respect to a o-field F=0(B,,n > 1) and EF Sup,>; [Xn| < 0o a.s. Indeed, sup|Xa| <
S rey kIp,, thus EF sup|X,| < EF Y32 kIg, < oo a.s. and so sup|X,| € L}. For
every k |Xi| < sup|Xa|, so Xi € L.

Let € > 0 and let m € N be so la.rge that P(UFL,Bs) > 1 —¢. Let n; > m be so
large that for every k = 1,...m such that P(B;) > 0 and for every 7 > n, a.s.

1
F il < / r - d
|EF (X - X)In| S s X = X| aP

1
< Xn—-X| dP <
RGBT+ A s e
(it is possible by the Lebesgue dominated convergence theorem). Thus P[|E Fx.-EFX | >
€ <e sor(EF X, EFX)<eif r >n; as. L(X,Y) < r(X,Y) for any r.v.s X,Y
and so L(EFX,,EFX) < eif > n,. The proof is complete.

0.1. Conditional lemmas of Borel-Cantelli and conditional laws of large
numbers. Now we shall give generalized lemmas of Borel-Cantelli. Moreover, we
shall show how to generalize the Kolmogorov’s strong law of large numbers weakening
the condition (1).

Let F be a sub-o-field of a o-field A.

Lemmal. If{A,,n > 1} is a sequence of random cvcnta such that 3" P(A,|F) <
00 a.3., where P(A|F) = EFI4,E = (limsup A,)¢ = U3%; Mg, Af, then P(E) = 1.

Proof. We shall show that P(E°) = 0.
0 < P(E°|F) = P(Ng%, Use, Ax|F) = Jim P(URL, AL|F)

< lim kg P(AclF)=0 as.
Hence P(E¢) =0 and P(E) = 1.
Let us remark that convergence of Y P(A,|F) does not imply convergence of

2 P(Aqn).

Example 1. Let (R, A, P) = ([0,1], B([0,1}), #), where u is the Lebesgue mea-
sure on the unit interval, A, = (0,1),n > 1, and F = 0(An,n > 1). It is easy to see
that E:DMP(A,JF):Z IA_,<ooas but 3 P(4n) =Y 1 = co.

You can also prove a fact which is, in some sense, a converse to the above.

Lemma 1*. If {An,n > 1} is a sequence of random events and P(limsup A,) =
0, then for every o-field F such that o(An,n > 1) C F C A we have 3. | P(A4|F) <
0.
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Let (2, A, P) be a probability space and F a nonempty sub-o-field of A.

Definition 3. Events B,C € A are called F-independent, if P(BNC|F) =
P(B|F)- P(C|F) as.

o-fields G,,G; are F-independent, if every two events A; € G; and A; € G, are
F-independent.

Random variables X and Y are F-independent, if o-fields generated by these
variables are F-independent.

In such case if, in addition, X,Y, XY € L}, then EFXY = EFX - EFY as.

Let us remark that if X is F-measurable and Y is an arbitrary r.v., then X and
Y are F-independent.

Lemma 2. Let {An,n > 1} be a sequence of F-independent events and let
A= {w:Y 2, P(As|F)(w) = 00}. Then P(limsup A,) = P(A).

Proof. Let E = (N3, URZ, Ax)® = UL, N2, A;. Properties of conditional
expectations imply

=n

P(E|F) = lim P(NZ,A5IF) = lim (lim P(N2,Af|F))

k k
= lim (lim [] P(45|F)) = tim lim [JJ0 - P(Ai|F)))

tim T[01 = PAIF) < lim exp(= 3 P(AIF)) .

(the last inequality follows from an inequality 1 — z < exp(—z) for z € [0,1]). Thus
for almost every w € A we have

0 < P(E|F)(w) < lim exp(— Y P(AiIF)(w) =0 as

i=n

Thus
P(E) = / P(E|F) dP = J/ P(E|F) dP + / P(E|F) dP < P(A°)
Q A Ac

so P(E*) > P(A).
On the other hand, following the reasoning given in lemma 1, we state that

on the set A° only finitely many events from the sequence {An,n > 1} hold, so
P(E¢) < P(A), q.ed.

Theorem 6. If G, and G, are F-independent o-fields, then 0(G,, F) and G,
are F-independent o-fields as well.

Definition 4. Let X € L%. A random variable 0} X defined by a formula
0t X = EF(X — EF X)? will be called a conditional variance of X.
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Similarly as in the case of independent r.v.s (see [3]) the following theorem may
be proved.

Theorem 7. Assume that

Xn X2
X1 Xa2

is @ matriz of F-independent r.v.s and F; = o(X1,Xi2,...) ,i = 1,2,... . Then the
o-fields F\, F,,... are F-independent.

The above results lead us to a generalization of the well-known Kolmogorov’s
inequality.

Theorem 8. If {X,,n > 1} is a sequence of F-independent r.v.s belonging to
L%, then for an arbitrary F-measurable r.v. € > 0 a.s. we have

2 B 2
€ P[lrEnka%('l |Sk —-E S"I > ¢lF] < ;lapxk as. ,

where S, = X + ... + X,
This inequality implies the conditional Kolmogorov’s strong law of large numbers.

Theorem 9. If {Xn,n > 1} is a sequence of F-independent r.v.s such that

00 9
*) Z afl;;xk < 00 a.s.
k=1
then
S, — EFS,
- -0 a.5. asn — 00 .

Definition 5. We say that r.v.s X,Y are identically F-distributed, if for every
Borel set BC R P(X € B|F) = P(Y € B|F) as.

Theorem 10. Let {X,,n > 1} be a sequence of F-independent, identically
F-distributed r.v.s and let S, = X; +...+ Xn. Then %l — Z a.s. for some r.v. Z iff
Xy € L}. If this condition holds, then Z = EFX,.

Example 2. Let (Q, A, P) = ([0,1], B([0,1]), #), where u is the Lebesgue mea-
sure, and let F = o([0, }],(3,1]). Let Xn(w) = 1 for w € [0,}] and Xn(w) = -1

for w € (1,1). &fﬁl =0 — 0, but you cannot find real numbers A, such that
Sa=4a () as.
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Proofs of the above generalizations are similar to proofs of the corresponding
well-known theorems.
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