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On Almost Sure Convergence of Asymptotic Martingales

Abstract. The aim of this paper is to give a characterization of almost sure convergence for 
sequences of random variables, which do not necessarily have first moments. An example of such 
characterization was given in [5], where a notion of a 7? „-am art was introduced. In this work we 
show that every 7?„-amart converges a s. A proof of this fact can be also found in [5], although it 
was not mentioned by the author. In the second part of this paper we give proofs of conditional 
lemmas of Borel-Cantelli. Then we use them to prove a conditional version of the Kolmogorov’s 
strong law of large numbers, in which assumption that expectations exist was reduced.

Let (fi, A, P) be a probability space, {F„,n > 1} an increasing (i.e. F„ C Fn+i) 
sequence of sub-cr-fields of a cr-field A. We denote by T a set of all bounded stopping 
times (P(r < M) = 1, where M depends on r). A sequence {Xn,n > 1} is adapted 
to {P„,n > 1} if Xn is P„-measurable for every n > 1 .amarts can be found in [6], 
[7]. In the definition of an amart we assume that

(1) £|Xn|<oo,

where £(•) denotes the expectation.
In [5] a definition of a D„-amart was given, with omitted assumption (1) and 

unchanged properties of an amart.
In [11] a notion of a conditional amart was introduced. Properties of conditional 

amarts were examined in [10] and [11]. In the definition of a conditional amart the 
assumption (1) was replaced by a weaker one.

Let t 6 T, i.e. [t — n] € F„ for n > 1 and P[r < Af] = 1 for some M (depending 
on t).

The definition of a conditional expectation with respect to a cr-field F C A 
of a nonnegative random variable can be found in [9]. Let X+ = max(A, 0) and 
X~ = max(—X, 0), then X = X+ — X~. If min(Pf -Y+, EFX~) < oo a.s., then 
EFX = EFX+ - EFX~ . A fact that max(EFX+,EFX~) < oo a.s. is equivalent 
to Ef |JV| < oo a.s. If one of these conditions holds, we write X € L1?- Similarly, we 
write X € L2F if EFX2 < oo a.s.

Definition 1 [11]. An adapted sequence [Xn,n > 1} of random variables is 
called a conditional amart (with respect to a sub-cr-field F), if

1. -Xn € L)?,n > 1,
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2. A net L(Ef XT,X), r 6 T, converges to zero for some random variable X, where 
L denotes the Levy-Prokhorov metric.
If F = {0, fl), we obtain the definition of an amart.
In general, the assumption 1. is weaker than Xn € L1 (E |X„| < oo), n > 1 .
Let I denote a class of continuous decreasing functions v defined on (0, oo) and

satisfying the following conditions:
a) lim.x-.oo u(A) = 0, limx—o w(A) = +oo,
b) There exists a € (0,1) such that supA>0 = Ca < oo. [2]

Let

(2) ||X||„ = inf{7 : suPP[|X| > A7]/v(A) < 7}
A>0

and let Dv denote a set of random variables such that X 6 Dv iff limx-.oo = 0.
If X € D„, then ||X||„ < 00 and a metric space (Dv,p) is complete and separable, 
where p(X,Y) = ||X — y||B. Proofs of these facts can be found in [4].

In [5] a notion of a amart was introduced.

Definition 2. An adapted sequence {Xn,n > 1} of r.v.s is called a £>„-amart 
iff

3. Xn £ D„,n > 1, for some function v £ I,
4. for every e > 0 there exists tq £T such that ||Xr — Xa || < e for r, a £ T, t, a > tq

Let r(X,K) = inf{e > 0 : P[|X - K| > e] < e} denote the Ky-Fan metric. 

Theorem 1. There exists a constant Vo »wcfc that r(Jf, Y) < Vo ||X — Y||B . 

Proof. From the definition of ||X||„ we have

v,>„ ,upm-n>A(P-n.-K)i<||X_
A>0 n(A)

Thus for an arbitrary A > 0 and e > 0

P[|X - KI > max(A, v(A))(||X - Y ||„ + e)] < max(A, v(A))(||X - K||v + e) .

Let Vo = minx>o(naax(A, v(A))), then

p[|x-y|>M*-y|IJ<M*-y|lv ,

80

r(x,y)<Vo||x-y||e
and the proof is complete.

Corollaries.
1. If {X„,n > 1} is a sequence of random variables such that ||X„ — X||B —> 

0,n —> 00, for some r.v. X, then this sequence converges in probability to X, i.e. 
Xn X ,n —» 00.
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2. If a sequence {Xn,n > 1} is a Dv-amart, then it satisfies a condition

(3) Ve > 0 3t0 € T Vt,<j > To a.s. r(XT, X„) < e .

We shall show that (3) implies almost sure convergence of {X„,n > 1}.

Theorem 2. If {Xn,n >l}ijo sequence satisfying (3), then for every sequence 
p p

{Tn,n > 1} «ucfe that t„ € T,n > 1, and rn —» oo, n —* oo, XT„ —> X ,n —► oo, 
for some r.v. X.

Proof. If a sequence satisfies (3), then it satisfies also the Cauchy’s condition. 
Completeness of the space ($, r) (where $ denotes a set of random variables) implies 
the existence of a r.v. X such that r(X„,X) —> 0,n -+ oo.

Let {rn,n > 1} be an arbitrary sequence satisfying the following conditions:
p

t„ € T, n > 1, and t„ —» oo. Then

Vfc € N 3nt Vn > n* P[t„ < k} < .

We may assume that the sequence {n*,fc>l}is increasing. Denote A* = {n : njt-i < 
n < n(t}, where no = 0. We have N = U^_j Ak- Define a sequence {r^,n > 1} in the 
following way: if n € A*, then = t„ if t„ > k and r„ = k if t„ < k. It is easy to 
see that P[r' rn] < for n € At, thus P[t^ / t„] —♦ 0,n —► oo.

It is easy to see that XTn X , n —» oo, iff Xr< X, n —> oo, because 

r(Xr„, X) < r(Xr„, Xr.) + r(Xr,, X) < P[< / r„] + r(Xr-, X)

and similarly
r(Xr,,X)<P[</Tn]+r(Xr„,X).

pThe condition (3) implies XT^ —♦ X, n —♦ oo. This completes the proof.

Theorem 3. Let (X„,n > 1} satisfy (3). Then this sequence converges almost 
surely to some random variable X.

Proof. The space ($, r) is complete and therefore there exists a random variable 
X such that r(X„,X) —> 0,n —» oo. Let X* = limsupX„ and X, = liminf X„. Then 
(see [1]) there exist sequences of bounded stopping times {r„,n > 1} and {<r„,n > 1} 
such that rn > n,crn > n, limXrn = X* a.s. and limXan = X, a.s. Obviously

r(X*, X.) < r(X’, XTn) + r(Xr„, Xa„) + r(X„n, X.) - 0, n - oo, 

by (3), so r(X*, X,) = 0 and the proof is complete.

Corollary . Every Dv-amart converges a.s.

Indeed, every D„-amart satisfies the condition (3), so it converges a.s.
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A proof of this fact follows also from (3) and the second part of theorem 1 [5]. 
The converse to the above theorem can also be proved.

Theorem 4. Let {X„,n > 1} be an adapted sequence of random variables. If 
{%„} converges a.s. to some r.v. X, then it is a Dv — amart for some function v € I.

Proof. Let Y — sup |X„ |. By hypothesis, Y < oo a.s. There exists a continuous, 
decreasing function v defined on (0, oo) satisfying the conditions a) and b) such that 
V € Dv (see [4], [5]).

Obviously \X„| < Y a.s. and |X| < Y a.s., so Xn and Y belong to Dv. Similarly 
for an arbitrary finite stopping time r XT G D„. Let t and a be finite stopping times. 
\XT-Xa\<2Y, so, byb)

Um P[|Xr - Xg| > A] 
A—>oo u(A) A—-oo V(A) A—>oo v(A)

,^>11 -P[V>A}
„/At - C" M v(\) = 0< lim c; 

A—*oo

where m is so large natural number that am < j. Thus XT — Xa € Dv.
Let q > 0 be an arbitrary constant. We want to find n € N such that for all 

bounded stopping times r,a > n a.s.

p[|xr-x,]>An] n 
W v(A) 2

for every A > 0, because it implies ||XT — Xg|| < e, what completes the proof.
It is obvious that (4) holds for r(A) > Because limx-.oo v(A) = oo and v is 

decreasing, there exists a, such that w(A) > for 0 < A < a,. Take m g N such that 
a"1 < T), where a fulfils the condition b). Thus, by b), v(A?/) < v(\am) < C™v(A), 
thus

P[|xr-x,|>An] ^mP[|Xr-X,|>An] 
v(A) - v(An)

what tends to zero as A —+ oo by the definition of Dv. Let us choose 6, so large that 
the right side of the last inequality is less than | for A > 6,. Thus (4) holds also for 
A > 6q.

Now let A € [a,, 6,] . v(A) > v(fe,) > 0 , so it is enough to find such n 
that for r,a > n a.s., r,a € T , P[|Xr — Xr| > An] < • AVe have
P[|Xr — A'tr| > An] < P[|Xr — Xa\ > a,n] • Because converges almost surely 
to X , lim„_oo P[supm />n |Xm - X/| > a,n] = 0- Bet us choose n so large that 
P[supm 1>n |Xm -X/| > a,n] < 2^(&q)- Obviously for all bounded stopping times 
T,a > n a.s. P[|Xr - Xg| > a,n] < what completes the proof.

The following theorem is also true.

Theorem 5. If (A„,n > 1} is an adapted sequence of random variables con­
verging a.s. to X, then there exists a sequence of disjoint sets {B„,n > 1} such that 
Bn e A,n > 1,P(U~ jB«) = 1, {X„,P„,n > 1} is a conditional amart with respect 
to a a-field F = a(B„,n > 1) and PFsupn>1 |X„| < oo.
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Proof. sup|X„| < oo a.s. since X„ converges to X a.s. Let A* = [|Y„| < 
fc, n > 1], k > 1. Obviously Aj C A2 C ... and P^J^A«) = 1. If Bj = Ai 
and B„ = A„\A„_i for n > 2, then {JY„,Fn,n > 1} is a conditional amart with 
respect to a <r-field F=<r(Bn,n > 1) and EF supn>1 |X„| < oo a.s. Indeed, sup |Y„| <
52^-1 klgk, thus Ef sup |X„ | < EF £3^! klgk < oo a.s. and so sup |JYn | € Lp. For 
every k |Xk| < sup |X„|, so Xk € Lp.

Let e > 0 and let m € N be so large thatP(UjJLjB*) > 1 — e. Let ni > m be so 
large that for every k — 1, ...m such that P(B*) > 0 and for every t > ni a.s.

|EF(Xr - X)IBh | < |Xr - X| dP

^pTr-J sup|Xn-X| dP<e 
E(Bk) JBk n>m

(it is possible by the Lebesgue dominated convergence theorem). Thus P[|FF.Yr — FfY| ? 
e] < e, so r(EFXT,EFX) < e if r > m a.s. L(X,Y) < r(JY,Y) for any r.v.s X,Y 
and so L(EFXT,EFX) < e if t > m. The proof is complete.

0.1. Conditional lemmas of Borel-Cantelli and conditional laws of large 
numbers. Now we shall give generalized lemmas of Borel-Cantelli. Moreover, we 
shall show how to generalize the Kolmogorov’s strong law of large numbers weakening 
the condition (1).

Let P be a sub-cr-field of a cr-field A.

Lemma 1. If {An, n > 1} w a sequence of random events such that £2 P(A„|F) < 
oo a.s., where P(A|F) = EFIA,E = (limsup A„)c = Ack, then P(E) = 1.

Proof. We shall show that P(FC) = 0.

0 < P(FC|F) = P(n~ J U&n A*|F) = lim P(U^=nA*|F)n—»00
oo

< lim yP(AjtlF) = O a.s. 
n—*OG k=n

Hence P(FC) = 0 and P(F) = 1.
Let us remark that convergence of ^2 P(An|F) does not imply convergence of 

EP(^n).

Example 1. Let (fi,A, P) = ([0,1], B([0, l]),p), where p is the Lebesgue mea­
sure on the unit interval, A„ = (0, £),n > 1, and F = <r(A„,n > 1). It is easy to see 
that > P(An|F) = £“ , IA„ < oo a.s., but £P(A„) = £ £ = oo.

You can also prove a fact, which is, in some sense, a converse to the above.

Lemma 1*. If {A„,n > 1} is a sequence of random events and P(limsupA„) =
0, then for every a-field F such that a(A„,n > 1) C F C A we have $2^=i i>(^n|F) < 
oo.
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Let (Q, A, P) be a probability space and F a nonempty sub-er-field of A.

Definition 3. Events B,C G A are called F-independent, if P(B Cl C|F) = 
P(P|F) ■ P(C|F) a.s.

cr-fields Gi,G2 are F-independent, if every two events Ai € Gi and A2 G G2 are 
F-independent.

Random variables X and Y are F-independent, if a-fields generated by these 
variables are F-independent.

In such case if, in addition, X,Y,XY G Lp, then EFXY = EFX ■ EFY a.s.
Let us remark that if X is F-measurable and Y is an arbitrary r.v., then X and

Y are F-independent.

Lemma 2. Let {A„,n > 1} be a sequence of F-independent events and let 
4 = {w : £^1 P(An|F)(w) = 00}. Then P(limsup A„) = P(A).

Proof. Let E = (njJLj U*Ln A*)c = fl^.n Ack. Properties of conditional 
expectations imply

P(F|F)= lim P(n£LnA£|F) = limilim P(O~nA‘|F))
n—*oo n—►00 k—»00

k k
= lim ( lim [J 1^)) = lim lim [[¡(I - P(A,|F))] 

n—»00 fc—*oo n—*00 Jfc—*oo
i=n i=l

00 00
= lim TT(1-P(A,|F)) < lim exp(— V' P(AJF)) a.s.

n—*00 n —»00 '
i=n t=n

(the last inequality follows from an inequality I — x < exp(—x) for x G [0,1]). Thus 
for almost every w G A we have

oo
0 < P(F|F)(w) < lim exp(— V' P(Ai|F)(w)) = 0 a.s.

n—♦oo * ■
i=n

Thus

P(F) = [ P(E\F) dP= f P(E\F) dP+ { P(E\F) dP < P(AC) ,
Jn J a J A'

so P(FC) > P(A).
On the other hand, following the reasoning given in lemma 1, we state that 

on the set Ac only finitely many events from the sequence {A„,n >1} hold, so 
P(FC) < P(A), q.e.d.

Theorem 6. If G\ and G2 are F-independent a-fields, then a(Gi,F) and G2 
are F-independent a-fields as well.

Definition 4. Let X € L2F. A random variable a2FX defined by a formula 
a'pX — Ef(X — EfX)2 will be called a conditional variance of X.
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Similarly as in the case of independent r.v.s (see [3]) the following theorem may 
be proved.

Theorem 7. Assume that

Xn X12 •••
X2i X22 • ■ •

t e <

is a matrix of F-independent r.v.s and Fi = a(Xn,Xi2,...) ,i = 1,2,... . Then the 
a-fields F,,F2,„. are F-independent.

The above results lead us to a generalization of the well-known Kolmogorov’s 
inequality.

Theorem 8. If {X„,n > 1} is a sequence of F-independent r.v.s belonging to 
L2f, then for an arbitrary F-measurable r.v. e > 0 a.s. we have

n
e2F[ max |St — FFS*| > e|F] < ffFXk a.s. ,

1-*-n jt=i

where S„ = X\ + ... + X„

This inequality implies the conditional Kolmogorov’s strong law of large numbers. 

Theorem 9. If {Xn,n > 1} u a sequence of F-independent r.v.s such that

(*)

then

00 2 vaFXk
fc2*=l

< 00 a.s.

Sn - EFSn 
n

a.s. as n —> 00 .0

Definition 5. We say that r.v.s X, Y are identically F-distributed, if for every 
Borel set B C R P(X & B\F) = P(Y £ B\F) a.s.

Theorem 10. Let {X„,n > 1} be a sequence of F-independent, identically 
F-distributed r.v.s and let Sn = Xi + ... + X„. Then —> Z a.s. for some r.v. Z iff

£ Llp. If this condition holds, then Z = EFXi.

Example 2. Let (Q, A, P) = ([0,1], B([0, l]),p), where p is the Lebesgue mea­
sure, and let F = cr([O, j], (j, 1]). Let X„(w) = 1 for w £ [0, j] and X„(w) = —1 

for w £ (|,1]. Sa-fi -ga. = 0 —♦ 0, but you cannot find real numbers A„ such that
S"~A" —» 0 a.s. n
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Proofs of the above generalizations are similar to proofs of the corresponding 
well-known theorems.
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