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Coefficient Regions for Univalent Trinomials, П

Obszar zmienności współczynników trójmianów jednolistnych II

Область изменения коэффициентов однолистных триполиноиов

In connection with his work on the Picard Theorem, Landau 

([7], [в]) proved that every trinomial 

(1) . 1 + z ♦ aQzn, n>2,

has at least one zero in the circle | z (^2. Using a simple 

rule due to Bohl [l], Herglotz [6] and Biernacki [2] showed 

(also see [5, p. 55]) that the trinomial

n1 “2(2) 1 + z + a^z , 1<n1<n2

has at least one zero in

1k

if ng is an integral multiple of n^

if П£ is not an integral multiple of ix,.
I

It is easily seen that the result of Herglotz and Biernacki
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is equivalent to the following

THEOREM A. If

1 <n^ <n2(3) 1 + a„ z + a_ z

does not vanish in J z |<1, then

°2

(4)

p(z)

n2 -

The examples

k

if n2 is an integral multiple of n^

if n2 is not an integral multiple of n^.

n1 11----- £— z 1 + —i
k-1

kn„

k-1 
k-1

(1 - z ')(1
K— I J_

- -J— T zj 1) 
k - 1 fcf

and

n1 , 6 ?2q(z) = 1 + (1 - 6)z &>0

show that (4) is best possible. However, we can claim more 

precisely (see [ioj) that if G denotes the region determined 

by the curve
-in^<jp Ki^-n^

■e + a_ e
°2

0 ^<p423T

and containing the origin, then (J) is + 0 in lz | <1 if

and only if -a_ 6 G. This observation was used to deal with 
“l

a related and in fact more -difficult problem of Cowling and
Royster [4], namely the determination of the precise region

of variability of (a^a^) for the univalent trinomial 
2 kz + a2z + a^z where k^3. In fact, we considered arbitrary
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trinomials z + apzp + ac,zq where p<q. Denoting the region 

determined by the curve

Î91

(5) *(») = e-i(P-1)?+ t s*.nA®. el<Q-P)y t o^<p^2x,
* sin©

o<t<l

and containing the origin by G& - Gg(p,q,t) where 

G0(p,q,~) stands for the interval [-2,2J if q = 2p - 1, 

and for jo} otherwise, we proved [iojj

THEOREM B. The trinomial

ff(z) = z - a zp + tzq,t,_. _ _ -p 

is univalent in |z|<1 if and only if

(6) a_ €

(p<q, 0<t^l)

a c
os©*? 3inpô

±2££for 0=|, 2 I =<t.

Besides, we carried out a closer study of trinomials of

the forms

2 a.(i) z - a2z + tz

(ii) • z - a,z^ + tz^

(iii) z - a2z2 + tz^

(iv) z - a^z + tz-'

which along with the previously known result (Ci'll, [9]) about 
polynomials of the form z + apzp + a2p_>jz2p_ZI, gave us a 

reasonably good understanding of the coefficient region for 
univalent trinomials of degree =$ 5.

Here we carry our investigation further and prove the
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following results.

THEOREM 1. Let Gg be as defined above. If 2p-1>q>p, 

then the trinomial

ft(z) = z - apzp + tzq, (0<t^^)
/

is univalent in (z J < 1 if and only If

' THEOREM 2. Again let Gq be as defined above. If 

q>2p - 1, then provided q - 1 is not an Integral multiple 

Si p - 1, the trinomial

ft(z) = z - apzp + tzq, (0<t^i)

is univalent in Iz ,<1 if and only if

®p€p G0 •

The conclusion of Theorems 1 and 2 does not hold in gene­

ral if q - 1 is a multiple of p - 1. However, it is known 

([5], {>], t?0]) that according as q is equal to 5, 4 or 5 
the trinomial

ft(z) = z - a2z2 + tzq, (t>0)

is univalent in |z|<1 if and only if

a2? GO = ? ®Q^2,q,t)

provided t does not exceed 1/5, 1/16 or 1/55 respectively. 
Here we prove
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THEOREM 3. The trinomial

ft(z) = z - a2z2 + tzq, (Q>3)

is univalent in 1z|<1 if and only if

a2^ 2" Gg(2,q,t)

provided 0 < t <----«2------- .t------ — _ 4)

Since Gq(p,Q»^) =l0| if q / 2p - 1, it is an imme­

diate consequence of Theorem B that

f1/q(z) = z - apZp + 1 zQ, (q 2p - 1)

is univalent in Iz|<1 if and only if fW z) does not 

vanish there. This proves Theorems 1 and 2 in the case t = 1/q 

and so hereafter we will restrict ourselves to values of 
t €(0, 1).

We need various auxiliary results which we collect as 

lemmas.

LEMMA 1. If I - 1 and m - 1 are relatively prime, 

then the set of points

(7) exp(- 1 1 “ 1)^), u= 0,1,2,...
' m - 1 J

is identical with the set

exp(- i
m - 1

0,1,2,...,m—2 .♦

? r 0 o r. Kirst, let us observe that for^i= 0,1,2,..,m- 
jints exp(- i 2-^3-. 'V3r.) are all distinct. In fact

.xp<- 1 ?./■(.< 7 1)«.) . exp(. 1 2 !».(..< 7..1)X)

m - 1 m - 1

(8)
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for some (a , V such that 0 9 < m - 2 if aDd only if

(9) exp(--- ■"■■—( y - m )2ari) = 1
m - 1 I

Since, by hypothesis, Ą - 1 and m - 1 have no common 

factors and i? - yu < m - 2 it is easily seen that 

cannot be an integer and so (9) cannot hold.

On the other hand, the numbers (7) are of the form

{ exp (- i( - 1)2^i x )} 1/(m~'1), p= 0,1,2,... ,

i.e. they are amongst the (m - 1)-st roots of unity. In other 

words, the set of numbers (7) is a subset of the set (8).

The above two considerations show that the sets (7) and 

(8) are identical.

LEMMA 2. Let a m Z~ 4» where (- 1 and m - 1

are relatively prime. Then there exists a positive integer n 
such that

• exp(- i P ~ 1 2nx) a exp(i —).
q - 1 m - 1

Pro of. According to Lemma 1 there exists a positive 

integer n such that

exp(- i - exp(- i I - 1)X .
m - 1 m-1

Hence

exp(i —-^-) = exp(- i = exp(- i .2P.( ~ 1 ? _
m-1 m-1 m-1

a exp(- i P-- ■ 2nar) .
Q - 1

The region G& is determined by a curve of the form

(10) w( ) = w(b, <p) a + be^^-P^, 0 ś 2x
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where - bQ^.b<1 with 0<bQ<1. In fit)} we noted some 

important properties of the curve defined by (10). For

example, a point w lies on if and only if its conjuga­

te does. This in conjunctions, with the fact that OeG. implies:
» w

LEMMA J. The region G& is symmetrical about the real

axis.

Here we prove

LEMMA 4. If s y where Z - 1 and m - 1

are relatively prime then the curve /~^ and hence the region

is symmetrical about the line

Im{we-iX/(m-1) } 3 0 .

Proof. Let n be as in Lemma 2. If we define w(<p) 

outside the interval Lo,23r] by periodicity, then

w(£.R3T. - y ) 3 expj1- i(q - 1 )- - ^>)J +

+ b expji(q - p)(êH2__ « =

_ e2x i/(m-1 )ei(p-1 )<p + be2nxie2xi/(m-1)e-i(q-p)<f> =

= e2Xi/(m-1)|ei(P-1)? + be-l(q-p)<f> J a ^OïiAm-D^j .

This means that a point w lies on if and only if
g2xi/x.m-1 )w() does. Hence we have the desired result.

We are now ready to prove

LEMMA 5. Let where Z - 1 and n - 1

are relatively prime. Then Gg(p,q,t) is symmetrical about 
the lines
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(11) Imfw exp(- i = 0, к = 0,1,2,.,.,2m-3.

Proof. Prom the definition of w(oj>) it is readily 

seen that

я( Ф + -22-) s w(<p) exp(- i2(? ~ 1)2-).
* q - 1 ‘ q - 1

Hence a point я lies on if and only if the points

я exp(- i 2f*( * -JJS.), «»0,1,2,...
m — 1 I

do. But acoording to Lemma 1 this set of points i_; identical 

‘ with the set

я exp(— 1 2■), u — 0,1,2,.. • , m—2 .
m - 1 I

The desired result is поя a simple consequence of Lemmas 3 and 

4.

The next four lemmas give some useful Information about 

, the curve and the region .

LEMMA. 6. Let

g(z) я + bzq“p, (q>p>1)

where -1 <b<1. If 2p - 1>q then the vector gCe*^) 

turns monotonically in the clockwise direction as <j> increa­

ses from 0 to 2or .

Proof. It is enough to show that

(12) Rejzg'(z)/g(z)y<0 for I z, = 1.

Writing z » ei(P we see that (12) holds if and only if
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L(b, cf>) 1= b2(q- p) - b(2p - 1 - q)cos{(q - 1)<f} - (p - 1)< 0

for 0 < <f> «2W .

But clearly

L(b,<^> )<b2(q - p) + |bj (2p - 1 - q) - (p - 1), 

and so for -1 < b <1

L(b,<|>)<(q - p) + (2p - 1 - q) - (p - 1) 3 0

LEMMA 7. Under the conditions of Lemma 6 the tangent to 

the curve

w(<p) 3 g(eicP), 0 <p £ 2 mr

turns monotonically in the clockwise direction as_ <f> increa­

ses from 0 to 23V.

Proof. It is clearly enough to verify that 

(15) Re|l + zg"(z)/g'(z)}<0 for ,z| s 1,

or equivalently

(14) b2(q - p)^ + b(q - p)(p - 1)(2p - 1 - q)cos{(q - 1)^»\ - 

- (p - 1)5<0 for 0<t<f<23V.

But the expression on the left hand side of (14) cannot exceed 

(q - p)3 + (q - p)(p - 1)(2p - 1 - q) - (p -i)^

which is negative since it can be written in the form 

- (2p - 1 - q)|(q - p)2 + (p - 1)2}.

1
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LEMMA 8. Let

g(z) 3 + bzq”p, (q>p>1).

If 2p - 1 <q then for -(p - 1)/(q - p)^b<(p - 1)/(q - p) 
the vector gCe^P ) turns monotonically in the clockwise 

direction as <f> increases from O- to 2x.

Proof. We observe that if -(p - 1)/(q - p)<b<

(p - 1)/<q - p) then (12) holds, or equivalently 

L(b,«p) ts b2(q - p) + b(q - 2p + 1)cos|(q - -

- (p - 1) < 0 for 0 £ 23C .

In fact

L(b,<f )^b2(q - p) + lbl(q - 2p + 1) - (p - 1) =

» 4<q - p>IM - <p - 1 >}<M + ixo

if - (p - 1)/(q - p)<b<(p - 1)/(q - p) .

If b a * (p - 1)/(q - p) then L(b,cp)<0 except at the 

points where cos^Cq - 1)«p} = -pjp . At such points 

L(b,<p) s 0. Hence the lemma holds.

LEMMA 9. Let

g(z) 3 z“(p"1) + bzq“p, (q>p>1, -1<b<1).

If_ 2p - 1<q then for I b I ^(p - 1)/(q - p) the tangent to 
the curve

w( <p) = gCe1^ ), 0<, <p^2X
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turns monotonic ally in the counter-clockwise direction as 

increases from 0 to 2x •

Proof. We observe that if {bl>(p - 1)/(q - p)

then

(13') Re^1 + zg" (z)/g'(z>1>0 for \z( a 1,

or equivalently

X(b,<p) ,= ” P)^ ”

- b(q - p)(p - 1)(q - 2p + 1)cos{(q - 1 )<j> J

- (p - 1)^>0 for

In fact

o£(b,<f )^b2(q - p)5 - |bl (q - p)(p - 1)(q - 2p + 1) -

- (p - 1)5 ={|b| (q - p)2 + (p - 1 )2}{lb| (q - p) -

- (p - 1)}>0 if lb| >(p - 1)/(q - p).

If b = * (p - 1)/(q - p) then oT(b,<j>)>0 except at the 
points where cos{(q - 1)<f} = -j^p . At such points

) = 0. Hence Lemma 9 holds.

We will also need

LEMMA 10. Let g--~ 3 = l-T-j. where 
--- - q — j m — j —■■■

are relatively prime. Further, let U 

for k = 0,1,2,...,m-2

f £ - 1

C - 1 and m - 1

(2k + 1)X

t- 1
m - 1

2kX

if t .^L>0
sind

if fc £in^.<0
sind

m - 1
(15)
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Then the part of the boundary of Gq contained in the sector 

Jarg w - Yfcj image of some subinterval

1 e,k ,= ta e ,k* & —® ~apping (10) ”ith

2* , ,Proof. Since w( <f> + -—) = w(<j>) for all real if , 

w(<f>) = e“i(p_1)<p + bei(q-p)<f , 0<^2x/s

is a closed curve whose trace is the same as that, of

the curve P^.

• Now let b>0. Note that the minimum distance between 

the origin and a point on the boundary of G @ is 1-b and 

the points of the boundary for which this distance is attained 

are precisely the points

(16) (1 - b)e , k = 0,1,2,...,rc-2 .

In the same way as for Lemma 1 it can be shown that this set 

of points is identical with the set

(1 - b)exp(- i
m - 1

M= 0,1|2|••«,m-2

or the set

(1 - b)exp(- i -2M- + 

m - 1
— 0,1,2,s»«, id—2r

according as I - 1 is even or odd.

The region Gq being symmetrical about the lines

Imjw exp(- i -££_-) } - 0, ju = 0,1,2,...,2m-5

the part ^b k of its t,oun<iai^ lying in the sector 
Jarg w - Y k | in ~-y is either the image of an interval 

i 2tt/s] by w(if ) or else it contains at least two
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< ”* Yk + nrpoints w , vre not lying on the rays arg w s - —ry

where the curve of. cuts itself. Clearly then, the curve 
0 - • m-2cuts itself also in the points ^w*exp(i j)j and

jw*e ^kexp(i . Thus, there are at least ^t-(m - 1)

values of if in [0^ 2 x/s j such that |w(<p)| = |w*l. 

However, this is impossible. In fact, the curve is the

union of m - 1 congruent arcs C^ described by the moving
k 2JT k + 1 23Tpoint w(<f>) as (f increases from —■■■_' —g~ to ‘1 ~~a~

k = 0,1,2,...,m-2. On each of these arcs |w( <p)| decreases 

from 1 + b to 1 - b and then increases to 1 + b. Hence 

(w((f>) | cannot assume any value more than twice in the inter­
val E in -~*T m - 1 ^s~ ] and can assume an7 eiven value

at most 2(m - 1) times in (.0» 2x/sJ.

The argument is similar in the case b<0.

In addition we will need the following lemma which is

proved in [1OJ.

LEMMA 11. Let P(z,x) be a complex valued function of 

z (complex) and x (real) having the following properties:

(i) there exists an absolute constant ot > 0 such that

for each x belonging to the interval I :={x : a<x<b}, 

P(z,x) is analytic in the annulus : = |z : 1 -oC<lz|<1 +<x
and is univalent on the arc

^x :={z = e1? : ^(x) < <j>«f2<x>},

where, <p,j(x), a££ continuous functions of x satis­
fying, 0 < <f2(x) - (x) < 2x,

(ii) for each. zQ l7„ing on where xq iS SP arbi­
trary point of I there exists a left-hand neighbourhood
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N(XqI S(zq)) i= {x : xQ - &(zQ) <x«x0 }

of Xq in which exist and. are bounded,

(iii) there exists an absolute constant M such that for

all x£l and zeA^^,

|F(z,x)|<M.

For each x €1, let Cx be the arc

w s FCe1*? ,x), (x)< y £: ^(x) .

Now, if

(17) Re Hz, x)/|z F(z,x)|] >0

for all x«-I, zC^x, then the arcs C , C where 

x>j el, Xg €l do not Intersect each other if [x^ - x2J is 

sufficiently small. In particular, if the arcs, Cx, except 

for their end points, remain confined to the interior of a 

fixed angle a.^<y^‘<<X.2 opening < 2X whereas, each 

arc has its initial point on \y = c^2 its. terminal point

on y = o6-j, then the sectorial region bounded by Cx and 

the two rays y= AC,, oc^ shrinks as x increases.

First of all we wish to proveProof of Theorem 1.

It is clearly enough to show that the part of Gg lying in 
the sector *arg w - -JLp where is defined in

(15)» shrinks monotonically as © decreases from 1t/q to 0.
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For this we apply Lemma 11 to the function

P(z,x) = ♦ t sAp-.rë- zq-P, X = COS0
sin©

where for we take {z = e1? : <p ^l^o’ ^0,0^*

The numbers Otg q, p>@ q are same as An tlie statement 
of Lemma 10. The part of the boundary of Gq lying in the

sector |arg w - 1 is tiien arc 0x Lemma •

A simple calculation shows that condition (17) is equivalent to

(18) (q cos q0 sin© - cos© sin q0 ){- (p -1)cos(q-1)<J> +

♦ t(, - p) si£J0.l<o . 
sin© J

The quantity within the first pair of brackets is negative 

for 0 6 (0, X/q) whereas the quantity within the second pair 

of brackets is positive for ^2(q~- 17 » 2~(q^> 1‘P and

0 € (0, X/q).

Now let us show that

(19) ( ’0,0’ Pe,o)C(-
2(q - 1)

-22-----).
2(q - 1)

If we denote by Arg w, 

Q- 23T ,0), then

the value of the argument lying in

Arg w( 06 0,o) = 

Arg w( j* 9f0) =

Arg w(-----2-----)
2(q - 1)

Arg w(—
2(q - 1)

P - 1 - . XJV + 1 9
q - 1 m - 1

E-XJLyc.-Z- ‘ 
q - 1 m - 1

= - -JLxl 
2(q

~~ X + •4'*, 
- 1)

= - IÙL-. 11 x - uz* 
2(q - 1)
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where is the unique root of the equation tan vj' —

■ * 11 <0-x/4j-

In order to prove (19) it is enough, in view of Lemma 6, 

to verify that

(20)

(21)

Arg w( QC ^0)<Arg w(

Arg w(- ?r -)<Arg

2(q - 1)

w( P 0,(

-),

,)
2(q - 1)

It is easily seen that Inequalities (20), (21) hold if and 

only if

(22) f-1
X + Ÿm - 1 m - 1

The hypothesis 2p - 1>q which is equivalent to 
»S-=4>2 implies that -C - 1 >2. Hence (22) does hold 

and in turn so do (20), (21).

Thus (18) certainly holds for <fe^0<'Qto» i,e*
the curves C„ do not intersect each other as x varies from

m - '1

cos(Tr/q) to ’1. Indeed we have shown that the region Gg 

0 decreases from It/q to 0.

for

shrinks monotonically as 
1 sin0Since for 0t[o,Tt/q) and GqCGq

all 9 

contained in

1 Ä-in this range it follows that - GQ is a fortiori 
sin 0 7T-
sin p@ 9 i.e.

fl sin 0 z"
0 6 **/q sin p0

G0 = P G0

. The theorem will be completely proved if we show that
? ^9 for a11 ’0 6 t f « ?]• We sha11 in fact

show that

1 max lwl<- - ___
p w |sin p0| we3G

mÿ |w| for 0e[£ , Ç],(23)
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and thereby complete the proof of the theorem.

There are m - 1 points on 3gq where max }wl is 
w+fc^0«-

attained. If Wq is such a point, then arg Wq _ m-”-y are

two of the directions in which min |w| = 1- tq is attained.W € "d Gq
Lemmas 5, 7 imply that the region Gq is convex, from which 

it readily follows that

(24) max [w|^(1 - tq) sec .
w m - 1

Since mii^ |w| = 1 - 1jj inequality (23) will 

proved if we show that

1 (1 - tq)sec -3—aing- (1 - t Igln igl) 
p m - 1 (sin pG{ sin 0

for 06 , J].

We shall indeed prove that for Ml • the stronger ine­

quality

(25) igia-g.Ql <p cos __z_
sin 0 m - 1

holds.
First let T/q 0 <^p. Then, in view of the hypothe­

sis 2p - 1 >q we have + ^<p0^"X and so

0 <sin p 0 < cos , sinQ > sin - .

Consequently <1/(2 sin £~) and for (25) to be true

for X/q<<0^ qt/p it is enough that the inequality

(26) 2p 3in — cos —--— >1
2q m - 1

hold for values cf p, q and m under consideration. Now if 

m - 1^4 then also q - 1 >4 and the hypothesis 2p — 1 >q
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implies that p>3. Hence, the left-hand side of (26) is at 

least equal to V2" p sin . Now using the fact that 
1 sin(^ x) is a decreasing function of x in (0,2) we 

obtain

/2p sin —>3/2 sin — >1 
. 4p 12

In the case m - 1 = 3 we write p=1+s(t-1) and 
q = 1 + 8(m - 1) where of course ^-1 = 2 and s is a po­

sitive integer. The left-hand side of (26) becomes
(1 + 2s)sin g-^^ which is larger than (1 + 2s)sin^^2'3y

Again using the fact that 1 sin(y x) is a decreasing function 

of x in (0,^) we conclude that

> 3 sin y >1,(1 + 2s) sin
3(1 + 2s)

With this the proof of (25) for ®t[T/q, X/p] is complete.

If T/p^ 0<X/2 then sin 0 sin — and so (25) will 
P

be proved if we show that

(27) p sin I cos s-r-T*1

The hypothesis 2p - 1>q implies that m - 1 is necessarily 

>3 and so is p. Hence the left-hand side of (27) is at 

least equal to and is therefore greater than 1. Here

again we have used the fact that £ sin(arx) is a decreasing 

function of x in (0,1/2).

The following result which is quite surprising is a simple 
consequence of Theorem 1.

COROLIAHX 1. If 2p — 1>q, then the trinomial

z + a_z^ + a„z■



Coefficient Regions for Univalent Trinomials, II 207 

is univalent in |z |<1 if and only if its derivative does 

not vanish there.

REMARK. Prom (24) it readily follows that if the trino-

mial

°21 + V -v (n1<n2<2A1)

does not vanish in | z| <1 and — = where

are relatively prime, then

(28) l^l^1 " ISnP8®0 ’

We can, in fact, prove the following result which is to 

he compared with Theorem A.

THEOREM A'. If

a- n,
1 * V *%* (n1<n2<2n1)

a,
does not vanish in | zJxT 1 and —A = -3— where •$_

are relatively prime, then«■MMM —I IIX—1 .1.1 H-JW' *■« ■—I—1 .1 « r" ■» — . i — a»

I min {(1 - l«^! )sec , 1 . . I«^ 2 }

<2” !%№ If »,>5
- I«J2 “ *1’2'

Proof. In view of (28) and Corollary 1 it is enough 
to prove that if

z + apzp + tzq (p<Q<2p - 1, 0<t<l)

is univalent in /z |<.1 and j a wher® Z - 1

and m - 1 are relatively prime, then
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(30)

j1- • 2 2 tq + t*q* if Z-
t -

.2 2 t q if <- 1

m - 1 points on the boundary i

equal to max.|wl. There is i

to -
weGn

■y . Call wQ. The

point Wq lies on the portion of r*tq described, by the 

moving point

w«p) = + tQe1***^

as <f’ increases from 0 to Since |w(<p)| decrea

ses monotonically from 1 + tq to 1 - tq as tp increases 

from 0 to - ■ there is a unique value of <p , say
<rjr

in (0, ~~-jj-) such that w( <{>q) = Wq, and the points lying 

on the portion of l~which is the image of £0,

must be of modulus > max Iwl. Now we wish to show that
W€^j

(31) w(jq^T>M

which would imply that

(32) max \w|<lw(-———)) .
I 3 Q - 1 '

Since Arg w( <j>) decreases from 0 to - 3T +

as increases from 0 to <^q it is enough to show that

(33) . Arg w(- ———)>Arg wn .
3 Q - 1

If oCq is the unique root of the equation

tana, , ■<
1 - (1/2)tq
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in (0,$] then

Arg w(- L-> » . a «
3q-1 3 m - 1 0

and (33) is equivalent to

1 Z — 1 x+ ct0:x>
3 m - 1

which is certainly true for Z >4. The case i - 1>3 of 

inequality (30) is now an immediate consequence of (32) since

2.2I w(- —) I s 1 - tq ♦ t2q‘
1 3 <1-1 13 q

If 6-1=2, then m - 1 is necessarily equal to 3

and in that case it follows from our study of the coefficient
3 4region of univalent trinomials of the form z - a^z + tz , 

0<t;£jp that (see £10, Corollary 2])'

2.2P|%|< max_|w|^1 - t*q‘

which completes the proof of (30) and in turn that of Theorem 
A'.

Proof of Theorem 2. First we observe that

n sin© — 1 —
• ------- Z” Gfl = ~ GO

0 9 <T/q 8in P® »

The reasoning used in the first part of the proof of Theorem 1 

to prove this fact in the case 2p - 1 >q remains valid. 

Indeed, the condition 2p - 1>q was used only to conclude 
that -C - 1^2 but that is true here as well since, by hypo­

thesis, q - 1 is not a multiple of p - 1.
What we need to show now is that
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(34) 1 ~ sind — for all

Thin would follow if we could show that

(35) Jwl for all
0 "*=««e

Since we do not know the precise value of

max_ lw|< min 
weGn we3G,

0ttX X] 
? 2 1*

max_ (w| 
w feG0

we

belook for a good enough upper estimate. For this let wc

the point of 3G0 such that max_ |w| = |w0|, and 
f w^G0

Arg wQ = - it + . Denote by tfc.) portion

of the curve described by

,(<p> = + tqe1^’^?

X
q - 1* Thus the initial and

e-i.terminal points of are 1 + tq and (l-tq)exp(-i ^pyX)
* lw( <f>)|

as <j> increases from 0 to 

al points of

respectively. As increases from 0 to q _ q ♦

decreases monotonically from 1 + tq to 1 - tq and according

to Lemma 8 the vector w(<p) turns monotonically in the clock- 
X — 1wise direction provided tq^^ _ • Prom the expression for

™ V — *1w( <p) and Lemma 9 it follows that if t >—— then
Im|w(<|>)J first increases and then decreases monotonically as

nr _ *3Ccp increases from 0 to -q—-^- • Now set <p^ = Jt q—
where 0< A<1. If arg w denotes the value of the argument 

lying in [- j-r) then in view of the above mentioned

properties of v,e ma^ ta^e Ta I as an uPPer ®sti-

mate for j wQ j provided

I - 1(36) arg w( <p )^arg wQ = - 3T
v m - 1 

Inequality (36) holds if and only if

X +
m - 1

i
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(57) a* + V I - DO - X) - l|-2— >1
m - 1 .

where ai* is the unique root of the equation

(58) tan ot = aAn< ** )-----
1 + tq cos( )

in the interval

Now let us set A = 1 - y (0 < £ < 1). Then (57) 

takes the form

(59) <X*> —— (1 - fc ) .
m - 1

Using (58) we see that (59) is true if

tan(———(1 - £•))
(40) t>l-----------------------B ~ 2—- --- --------------------

"q sin(-~£—g) + cos(——fi) tan(———(1 - £•)) 
£-1 I - 1 m -1

Thus we may use the estimate

(41) max lwl2^lw( Co. )l = 1 + t2q2 - 2tq cos(—---- &)
w e g0 1 • a 1 < - 1

provided (40) holds. In particular,

max. |wj2^ 1 + t2q2 - 2tq cos — for all t«-[o,J] 
weG0 t - 1 H

Besides,

min |w| = 1 - t isj-A I . tAsin«) for 9«[£, Si 
we3Gg sine* * J

Hence inequality (55) will be proved for all t €■[o,^- ] if it 

turns out that

(42) i ' 1 + t2q2 - 2tq cos -y - - t/(sin ^)}2 .

After simplification inequality (42) takes the form
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(43) t{q2 - 1/(sin'~)2} + 2/(sin^)^2q cos -JL— •

Using the estimate + T - "a x which is valid for
0^x^a<1 we obtain

2
(44) 1/(sin £)<J(1 + 1.048 for all q>6 .

6q •

Hence (43) would hold for q>6 if the inequality

(45) tq(1 — ~~rr) + “ + 1«048 -5s£2 cos ————
71 * q^ £- 1

were true. Inequality (45) turns out to be true if £ - 1>5 

since in that case q>12. Thus (34) holds if £- 1>5»
Now let £-1=4. Then clearly q>10 and it is 

a matter of simple verification that (45) (and so (34)) holds 

for tq<0.75. In order to deal with the case 0.75<tq$1
p

we take fi = j in ) and obtain the estimate

(46) max |w|2^ 1 +. t2q2 - tq 
W€5^

valid for 1^tq>---- ----------------------- and so certainly for
1+ Y3 tan(or/27)

1?tq>0.75. Thus (35) would hold if

(47) 1 + t2q2 - /3 tq^V - t/(sin^)J2
Q.

were true for 1^tq>0.75 and q>10. That it i3 indeed the 

case can be easily checked using the estimate (44). Hence (34) 
holds also if £ - 1 = 4.

.If £-1=3 then. q>8 and (45) holds for tq^0.36
though not for all tq^1. ’ Setting & = i in (41) we see

that in the case l3?tq>0.36 we can use the estimate (46)
for max . |w|2. Hence (35) would hold if (47) were true for 

weG0
1j>tq>0,56 and q^8. It does indeed turn out to be the case
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and 30 (35) and in turn (34) holds for 1-1=3 as well.

The case I - 1 = 2 cannot he handled in quite the. same 

way. We will, in fact, need a couple of additional lemmas.

LEMMA 12. The function decreases from p to

0 as 0 increases from 0 to X/p.

Since cos t is a decreasing function of t in (0,%) 

the conclusion follows immediately from the fact that

sin pQ
sin©

r1 + 2cos20 + 2cos40 +...+ 2cos(p-1)0 if p is odd

2cos© + 2cos30 +...+ 2cos(p-1)© if p is even.

LEMMA 13. If i - 1 ( = 2), m-1 are relatively

prime, then a point w lies on the curve

r; , Wl(f) = e-231? + bei(m-5>a<P, 0^2* 

if and only if it lies on the curve

rb » w2«f>) = e“281? - hei(m-5)s<P , 0^2*.

Proof. Since 2, m — 1 do not have common divisors, 

m-1 and so m - 3 must he odd. Hence

w>j( + ^) = exp|- 2si(tf» +^)| + hexp|i(m - 3)s(<f +^) = 

= e"2si? + hei(m“5)s<P ei(m-3)x =

= e-2si<P - bei(m-3>s? = w2«f ) .

The case 1-1=2 of Theorem 2. We already know that

(48) for 0a(o,*],
p u sin p© » q
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where we may refer to Theorem A for the case 0 Next we

wish to prove that

(49) 1 7T sin©__  r~
“G0£ sin p0 J©

for ©e(f, |3.

Let us recall that Gg is the region containing the origin 

and determined by the curve where b := t • As

0 increases from 0 to X/q, b decreases monotonically

(and continuously) from tq to 0. Hence if we take a 0 
arbitrary in (^, 21], then in view of Lemma'13 there exists

a 0 6 (o, 2L ] such that Gft = G Thus (49) is equiva­
0

lent to

(50)

But by (48) we have

1 ~ «- sin© —
p a°s ^7© »'

1 7T (- sin © X-"
p sin PÖ* V

which implies (50) since the regions Gq are starlike and

sin 0 , sin0
sin pW’ sin p6

by Lemma 12.

Finally, we shall prove that

(5D 1 r- (- sin © r~ Go» —- — Ga
p sin p© ü

for ©*(?,>].

For this it is enough to verify the inequality

(52) £ (1 + tq) sin©
|sin p©J

(1 - t Isin q©l
sin 0

•) .
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But (52) would certainly hold if

(55) 1 ♦ tp + tq^p sin j

were true. As it is easily checked, (55) is indeed true for 

p^-5 and therefore so does (52). That (52) holds also in 

the only remaining case p = 5 is seen by noting that

sin 0 _ 1______
lain 3(3/ 4 sin 0-3

Isin_a®_L < —1___  < JL
sin 0 sin 0 /3"

and t^l<— .
• -

As an immediate consequence of Theorem 2, we have

COROLLARY 2. If qJ>2p - 1, then provided q - 1 is 

not an integral multiple of p - 1, the trinomial

z ,P

is univalent in (zl<1 if and only if its derivative does 

not vanish there.

Proof of Theorem .3» ' Since the result is already 

known to be true for q = 3» 4 and 5 we shall assume q^6.

It is easily checked that

w( cp) = e_1<P + t -iD S— , 0^ cp<2x

defines a Jordan curve for 0 <t< q(q gy • According to 

Lemma 8 it is also starlike. We wish to show that as Q de­

creases from 1/q to 0 the region g-^g-g— G0 shrinks 

monotonically to the region In view of Lemma 5 it is

1
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enough to show that the subregion

J= J W ! - —-----<Arg Gq
0 I q _ 1 J 2 cos© y

shrinks monotonically as © decreases from 3t/q to 0. 

For this we apply Lemma 11 to the function

F(z,x) = FCz, cos©) s=
sin 20

and take for the arc z = e^T , 0=6 q2~~y. Compu­

ting we see that if

A = sin 2© cos 0 - 2 sin©cos 20 ,

B = 2 sin q© cos 20 - q sin 20 cos q0 ,
»

then (17) is equivalent to

(54) - A - Bt2(q - 2) SiS-Ł®. +
sin®

+ ]b + A(q - 2) -s.*S-3©- 11 cos(q - 1 )q> < 0 
‘ ■ sin© i

for 0 Ś to Ó - 
T q - 1

It is easily checked that both A and B are positive for 

0 < 0 ^/q. So (54) will certainly hold if

- A - Bt2(q - 2) + |b + A(q - 2) £l2~S®-U<0,
sin© 1 sin© '

i.e.

(A - 3t)J- 1 + t(q - 2) £i£-S®-|<0 .
1 sin© J

Since 0<t<---- S-------- ,
q(q2 - 4).

the second factor is negative and so
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it is sufficient to show that A - Bt is positive, i.e.

(55) sin 2 0cos© - 2 sin© cos 2© -

------- 1-------- (2 sin qGcos 20 - q sin 20 cos q© )>0
qCq^ - 4)

The expression on the left-hand side of (55) vanishes for 
0=0 and its derivative which is equal to ^(sin 20)- 

•(q sin© - sin q© ) is positive for 0< 0 ^’Vq. Hence

(55) holds for 0 6 (0, JT/q J and in turn so does (54). Thus 

we have proved that

n

0 «5 0 £%/q

1 ~ 1 ~ r^e-0« '?0

How we shall show that if 0<t<---- 1-------- ,
q(q^ - 4)

then for

2 Go £ • 1 a ■ G0 ♦
2 cos©

so that for such values of t

n

0^0 <W/2 2 cos
Q~ G© = ? G0 *

Since

jr Gq £ I w j JwJ 1 (1 + -----) 1
L q - 4 '

and

lain qOl jjw 5 |Wj^------- --------------------------------2--------

2 cos0 q(q^ - 4) sin©
1 0:

2 COS0 9

we will simply check that

1 + "/• '7- <' (1 - ---- 77 M^-) for - «©<
q^ - 4 cos© q(q' - 4) sin© q IV

IM
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For values of © under consideration

cos© cos 

Hence it io enough to verify that

J - 1(56) 1 4. _i, /„ .i.
<C - 4 cos

I sin qQ I
sinô

qL - 4 q sin

q sin ~

) .

Since q sin for q>6 the expression on the right-handQ 2 ‘
side of (56) is > —~= and 80 ^6) would certainly

cos qL - 4
hold if

cos
Q q - 4

were true. Since this latter inequality is indeed true Theorem 

5 is completely proved.
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STRESZCZENIE

W niniejszej pracy zajmujemy się określeniem warunków
4 •.

koniecznych i dostatecznych na to by wielomian f^(z) = z - 
- a^z*5 + tzq był jednolistny w kole Jz|<1. Podajemy też 

warunki na to by wielomian f^(z) lokalnie jednolistny był 

również globalnie jednolistny w kole Щ<1.

Резюме

В ланной работе определены необходимые и достаточные ус­
ловия для того, чтобы полином + fza был однолист­

ный в круге lz!< 7 . Они дают такие условия к тому, чтобы

локально однолистный полином Ą(z) являлся такие глобально 
однолистным в круге Jz| < ) .




