ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA
VOL. XXXIII, 17
SECTIO A
Département de Mathématiques et de Statistique, Universite de MontreaL, Montreal, Canada Instytut Matematyk!, Uniwersytet Maril Curle-Sklodowsklej, Lublin

Qazilbadur RAHMAN and Jozef WANIURSKI

Coefficient Regions for Univalent Trinomials, II

Obszar mmiennotci wspólczynników trojmianów jednolistnych II Область изменения коэффициентов однолистных триполиноиов

In connection with his work on the Picard Theorem, Landau ([7], [8]) proved that overy trinomial

$$
\begin{equation*}
1+2+a_{n} z^{n}, \quad n \geq 2 \tag{1}
\end{equation*}
$$

has at least one zero in the circle $|z| \leqslant 2$. Using a simple rule due to Bohl [1], Herglotz [6] and Biernacki [2] showed (also see [5, p. 53]) that the trinomial
(2)

$$
1 \leqslant n_{1}<n_{2}
$$

Las at least one zero in

It is easily seen that the result of Herglotz and Biernacki
is equivalent to the following

THEQREM A. If
(3)

$$
1+a_{n_{1}}{ }^{n_{1}}+a_{n_{2}}^{z^{n_{2}}}, \quad 1 \leqslant n_{1}<n_{2}
$$

does not vanish in $|z|<1$, then

$$
\int_{1} \frac{n_{2}}{n_{2}-n_{1}} \text { if } n_{2} \text { is an integral multiple of } n_{1}
$$

(4) $\left|a_{n_{1}}\right| \leqslant\left\{n_{2}-n_{1}\right.$

1 if n_{2} is not an integral multiple of n_{1}.
The examples

$$
\begin{aligned}
p(z) & =1-\frac{k}{k-1} z^{n_{1}}+\frac{1}{k-1} z^{k n_{1}}= \\
& =\left(1-z^{n_{1}}\right)\left(1-\frac{1}{k-1} \sum_{j=1}^{k-1} z^{j n / 1}\right)
\end{aligned}
$$

and

$$
q(z)=1+(1-\varepsilon) z^{n_{1}}+\frac{\varepsilon}{2} z^{n_{2}}, \quad \varepsilon>0
$$

show that (4) is best possible. However, we can claim more precisely (see [10]) that if G denotes the region determined by the curve

$$
\varphi \rightarrow e^{-1 n_{1} \varphi}+a_{n_{2}} e^{1\left(n_{2}-n_{1}\right) \varphi}, \quad 0 \leqslant \varphi \leqslant 2 \pi
$$

and containing the origin, then (3) is $\neq 0$ in $|z|<1$ if and only if $-a_{n_{1}} \in \bar{G}_{0}$. This observation was used to deal with a related and in fact more difficult problem of Cowling and Royster [4], namely the determination of the precise recon of variability of $\left(a_{2}, a_{k}\right)$ for the univalent trinomial $z+a_{2} z^{2}+a_{k} z^{k}$ where $k \geqslant 3$. In fact, we considered arbitrary trinomials $z+a_{p} z^{p}+a_{c_{i}}{ }^{q}$ where $p<q$. Denoting the region determined by the curve
(5) $w(\varphi)=e^{-1(p-1) \varphi}+t \frac{\sin q \theta}{\sin \theta} \theta^{1(q-p) \varphi} ; 0 \leqslant \varphi \leqslant 2 \pi$,

$$
0 \leq t \leq \frac{1}{q}
$$

and containing the origin by $G_{\theta}=G_{\theta}(p, q, t)$ where $G_{0}\left(p, q, \frac{1}{q}\right)$ stands for the interval $[-2,2]$ if $q=2 p-1$, and for $\{0\}$ otherwise, we proved [10]:

THEOREM B. The trinomial

$$
P_{t}(z)=z-a_{p} z^{p}+t z^{q}, \quad\left(p<q, \quad 0<t \leqslant \frac{1}{q}\right)
$$

is univalent in $|z|<1$ if and only if
(6)

Where for

$$
\theta=\frac{\pi}{p}, \quad 2 \frac{\pi}{p}, \ldots,\left[\frac{p}{2}\right] \frac{\pi}{p}, \frac{\sin \theta}{\sin p \theta} \bar{G}_{\theta}=\$.
$$

Besides, we carried out a closer study of trinomial of the forms

$$
\begin{equation*}
z-a_{2} z^{2}+t z^{4} \tag{1}
\end{equation*}
$$

(ii) $\quad z-a_{z} z^{3}+t z^{4}$

$$
\begin{equation*}
z-a_{2} z^{2}+t z^{5} \tag{111}
\end{equation*}
$$

$$
\begin{equation*}
z-a_{4} z^{4}+t z^{5} \tag{iv}
\end{equation*}
$$

which along with the previously known result ([11], [9]) about polynomials of the form $z+a_{p} z^{p}+a_{2 p-1} z^{2 p-1}$, gave us a reasonably good understanding of tile coefficient region for univalent trinomial of degree $\leqslant 5$.

Here we carry our investigation further and prove the
following results.
THEOREM 1. Let G_{θ} be as defined above. If $2 p-1>q>p$, then the trinomial

$$
f_{t}(z)=z-a_{p} z^{p}+t z^{q}, \quad\left(0<t \leqslant \frac{1}{q}\right)
$$

is univalent in $|z|<1$ if and only if

$$
a_{p} \in \frac{1}{p} \bar{G}_{0}
$$

THEOREM 2. Again let G_{θ} be as defined above. If $q>2 p-1$, then provided $q-1$ is not an integral multiple of $p-1$, the trinomial

$$
P_{t}(z)=z-a_{p} z^{p}+t z^{q}, \quad\left(0<t \leqslant \frac{1}{q}\right)
$$

is univalent in $|z|<1$ if and only if

$$
a_{p} \in \frac{1}{p} \overline{G_{0}} .
$$

The conclusion of Theorems 1 and 2 does not hold in generail if $q-1$ is a multiple of $p-1$. However, it is known ([3], [4], [10]) that according as q is equal to 3,4 or 5 the trinomial

$$
\begin{equation*}
f_{t}(z)=z-a_{2} z^{2}+t z^{q}, \tag{t>0}
\end{equation*}
$$

is univalent in $|z|<1$ if and only if

$$
a_{2} \in \frac{1}{2} \overline{G_{0}}=\frac{1}{2} \overline{G_{0}\left(2, q_{0} t\right)}
$$

provided t does not exceed $1 / 5,1 / 16$ or $1 / 35$ respectively. Here we prove

THEOREM 3. The trinomial

$$
f_{t}(z)=z-a_{2} z^{2}+t z^{q}, \quad(q \geqslant 3)
$$

is univalent in $|z|<1$ if and only if

$$
a_{2} \in \frac{1}{2} \overline{G_{0}\left(2, a_{0} t\right)}
$$

provided

$$
0<t \leqslant \frac{3}{q\left(q^{2}-4\right)}
$$

Since $\frac{1}{p} \overline{G_{0}\left(p, q, \frac{T}{q}\right)}=\{0\}$ if $q \neq 2 p-1$, it is an immediate consequence of Theorem B that

$$
I_{1 / q}(z)=z-a_{p} z^{p}+\frac{1}{q} z^{q}, \quad(q \neq 2 p-1)
$$

is univalent in $|z|<1$ if and only if $f_{1}^{\prime} / q(z)$ does not vanish there. This proves Theorems 1 and 2 in the case $t=1 / q$ and so hereafter we will restrict ourselves to values of $t \in\left(0, \frac{1}{q}\right)$.

We need various auxiliary results which we collect as lemmas.

LEMMA 1. If $\ell-1$ and $m-1$ are relatively prime, then the set of points

$$
\begin{equation*}
\exp \left(-1 \frac{2 \mu(l-1) \pi}{m-1}\right) \tag{7}
\end{equation*}
$$

$$
\mu=0,1,2, \ldots
$$

is identical with the set

$$
\begin{equation*}
\exp \left(-1 \frac{2 \mu x}{m-1}\right), \quad \mu=0,1,2, \ldots, m-2 \tag{8}
\end{equation*}
$$

Proof $\overline{\text {. }}$. First, Let us observe that for $\mu=0,1,2, \ldots, m-2$ the points exp $\left(-1 \frac{2 \mu(1-1) \pi}{f-1}\right)$ are all distinct. In fact

$$
\exp \left(-1 \frac{2 \mu(l-1) \pi}{m-1}\right)=\exp \left(-1 \frac{2 \nu(l-1) \pi}{1-1}\right)
$$

for some μ, ν such that $0 \leqslant \mu<\nu \leqslant m-2$ if and only if

$$
\begin{equation*}
\exp \left(\frac{l-1}{m-1}(\nu-\mu) 2 \pi 1\right)=1 \tag{9}
\end{equation*}
$$

Since, by hypothesis, $\ell-1$ and $m-1$ have no common factors and $\nu-\mu \leqslant m-2$ it is easily seen that $\frac{\ell-1}{\frac{1}{m}-1}(\nu-\mu)$ cannot be an integer and so (9) cannot hold.

On the other hand, the numbers (7) are of the form

$$
\{\exp (-1(\ell-1) 2 \mu \pi)\}^{1 /(m-1)}, \quad \mu=0,1,2, \ldots,
$$

1.e. they are amongst the (m -1)-st roots of unity. In other words, the set of numbers (7) is a subset of the set (8).

The above two considerations show that the sets (7) and (8) are identical.

LEMNA 2. Let $\frac{p-1}{q-1}=\frac{l-1}{m-1}$, where $l-1$ and $m-1$ are relatively prime. Then there exists a positive integer n such that

$$
\exp \left(-1 \frac{p-1}{1-1} 2 n \pi\right)=\exp \left(1 \frac{2 \pi}{m-1}\right)
$$

Proof. According to Lemma 1 there exists a positive integer n such that

$$
\exp \left(-1 \frac{2(m-2) \pi}{m-1}\right)=\exp \left(-1 \frac{2 n(\ell-1) \pi}{m-1}\right)
$$

Hence

$$
\begin{aligned}
\exp \left(1 \frac{2 \pi}{m-1}\right) & =\exp \left(-1 \frac{2(m-2) \pi}{m-1}\right)=\exp \left(-1 \frac{2 n(\ell-1) \pi}{m-1}\right)= \\
& =\exp \left(-1 \frac{p-1}{q-1} 2 n \pi\right)
\end{aligned}
$$

The region G_{θ} is determined by a curve of the form

$$
\begin{equation*}
w(\varphi)=w(b, \varphi)=0^{-1(p-1) \varphi}+b e^{1(q-p) \varphi}, \quad 0 \leqslant \varphi \leqslant 2 x \tag{10}
\end{equation*}
$$

where $-b_{0} \leqslant b<1$ with $0<b_{0}<1$. In [10] we noted some important properties of the curve Γ_{b} defined by (10). For example, a point \square lies on Γ_{b} if and only if its conjugalte does. This in conjunction with the fact that $0 \in G_{\theta}$ implies:

LEMMA 3. The region G_{θ} is symmetrical about the real axis.

Here we prove
LEMAA 4. If $\frac{p-1}{q-1}=\frac{l-1}{m-1}$ where $l-1$ and $I-1$ are relatively prime then the curve Γ_{b} and hence the region G_{θ} is symmetrical about the line

$$
\operatorname{Im}\left\{\mathrm{m}^{-1 \pi /(m-1)}\right\}=0
$$

Proof. Let n be as in Lemma 2. If we define $w(\varphi)$ outside the interval $[0,2 \pi]$ by periodicity, then

$$
\begin{aligned}
& \begin{array}{l}
\left(\frac{2 n \pi}{q-1}-\varphi\right)= \\
\\
+b \exp \left\{-1(q-1)\left(\frac{2 n \pi}{q-1}-\varphi\right)\right\}+ \\
\left.=e^{2 \pi 1 /(m-1)} e^{1(p-1) \varphi}+b e^{2 n \pi 1}(q-p)\left(\frac{2 n \pi}{q-1}-\varphi\right)\right\}= \\
= \\
=e^{2 \pi 1 /(m-1)}\left\{e^{1(p-1) \varphi}+b e^{-1(q-p) \varphi}\right\}=e^{2 \pi 1 /(m-1)} \overline{w(\varphi)} .
\end{array} .
\end{aligned}
$$

This means that a point w lies on Γ_{b} if and only if

We are now ready to prove
LEMMA 5. Let $\frac{p-1}{q-1}=\frac{l-1}{\frac{m}{m}-1}$, where $l-1$ and $m-1$ are relatively prime. Then $G_{\theta}(p, q, t)$ is symmetrical about the lines

$$
\begin{equation*}
\operatorname{Im}\left\{\exp \left(-1 \frac{k \pi}{m-1}\right)\right\}=0, \quad k=0,1,2, \ldots, 2 m-3 . \tag{11}
\end{equation*}
$$

Proof. From the definition of $w(\varphi)$ it is readily seen that

$$
w\left(\varphi+\frac{2 \pi}{q-1}\right) \equiv w(\varphi) \exp \left(-1 \frac{2(p-1) \pi}{q-1}\right)
$$

Hence a point $\quad 1108$ on Γ_{b} if and only if the points

$$
\nabla \exp \left(-1 \frac{2 \mu(l-1) \pi}{m-1}\right), \quad \mu=0,1,2, \ldots
$$

do. But according to Lemma 1 this set of points ins identical with the set

$$
\exp \left(-1 \frac{2 \mu \pi}{m-1}\right), \quad \mu=0,1,2, \ldots, m-2 .
$$

The desired result is now a simple consequence of Tomas 3 and 4.

The next four lemmas give some useful information about the curve Γ_{b} and the region G_{θ}.

LEMM 6. Let

$$
g(z)=z^{-(p-1)}+b z^{q-p}, \quad(q>p>1)
$$

where $-1<b<1$. If $2 p-1>q$, then the vector $g\left(\theta^{i \varphi}\right)$ turns monotonically in the clockwise direction as φ increasee from 0 to 2π.

Proof. It is enough to show that
(12)

$$
\operatorname{Re}\left\{z g^{\prime}(z) / g(z)\right\}<0 \quad \text { for } \quad|z|=1
$$

Writing $z=0^{1 \varphi}$ we see that (12) holds if and only if

$$
L(b, \varphi):=b^{2}(q-p)-b(2 p-1-q) \cos \{(q-1) \varphi\}-(p-1)<0
$$

for $0 \leqslant \varphi \leqslant 2 \pi$.
But clearly

$$
L(b, \varphi) \leqslant b^{2}(q-p)+|b|(2 p-1-q)-(p-1),
$$

and so for $-1<b<1$

$$
L(b, \varphi)<(q-p)+(2 p-1-q)-(p-1)=0
$$

Lexus 7. Under the conditions of Lemma 6 the tangent to the curve

$$
w(\varphi)=g\left(\theta^{i \varphi}\right), \quad 0 \leqslant \varphi \leqslant 2 \pi
$$

turns monotonically in the clockwise direction as φ increasos from 0 to 2π.

Proof. It is clearly enough to verify that

$$
\begin{equation*}
\operatorname{Re}\left\{1+z g^{\prime \prime}(z) / g^{\prime}(z)\right\}<0 \quad \text { for }|z|=1 \text {, } \tag{13}
\end{equation*}
$$

or equivalently
(14) $b^{2}(q-p)^{3}+b(q-p)(p-1)(2 p-1-q) \cos \{(q-1) \varphi\}-$

$$
-(p-1)^{3}<0 \quad \text { for } \quad 0<\varphi<2 \pi
$$

But the expression on the left hand side of (14) cannot exceed

$$
(q-p)^{3}+(q-p)(p-1)(2 p-1-q)-(p-1)^{3}
$$

which is negative since it can be written in the form

$$
-(2 p-1-q)\left\{(q-p)^{2}+(p-1)^{2}\right\}
$$

Qaz1 Ibadur Kahman, Jozef Waniurski
Leman 8. Let

$$
g(z)=z^{-(p-1)}+b z^{q-p}, \quad(q>p>1)
$$

If $2 p-1<q$ then for $-(p-1) /(q-p) \leqslant b \leqslant(p-1) /(q-p)$ the vector $g\left(\theta^{i \varphi}\right)$ turns monotonically in the clockwise direction as φ increases from 0 . to 2π.

Proof. We observe that if $-(p-1) /(q-p)<b<$ $(p-1) /(q-p)$ then (12) holds, or equivalently

$$
\begin{gathered}
L(b, \varphi):=b^{2}(q-p)+b(q-2 p+1) \cos \{(q-1) \varphi\}- \\
-(p-1)<0 \quad \text { for } 0 \leqslant \varphi \leqslant 2 \pi
\end{gathered}
$$

In fact

$$
\begin{aligned}
I(b, \varphi) & \leqslant b^{2}(q-p)+|b|(q-2 p+1)-(p-1)= \\
& =\{(q-p)|b|-(p-1)\}(|b|+1)<0 \\
& 11-(p-1) /(q-p)<b<(p-1) /(q-p)
\end{aligned}
$$

If $b= \pm(p-1) /(q-p)$ then $L(b, \varphi)<0$ except at the points where $\cos \{(q-1) \varphi\}=\frac{b}{|b|}$. Ait such points $L(b, \varphi)=0$. Hence the lemma holds.

LEMMA 9. Let

$$
g(z)=z^{-(p-1)}+b z^{q-p}, \quad(q>p>1, \quad-1<b<1)
$$

If. $2 p-1<q$ then for $|b| \geqslant(p-1) /(q-p)$ the tangent to the curve

$$
\nabla(\varphi)=g\left(e^{1 \varphi}\right), \quad 0<\varphi \leq 2 \pi
$$

turns monotonically in the counter-clockmise direction as φ increases from 0 to 2π.
proof. Wo observe that if $|b|>(p-1) /(q-p)$
then

$$
\operatorname{Re}\left\{1+z g^{\prime \prime}(z) / g^{\prime}(z)\right\}>0 \quad \text { for } \quad|z|=1
$$

or equivalently

$$
\begin{aligned}
\mathcal{L}(b, \varphi) & :=b^{2}(q-p)^{3}- \\
& -b(q-p)(p-1)(q-2 p+1) \cos \{(q-1) \varphi\}- \\
& -(p-1)^{3}>0 \quad \text { for } 0 \leq \varphi \leq 2 \pi .
\end{aligned}
$$

In fact

$$
\begin{aligned}
\mathcal{L}(b, \varphi) & \geqslant b^{2}(q-p)^{3}-|b|(q-p)(p-1)(q-2 p+1)- \\
& -(p-1)^{3}=\left\{|b|(q-p)^{2}+(p-1)^{2}\right\}\{|b|(q-p)- \\
& -(p-1)\}>0 \quad \text { if }|b|>(p-1) /(q-p) .
\end{aligned}
$$

If $b= \pm(p-1) /(q-p)$ then $\mathcal{L}(b, \varphi)>0$ except at the points where $\cos \{(q-1) \varphi\}=\frac{b}{\text { bT }}$. At such points $\mathcal{L}(ъ, \varphi)=0$. Hence Lemma 9 holds.

We will also need
LELMA 10. Let $\frac{p-1}{q-1}=\frac{l-1}{m-1}$ where $l-1$ and $m-1$ are relatively prime. Further, let $\frac{\mathrm{D}-1}{\ell-1}=\frac{q-1}{\mathrm{~m}-1}=\mathrm{s}$, and for $k=0,1,2, \ldots, \pi-2$
(15) $\quad \Psi_{k}=\left\{\begin{array}{llc}-\frac{\ell-1}{m-1}(2 k+1) \pi & \text { if } & \operatorname{tin} \frac{\sin \theta}{\sin \theta}>0 \\ -\frac{l-1}{m-1} 2 k \pi & \text { if } & \operatorname{tin} 9 \theta \\ \sin \theta & \sin \end{array}\right.$

Then the part of the boundary of ${ }^{G} \theta$ contained in the sector \mid arg $\nabla-\psi_{k} \left\lvert\, \leqslant \frac{\pi}{\text { II }-7}\right.$ is the image of some subinterval
I $\theta, k:=\left[\alpha, k_{0}, \beta_{0, k}\right]$ by the mapping (10) with $b=t \frac{\sin a \theta}{\sin \theta}$.

$$
\begin{gathered}
P \times 0 \circ \text { P. Since } w\left(\varphi+\frac{2 \pi}{s}\right) \equiv w(\varphi) \text { for all real } \varphi, \\
M(\varphi)=e^{-1(p-1) \varphi}+b e^{1(q-p) \varphi}, \quad 0 \leqslant \varphi \leqslant 2 \pi / s
\end{gathered}
$$

18 a closed curve γ_{b} whose trace is the same as that. of the curve Γ_{b}.

Now let $b>0$. Note that the minimum distance between the origin and a point on the boundary of G_{Θ} is 1-b and the points of the boundary for which this distance is attained are precisely the points

$$
\begin{equation*}
(1-b) e^{i \Psi_{k}}, \quad k=0,1,2, \ldots, m-2 . \tag{16}
\end{equation*}
$$

In the same way as for Lemma 1 it can be shown that this set of points is identical with the set

$$
(1-b) \exp \left(-1 \frac{2 \mu \pi}{m}\right), \quad \mu=0,1,2, \ldots, m-2
$$

or the set

$$
(1-b) \exp \left(-1 \frac{(2 \mu+1) \pi}{m-1}, \quad \mu=0,1,2, \ldots, m-2\right.
$$

according as $\ell-1$ is even or odd.
The region G_{θ} being symmetrical about the lines

$$
\operatorname{Im}\left\{m \exp \left(-1 \frac{k \pi}{m i-1}\right)\right\}=0, \quad \mu=0,1,2, \ldots, 2 m-3
$$

the part $\gamma_{b, k}$ of its boundary lying in the sector $\left|\arg w-\Psi_{k}\right| \leqslant \frac{\pi}{\text { m }-1}$ is either the image of an interval I $\theta, k \subset[0,2 \pi / s]$ by $w(\varphi)$ or else it contains at least two
points $\mathrm{W}^{*}, \mathrm{~W}_{0}^{-21} \psi_{k}$ not lying on the rays $\arg w=\Psi_{k} \pm \frac{\pi}{\mathbb{m}-1}$ Where the curve $\mathcal{O} b$ cuts itself. Clearly then, the curve γ_{b} cuts itself also in the points $\left\{w^{*} \exp \left(1 \frac{2 \mu \pi}{m}-1\right)\right\}_{\mu=1}^{m-2}$ and $\left\{\frac{w^{*} e}{} 2 i \psi_{k} \exp \left(1 \frac{2 \mu \pi}{m^{\prime}-1}\right)\right\}_{\mu=1}^{m-2}$. Thus, there are at least $\mu_{4(m-1)}^{\mu=1}$ values of φ in $[0,2 \pi / s]$ such that $|w(\varphi)|=\left|w^{*}\right|$. However, this is impossible. In fact, the curve γ_{b} is the union of $m-1$ congruent arcs C_{k} described by the moving point $W(\varphi)$ as φ increases from $\frac{k}{m-1} \frac{2 \pi}{8}$ to $\frac{k+1}{m-1} \frac{2 \pi}{3}$, $k=0,1,2, \ldots, m-2$. On each of these $\operatorname{arcs}|w(\varphi)|$ decreases from $1+b$ to $1-b$ and then increases to $1+b$. Hence $|w(\varphi)|$ cannot assume any value more than twice in the interval $\left[\frac{k}{m-1} \frac{2 \pi}{s}, \frac{k+1}{m-1} \frac{2 \pi}{s}\right]$ and can assume and given value at most $2(m-1)$ times in $[0,2 \pi / s]$.

The argument is similar in the case $b<0$.
In addition we will need the following lemma which is proved in [10].

LEMMA 11. Let $F(z, x)$ be a complex valued function of z (complex) and x (real) having the following properties:
(1) there exists an absolute constant $\alpha>0$ such that for each x belonging to the interval $I:=\{x: a<x \leqslant b\}$, $F(z, x)$ is analytic in the annulus $A_{\alpha}:=\{z: 1-\alpha<|z|<1+\alpha\}$ and is univalent on the arc

$$
\gamma_{x}:=\left\{z=\theta^{1 \varphi}: \varphi_{1}(x) \leqslant \varphi \leqslant \varphi_{2}(x)\right\}
$$

There $\varphi_{1}(x), \varphi_{2}(x)$ are continuous functions of x satisping. $0<\varphi_{2}(x)-\varphi_{1}(x)<2 \pi$.
(11) for each z_{0} lying on $\gamma_{x_{0}}$ Where x_{0} is an arbitrait point of I there exists a left-iand neighbourhood

202
Qaz1 Ibadur Rahman, Jozel Maniurski

$$
N\left(x_{0} ; \delta\left(z_{0}\right)\right):=\left\{x: x_{0}-\delta\left(z_{0}\right)<x<x_{0}\right\}
$$

of x_{0} in which $\frac{\partial F}{\partial x}, \frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial x \partial z}$ exist and are bounded, (iii) there exists an absolute constant M such that for
alI $x \in I$ and $z \in \bar{A} \alpha / 2$.

$$
|F(z, x)|<M
$$

For each $x \in I$, let C_{x} be the arc

$$
=F\left(\theta^{1 \varphi}, x\right), \quad \varphi_{1}(x) \leqslant \varphi \leqslant \varphi_{2}(x)
$$

№ㄲ․ if
(17)

$$
\operatorname{Re}\left[\frac{\partial}{\partial x} P(z, x) /\left\{z \frac{\partial}{\partial z} F(z, x)\right\}\right]>0
$$

for all $x \in I, z \in \gamma_{x}$, then the arcs $C_{x_{1}}, C_{x_{2}}$ where $x_{1} \in I, x_{2} \in I$ do not intersect each other if $\left|x_{1}-x_{2}\right|$ is sufficiently small. In particular, if the arcs C_{x}, except for their end points, remain confined to the interior of a fixed angle $a_{1}<\psi<\alpha_{2}$ of opening $<2 \pi$ whereas, each arc has its initial point on $\psi=\alpha_{c}$ and its terminal point on $\psi=\alpha_{1}$, then the sectorial region bounded br c_{x} and the two rays $\psi=\alpha_{1}, \alpha_{2}$ shrinks as x increases.

Proof of Theorem 1. First of all we wish to prove that

$$
\prod_{0<0<\pi / q} \overline{G_{\theta}}=\overline{G_{0}} .
$$

It is clearly enough to show that the part of $G_{\theta} 1 y^{2} \Omega g$ in the sector $\left|\arg w-Y_{0}\right| \leqslant \frac{\pi}{m-T}$, where Y_{0} is defined in (15), shrinks monotonically as θ decreases from π / g to 0 .

For this wo apply Lemma 11 to the function

$$
F(z, x)=z^{-(p-1)}+t \frac{\sin q \theta}{\sin \theta} z^{q-p}, \quad x=\cos \theta
$$

Where for γ_{x} we take $\left\{z=e^{i \varphi}: \varphi \in\left[\alpha_{\theta, 0}, \quad \beta_{\theta, 0}\right]\right\}$. The numbers $\alpha_{0,0}, \quad \beta \theta_{0,0}$ are the same as in the statement of Lemma 10. The part of the boundary of ${ }^{G} \theta$ lying in the sector $\left|\arg w-\Psi_{0}\right| \leqslant \frac{\pi}{m-1}$ is then the arc C_{x} of Lemma 11. A simple calculation shows that condition (17) is equivalent to
(18) $(q \cos q \theta \sin \theta-\cos \theta \sin q \theta)\{-(p-1) \cos (q-1) \varphi+$

$$
\left.+t(q-p) \frac{\sin q \theta}{\sin \theta}\right\}<0 .
$$

The quantity within the first pair of brackets is negative for $\theta \in(0, \pi / \mathrm{g})$ whereas the quantity within the second pair of brackets is positive for $\varphi \in\left(\frac{\pi}{2(q-1)}, \frac{3 \pi}{2(q-1)}\right)$ and $\theta \in(0, \pi / q)$.

Now let us show that
(19)

$$
\left(\alpha_{0,0}, \beta_{\Theta, 0}\right) \subset\left(\frac{\pi}{2(q-1)}, \frac{3 x}{2(q-1)}\right)
$$

If we denote by Arg w, the value of the argument lying in $[-2 \pi, 0)$, then

$$
\begin{aligned}
& \operatorname{Arg} w(\alpha, \overrightarrow{0,0})=-\frac{p-1}{q-1} \pi+\frac{\pi}{m-1}, \\
& \operatorname{Arg} w(\beta \theta, 0)=-\frac{p-1}{q-1} \pi-\frac{\pi}{m-1}, \\
& \operatorname{Arg} w\left(\frac{\pi}{2(q-1)}\right)=-\frac{p-1}{2(q-1)} \pi+\psi^{*} \\
& \operatorname{Arg} w\left(\frac{3 \pi}{2(q-1)}\right)=-\frac{3(p-1)}{2(q-1)} \pi-\psi^{*}
\end{aligned}
$$

Where Ψ^{*} is the unique root of the equation $\tan \psi=$
$=t \frac{\sin g \theta}{\sin \theta}$ in $(0, \pi / 4]$.
In order to prove (19) it is enough, in view of Lemma 6, to verify that
(20)

$$
\operatorname{Arg} w\left(\alpha_{0,0}\right)<\operatorname{Arg} w\left(\frac{\pi}{2(q-1)}\right) \text {, }
$$

(21)

$$
\operatorname{Arg} w\left(\frac{3 x}{2(q-1)}\right)<\operatorname{Arg} w(\beta \hat{\theta, 0}) \text {. }
$$

It is easily seen that inequalities (20), (21) hold if and only if
(22)

$$
\frac{\pi}{m-1}<\frac{1}{2} \frac{\ell-1}{m-1} \pi+\psi^{*}
$$

The hypothesis $2 p-1>q$ which is equivalent to $\frac{\ell-1}{m-1}=$ $=\frac{p-1}{q-1}>\frac{1}{2}$ implies that $l-1 \geqslant 2$. Hence (22) does hold and in turn so do (20), (21).

Thus (18) certainly holds for $\varphi \in\left(\alpha, 0, \beta_{\theta, 0}\right)$, i.e. the curves C_{x} do not intersect each other as x varies from $\cos (\pi / Q)$ to 1. Indeed we have shown that the region G_{θ} shrinks monotonically as θ decreases from π / q to 0 .

Since $\frac{1}{p} \leqslant \frac{\sin \theta}{\sin p \theta}$ for $\theta \in[0, \pi / q)$ and $\overline{G_{0}} \subset \bar{G}_{\theta}$ for all θ in this range it follows that $\frac{1}{p} \overline{G_{0}}$ is a fortiori contained in $\frac{\sin \theta}{\sin p \theta} \overline{G_{\theta}}$, i.e.

$$
0 \leqslant \theta \leqslant \pi / q \frac{\sin \theta}{\sin p \theta} \overline{G_{\theta}}=\frac{1}{p} \overline{G_{0}} .
$$

The theorem will be completely proved if we show that $\frac{1}{p} \bar{G}_{0} c \frac{\sin \theta}{\sin p \theta} \bar{G}_{\theta}$ for all $\theta \in\left[\frac{\pi}{q}, \frac{\pi}{2}\right]$. We shall in fact show that
(23)

$$
\frac{1}{P} \max _{w \in \frac{1}{G_{0}}}|\nabla| \leq \frac{\sin \theta}{|\sin p \theta|} \min _{w \in \partial G}|w| \text { for } \theta \in\left[\frac{\pi}{q}, \frac{\pi}{2}\right] \text {. }
$$

and thereby complete the proof of the theorem.
There are $m-1$ points on ∂G_{0} where max $|w|$ is
 two of the directions in which min $|w|=1-t q$ is attained. Lemmas 6,7 imply that the region $G_{0} \in G_{\text {is convex, from which }}$ it readily follows that

$$
\begin{equation*}
\max _{w \in \frac{G_{0}}{G_{0}}|w| \leqslant(1-t q) \sec \frac{\pi}{m-1} ~ . ~}^{m} . \tag{24}
\end{equation*}
$$

Since $\min _{w \in \partial G}|w|=1-t\left|\frac{\sin q \theta}{\sin \theta}\right|$ inequality (23) will proved if we show that

$$
\begin{array}{r}
\frac{1}{p}(1-\operatorname{tq}) \sec \frac{x}{m-1} \leqslant \frac{\sin \theta}{|\sin p \theta|}\left(1-t \frac{\sin \theta \theta \mid}{\sin \theta}\right) \\
\\
\text { for } \theta \in\left[\frac{\pi}{q}, \frac{\pi}{2}\right] .
\end{array}
$$

We shall indeed prove that for $\theta \in\left[\frac{\pi}{q}, \frac{\pi}{2}\right]$ the stronger incquality

$$
\begin{equation*}
\frac{\sin p \theta \mid}{\sin \theta}<p \cos \frac{\pi}{m-1} \tag{25}
\end{equation*}
$$

holds.
First let $\pi / q \leqslant \theta \leqslant \pi / p$. Then, in view of the bypothesis $2 p-1>q$ we have $\frac{\pi}{2}+\frac{\pi}{2 q}<p \theta \leqslant \tau$ and 80

$$
0 \leqslant \sin p \theta<\cos \frac{\pi}{2 q}, \quad \sin \theta \geqslant \sin \frac{\pi}{q} .
$$

Consequently $\frac{\sin p \theta}{\sin \theta}<1 /\left(2 \sin \frac{\pi}{2 q}\right)$ and for (25) to be true for $\pi / q \leqslant \theta \leqslant \pi / p$ it is enough that the inequality

$$
\begin{equation*}
2 p \text { sin } \frac{\pi}{2 q} \cos \frac{\pi}{m-1} \geqslant 1 \tag{26}
\end{equation*}
$$

hold for values c f p, q and m under consideration. Now if $m-1 \geqslant 4$ then also $q-1 \geqslant 4$ and the hypothesis $2 p-1>q$
implies that $p \geqslant 3$. Hence, the left-land side of (26) is at least equal to $\sqrt{2} p \sin \frac{\pi}{4 p}$. Now using the fact that $\frac{1}{x} \sin \left(\frac{\pi}{4} x\right)$ is a decreasing function of x in $(0,2)$ we obtain

$$
\sqrt{2} p \sin \frac{\pi}{4 p}>3 \sqrt{2} \sin \frac{\pi}{12}>1
$$

In the case $m-1=3$ we write $p=1+s(\ell-1)$ and $q=1+s(m-1)$ where of course $\ell-1=2$ and s is a positive integer. The leit-hand side of (26) becomes
$(1+28) \sin \frac{\pi}{2(1+38)}$ which is larger than $\left.(1+2 s) \sin _{3} \frac{\pi}{1+2 s}\right)$. Again using the fact that $\frac{1}{x} \operatorname{ain}\left(\frac{\pi}{3} x\right)$ is a decreasing function of x in $\left(0, \frac{3}{2}\right)$ we conclude that

$$
(1+2 s) \sin \frac{\pi}{3(1+2 s)} \geqslant 3 \text { sin } \frac{\pi}{9}>1 \text {. }
$$

With this the proof of (25) for $\theta \in[\pi / q, \pi / p]$ is complete.
If $\pi / p \leqslant \theta \leqslant \pi / 2$ then $\sin \theta \geqslant \sin \frac{\pi}{P}$ and so (25) will be proved if we show that

$$
\begin{equation*}
p \sin \frac{\pi}{p} \cos \frac{\pi}{\pi-1} \geqslant 1 . \tag{27}
\end{equation*}
$$

The hypothesis $2 p-1>q$ implies that $m-1$ is necessarily $\geqslant 3$ and so is p. Hence the left-hand side of (27) is at least equal to $\frac{3 \sqrt{3}}{4}$ and is therefore greater than 1. Here again we have used the fact that $\frac{1}{x} \sin (\pi x)$ is a decreasing function of x in $(0,1 / 2)$.

The following result which is quite surprising is a simple consequence of Theorem 1.

COROLLARY 1. If $2 p-1>q$, then the trinomial

$$
z+a_{p} z^{p}+a_{q} z^{q}
$$

Coefficient Regions for Univalent Trinomial, II is univalent in $|z|<1$ if and only if its derivative does not vanish there.

REMARK. From (24) it readily follows that if the trinemeal

$$
1+a_{n_{1}}{ }^{n_{1}}+a_{n_{2}} z^{n_{2}} \quad\left(n_{1}<n_{2}<2 n_{1}\right)
$$

does not vanish in $|z|<1$ and $\frac{n_{1}}{n_{2}}=\frac{\nu_{1}}{\nu_{2}}$ where γ_{1}, ν_{2} are relatively prime, then
(28)

$$
\left|a_{n_{1}}\right| \leq\left(1-\left|a_{n_{2}}\right|\right) 800 \frac{\pi}{v_{2}} .
$$

We can, in fact, prove the following result which is to be compared with Theorem A.

THEOREM A^{\prime}. If

$$
1+a_{a_{1}} s^{n_{1}}+a_{n_{2}} n^{n_{2}} \quad\left(n_{1}<a_{2}<2 n_{1}\right)
$$

 are relatively prime, then
(29) $\quad\left|a_{n_{1}}\right| \leqslant\left\{\begin{array}{l}\min \left\{\left(1-\left|a_{n_{2}}\right|\right) \sec \frac{\pi}{\nu_{2}}, 1-\left|a_{n_{2}}\right|+\left|a_{n_{2}}\right|^{2}\right\} \\ 1-\left|a_{n_{2}}\right|^{2} \quad \text { if } \nu_{1}=2 \text { if } \quad i_{1} \geqslant 3\end{array}\right.$

Proof. In view of (28) and Corollary 1 it is enough to prove that ip

$$
z+a_{p} z^{p}+t z^{q} \quad\left(p<q<2 p-1, \quad \dot{0}<t<\frac{1}{q}\right)
$$

is univalent in $|z|<1$ and $\frac{p-1}{q-1}=\frac{\ell-1}{1 /-1}$ where $\ell-1$ and $m-1$ are relatively prime, then

$$
p\left|a_{p}\right| \leqslant \begin{cases}1-t q+t^{2} q^{2} & \text { if } \quad l-1 \geqslant 3 \tag{30}\\ 1-t^{2} q^{2} & \text { if } l-1=2 .\end{cases}
$$

There are $m-1$ points on the boundary of G_{0} whose absolute value is equal to max $|m|$. There is one whose Argument is equal to $-\frac{\ell-1-1}{m-1} \pi+\frac{\pi}{m-1}$. Call it w_{0}. The point wo lies on the portion of $\Gamma_{t q}$ described by the moving point

$$
w(\varphi)=e^{-i(p-1) \varphi}+\operatorname{tg} e^{i(q-p) \varphi}
$$

as φ increases from 0 to $\frac{\pi}{q-7}$. Since $|\omega(\varphi)|$ decreasos monotonically from $1+t q$ to $1-t q$ as φ increases from 0 to $\frac{\pi}{q-T}$ there is a unique value of φ, say φ_{0}, in $\left(0, \frac{T}{g-T}\right.$) such that $w\left(\varphi_{0}\right)=W_{0}$, and the points 2 ling on the portion γ of $\Gamma_{t q}$ which is the image of $\left[0, \varphi_{0}\right]$ must be of modulus $\geqslant \max _{\mathrm{m} \in G_{0}}|\mathrm{w}|$. Now we wish to show that

$$
\begin{equation*}
w\left(\frac{2}{3} \frac{\pi}{a-1}\right) \in \gamma \tag{31}
\end{equation*}
$$

which would imply that

$$
\begin{equation*}
\max _{w \in G_{0}}^{G_{0}}|w| \leqslant\left|w\left(\frac{2}{3} \frac{\pi}{q-1}\right)\right| . \tag{32}
\end{equation*}
$$

Since $\operatorname{Arg} \mathbb{W}(\varphi)$ decreases from 0 to $-\frac{l-1}{\mathrm{~m}-1} \pi+\frac{\pi}{\mathrm{m}-1}$ as φ increases from 0 to φ_{0} it is enough to show that
(33)

$$
\operatorname{Arg} w\left(\frac{2}{3} \frac{\pi}{Q-1}\right)>\operatorname{Arg} W_{Q} .
$$

If $\dot{\alpha}_{0}$ is the unique root of the equation

$$
\tan \alpha=\frac{(\sqrt{3} / 2) t c}{1-(1 / 2) t a}
$$

in $\left(0, \frac{\pi}{3}\right]$ then

$$
\operatorname{Are}\left(\frac{2}{3} \frac{\pi}{q-1}\right)=-\frac{2}{3} \frac{l-1}{n-1}+\alpha_{0}
$$

and (33) is equivalent to

$$
\frac{1}{3} \frac{l-1}{1-1} x+\alpha_{0}>0
$$

which is certainly true for $l \geqslant 4$. The case $\ell-1 \geqslant 3$ of inequality (30) is now an immediate consequence of (32) since

$$
\left|w\left(\frac{2}{3} \frac{\pi}{q-1}\right)\right|=1-t q+t^{2} q^{2}
$$

If $f-1=2$, then $m-1$ is necessarily equal to 3 and in that case it follows from our study of the coefficient region of univalent trinomial s of the form $z-a_{3} z^{3}+t s^{4}$, $0<t \leq \frac{1}{4}$ that (see [10, Corollary 2])

$$
p\left|a_{0}\right| \leqslant \max _{w \in \frac{G_{0}}{G_{0}}}|w| \leqslant 1-t^{2} q^{2}
$$

which completes the proof of (30) and in tum that of Theorem A°.

Proof of Theorem 2. First we observe that

$$
0 \leqslant \theta<\pi / q \sin \theta{ }^{\sin \theta} \bar{G}_{\theta}=\frac{1}{p} \bar{G}_{0} .
$$

The reasoning used in the first part of the proof of Theorem 1 to prove this fact in the case $2 p-4>q$ remains valid. Indeed, the condition $2 p-1>q$ was used only to conclude that $\ell-1 \geqslant 2$ but that is true here as well since, by hypothesis, $q-1$ is not a multiple of $p-1$.

What we need to show now is that

$$
\frac{1}{p} \bar{G}_{0} \subseteq \frac{\sin \theta}{\sin p \theta} \overline{G_{\theta}} \quad \text { for all } \theta \in\left[\frac{\pi}{q}, \frac{\pi}{2}\right]
$$

This would follow if we could show that

$$
\text { (35) } \quad \max _{w \in G_{0}}|w| \leqslant \min _{w \in \partial G_{\theta}}|w| \quad \text { for all } \theta \in\left[\frac{\pi}{q}, \frac{\pi}{2}\right] \text {. }
$$

Since we do not know the precise value of $\max _{\mathrm{m}}^{\mathrm{G}}|\overrightarrow{\mathrm{G}}| \mathrm{w} \mid$ we look for a good enough upper estimate．For this let ${ }^{0} w_{0}$ be the point of ∂G_{0} such that $\max ^{\operatorname{L}} \bar{G}_{0}|m|=\left|w_{0}\right|$ ，and $\operatorname{Arg} \mathrm{m}_{0}=-\frac{\ell-1}{\mathrm{~m}-1} \pi+\frac{\pi}{\mathrm{m}-1}$ ．Denote by γ_{tq} tres portion of the curve $\Gamma_{\text {ta }}$ described by

$$
w(\varphi)=e^{-1(p-1) \varphi}+\operatorname{tg} e^{i(q-p) \varphi}
$$

as φ increases from 0 to $\frac{\pi}{q-1}$ ．Thus the initial and terminal points of $\gamma_{t q}$ are $1+t q$ and $(1-t q) \exp \left(-1 \frac{l-1}{m-1} \pi\right)$ respectively．As φ increases from 0 to $\frac{\pi}{q-1},|⿴(\varphi)|$ decreases monotonically from $1+\mathrm{tq}$ to $1-\mathrm{tq}$ and according to Lemma 8 the vector $w(\varphi)$ turns monotonically in the clock－ wise direction provided $t q \leqslant \frac{\ell-1}{m-l}$ ．From the expression for $w(\varphi)$ and Lemma 9 it follows that if $t>\frac{1-1}{m-\ell}$ then $\operatorname{Im}\{⿴ 囗 十 \varphi)$ first increases and then decreases monotonically as φ increases from 0 to $\frac{\pi}{q-1}$ ．Nom set $\varphi_{\lambda}=\lambda \frac{\pi}{q-1}$ where $0<\lambda<1$ ．If arg w denotes the value of the argument lying in $\left[-\frac{3 \pi}{2}, \frac{\pi}{2}\right)$ then in view of the above mentioned properties of $\gamma_{t q}$ we may take $\left|w\left(\varphi_{\lambda}\right)\right|$ as an upper esti－ mate for $\left|w_{0}\right|$ provided

$$
\begin{equation*}
\arg ^{*} w\left(\varphi_{\lambda}\right) \geqslant \arg ^{*}{ }_{w_{0}}=-\frac{l-1}{m-1} \pi+\frac{\pi}{m-1} . \tag{36}
\end{equation*}
$$

Inequality（36）holds if and only if
(37)

$$
\alpha^{*}+\{(l-1)(1-\lambda)-1\} \frac{\pi}{m-1} \geq 1
$$

where
α * is the unique root of the equation
(38)

$$
\tan \alpha=\frac{\operatorname{tg} \sin (\lambda \pi)}{1+\operatorname{tg} \cos (\lambda \pi)}
$$

in the interval $\left[0, \frac{\pi}{2}\right]$.
Now let us set $\lambda=1-\frac{\varepsilon}{l-1}(0<\varepsilon \leq 1)$. Then (37)
takes the form

$$
\begin{equation*}
\alpha^{*}>\frac{\pi}{m-1}(1-\varepsilon) \tag{39}
\end{equation*}
$$

Using (38) we see that (39) is true if
(40) $\quad t \geq \frac{1}{q} \frac{\tan \left(\frac{\pi}{m-1}(1-\varepsilon)\right)}{\sin \left(\frac{\pi}{l-1} \varepsilon\right)+\cos \left(\frac{\pi}{l-1} \varepsilon\right) \tan \left(\frac{\pi}{m-1}(1-\varepsilon)\right)}$

Thus we may use the estimate

$$
\begin{equation*}
\max _{w \in \frac{G_{0}}{}|w|^{2} \leq\left|w\left(\varphi_{\lambda}\right)\right|=1+t^{2} q^{2}-2 t q \cos \left(\frac{\pi}{\hat{\imath}-1} \varepsilon\right), ~\left(\frac{\pi}{2}\right)} \tag{41}
\end{equation*}
$$

provided (40) holds. In particular,

$$
\max _{w \in \frac{x}{G}}|w|^{2} \leqslant 1+t^{2} q^{2}-2 t q \cos \frac{\pi}{t-1} \text { for all } t \in\left[0, \frac{1}{q}\right]
$$

Besides,

$$
\min _{w \in \partial G_{\theta}}|w|=1-t \frac{\sin a \theta \mid}{\sin \hat{\theta}} \geqslant 1-t /\left(\sin \frac{\pi}{\theta}\right) \text { for } \theta \in\left[\frac{\pi}{q}, \frac{\pi}{2}\right]
$$

Hence inequality (35) will be proved for all $t \in\left[0, \frac{1}{q}\right]$ if it tums out that

$$
\begin{equation*}
1+t^{2} q^{2}-2 t q \cos \frac{\pi}{l-1} \leqslant\left\{1-t /\left(\sin \frac{\pi}{q}\right)\right\}^{2} \tag{42}
\end{equation*}
$$

After simplification inequality (42) takes the form
(43)

$$
t\left\{q^{2}-1 /\left(\sin \frac{\pi}{q}\right)^{2}\right\}+2 /\left(\sin \frac{\pi}{q}\right) \leqslant 2 q \cos \frac{\pi}{\ell-1} .
$$

Using the estimate $\frac{1}{1-x} \leqslant 1+\frac{1}{1-a} x$ which is valid for $0 \leqslant x \leqslant a<1$ we obtain

$$
\begin{equation*}
1 /\left(\sin \frac{\pi}{0}\right)<\frac{q}{x}\left(1+1.048 \frac{\pi^{2}}{6 q^{2}}\right) \quad \text { for all } q \geqslant 6 \tag{44}
\end{equation*}
$$

Hence (43) would hold for $q \geqslant 6$ if the inequality

$$
\begin{equation*}
\operatorname{tg}\left(1-\frac{1}{\pi^{2}}\right)+\frac{2}{\pi}+1.048 \frac{\pi}{q^{2}} \leq 2 \cos \frac{\pi}{l-1} \tag{45}
\end{equation*}
$$

were true. Inequality (45) turns out to be true $1 ?,<-1 \geqslant 5$ since in that case $q \geqslant 12$. Thus (34) holds if $l-1 \geqslant 5$.

Now let $l-1=4$. Then clearly $q \geqslant 10$ and it is
a matter of simple verification that (45) (and so (34)) holds for tq<0.75. In order to deal with the case $0.75<t q \leqslant 1$ we take $\varepsilon=\frac{2}{3}$ in (41) and obtain the estimate
(46)

$$
\max _{w \in G_{0}}|w|^{2} \leq 1+t^{2} q^{2}-\sqrt{3} t q
$$

valid for $1 \geqslant \operatorname{ta} \geqslant \frac{2 \tan (\pi / 27)}{1+\sqrt{3} \tan (\pi / 27)}$ and so certainly for $1 \geqslant \mathrm{tq}>0.75$. Thus (35) would hold if

$$
\begin{equation*}
1+t^{2} q^{2}-\sqrt{3} t q \leqslant\left\{1-t /\left(\sin \frac{\pi}{q}\right)\right\}^{2} \tag{47}
\end{equation*}
$$

mere true for $1 \geqslant t q>0.75$ and $q \geqslant 10$. That it is indeed the case can be easily checked using the estimate (44). Hence (34) holds also if $\quad \ell-1=4$.

If $\quad l-1=3$ then $q \geqslant 8$ and (45) holds for $t q \leqslant 0.36$ though not for all $t q \leqslant 1$. Setting $\varepsilon=\frac{1}{2}$ in (41) we see that in the case $1 \geqslant t q>0.36$ we can use the estimate (46) for $\max _{\mathrm{max}}^{G}|w|^{2}$. Hence (35) would hold if (47) were true for $1 \geqslant t q>0.36$ and $q \geq 8$. It does indeed turn out to be the case
and so (35) and in turn (34) holds for $\ell-1=3$ as well.
The case $l-1=2$ cannot be handled in quite the same Way. Wo will, in fact, need a couple of additional lemmas.

LEMMA 12. The function $\frac{\sin p \theta}{\sin \Theta}$ decreases from p to 0 as θ increases from 0 to π / p.

Since cost is a decreasing function of t in $(0, \pi)$ the conclusion follows immediately from the fact that

$$
\frac{\sin p \theta}{\sin \theta}=\left\{\begin{array}{l}
1+2 \cos 2 \theta+2 \cos 4 \theta+\ldots+2 \cos (p-1) \theta \text { if } p \text { is odd } \\
2 \cos \theta+2 \cos 3 \theta+\ldots+2 \cos (p-1) \theta \text { if } p \text { is even. }
\end{array}\right.
$$

LEMMA 13. If $l-1 \quad(=2), m-1$ are relatively
prime, then a point w lies on the curve

$$
\Gamma_{b}: w_{1}(\varphi)=e^{-2 s i \varphi}+b e^{1(m-3) s \varphi}, \quad 0 \leqslant \varphi \leqslant 2 t
$$

If and only if it lies on the curve

$$
\Gamma_{-b}: w_{2}(\varphi)=e^{-2 s i \varphi}-b e^{1(m-3) s \varphi}, \quad 0 \leqslant \varphi \leqslant 2 \pi
$$

P 100 P. Since 2, $m-1$ do not have common divisors,
$m-1$ and so $m-3$ must be odd. Hence

$$
\begin{aligned}
w_{1}\left(\varphi+\frac{\pi}{s}\right) & =\exp \left\{-2 s 1\left(\varphi+\frac{\pi}{s}\right)\right\}+b \exp \left\{1(m-3) s\left(\varphi+\frac{\pi}{s}\right)=\right. \\
& =e^{-2 s 1 \varphi}+b e^{1(m-3) s \varphi} e^{1(m-3) x}= \\
& =e^{-2 s 1 \varphi}-b e^{1(m-3) s \varphi}=w_{2}(\varphi) .
\end{aligned}
$$

The case $\ell-1=2$ of Theorem 2. We already know that

$$
\begin{equation*}
\frac{1}{p} \bar{G}_{0} \subseteq \frac{\sin \theta}{\sin p \theta} \overline{G_{0}} \quad \text { for } \quad \theta \in\left(0, \frac{\pi}{q}\right\} \tag{48}
\end{equation*}
$$

Where we may refer to Theorem A for the case $\theta=\frac{\pi}{q}$, Next we wish to prove that
(49) $\quad \frac{1}{p} \overline{G_{0}} \subseteq \frac{\sin \theta}{\sin p \theta} \bar{G}^{\theta}$ for $\theta \in\left(\frac{\pi}{q}, \frac{\pi}{p}\right]$.

Let us recall that G_{θ} is the region containing the origin and determined by the curve Γ_{b} where $b:=t \frac{\sin c \theta}{\sin \theta}$ is Q increases from 0 to $\pi / q, b$ decreases monotonically (and continuously) from ta to 0 . Hence if we take a θ arbitrary in $\left(\frac{\pi}{q}, \frac{\pi}{\mathrm{p}}\right]$, then in view of Lemma 13 there exists a $\theta^{*} \in\left(0, \frac{\pi}{q}\right]$ such that $G_{\theta}=G_{\theta}$. Thus (49) is equivalent to
(50)

$$
\frac{1}{p} \bar{G}_{0} \subseteq \frac{\sin \theta}{\sin p \theta} \bar{G}_{\theta^{*}}
$$

But by (48) we have

$$
\frac{1}{p} \bar{G}_{0} \subseteq \frac{\sin \theta^{*}}{\sin p \theta^{*}} \overline{G^{*}} \theta^{*}
$$

which implies (50) since the regions G_{θ} are starlike and

by Lemma 12.
Finally, we shall provo that

$$
\begin{equation*}
\frac{1}{p} \bar{G}_{0} \leq \frac{\sin \theta}{\sin p \theta} \bar{G}_{\theta} \quad \text { for } \quad \theta \in\left(\frac{\pi}{p}, \frac{\pi}{2}\right] \tag{51}
\end{equation*}
$$

For this it is enough to verify the inequality
(52)

$$
\frac{1}{p}(1+t q) \leqslant \frac{\sin \theta}{|\sin p \theta|}\left(1-t \frac{|\sin q \theta|}{\sin \theta}\right)
$$

But (52) would certainly hold if
(53)

$$
1+t p+t q \leqslant p \sin \frac{\pi}{p}
$$

were true. As it is easily checked, (53) is indeed true for $\mathrm{p} \geqslant 5$ and therefore so does (52). That (52) holds also in the only remaining case $\mathrm{p}=3$ is seen by noting that

$$
\begin{aligned}
& \frac{\sin \theta}{|\sin 3 \theta|}=\frac{1}{4 \sin ^{2} \theta-3} \geqslant 1 \\
& \frac{|\sin 9 \theta|}{\sin \theta} \leqslant \frac{1}{\sin \theta} \leqslant \frac{2}{\sqrt{3}}
\end{aligned}
$$

and $t \leqslant \frac{1}{q} \leqslant \frac{1}{6}$.
As an immediate consequence of Theorem 2, we have
COROLLARY 2. If $q>2 p-1$, then provided $q-1$ is not an integral multiple of $p-1$, the trinomial

$$
z+a_{p} z^{p}+a_{q} z^{q}
$$

is univalent in $|z|<1$ if and only if its derivative does not vanish there.

Proof of Theorem 3. Since the result is already known to be true for $q=3,4$ and 5 we shall assume $q \geqslant 6$.

It is easily checked that

$$
w(\varphi)=e^{-1 \varphi}+t \frac{\sin q \theta}{\sin \theta} e^{i(q-2) \varphi}, \quad 0 \leqslant \varphi \leqslant 2 x
$$

defines a Jordan curve for $0<t \leqslant \frac{1}{q(q-2)}$. According to Lemma 8 it is also starlike. We wish to show that as θ decreases from π / q to 0 the region $\frac{1}{2 \cos \theta} G_{\theta}$ shrinks monotonically to the region $\frac{1}{2} G_{O}$. In view of Lemma 5 it is
enough to show that the subregion

$$
\Delta_{\theta}:=\left\{w:-\frac{2}{q-1}<\operatorname{Arg} w<0\right\} \cap \frac{1}{2 \cos \theta} G_{\theta}
$$

shrinks monotonically as θ decreases from π / Q to 0 . For this we apply Lemma 11 to the function

$$
F(z, x)=P(z, \cos \theta):=\frac{(\sin \theta) z^{-1}+t(\sin q \theta) z^{q-2}}{\sin 2 \theta}
$$

and take for γ_{x} the arc $z=\theta^{1 \varphi}, 0 \leqslant \varphi \leqslant \frac{2 \pi}{q-T}$. Compting $\frac{\partial F}{\partial x}, \frac{\partial P}{\partial Z}$ we see that if

$$
\begin{aligned}
& A=\sin 2 \theta \cos \theta-2 \sin \theta \cos 2 \theta, \\
& B=2 \sin q \theta \cos 2 \theta-q \sin 2 \theta \cos q \theta,
\end{aligned}
$$

then (17) is equivalent to
(54)

$$
\begin{aligned}
& -A-B t^{2}(q-2) \frac{\sin q \theta}{\sin \theta}+ \\
& +\left\{B+A(q-2) \frac{\sin q \theta}{\sin \theta}\right\} t \cos (q-1) \varphi<0 \\
& \text { for } 0 \leqslant \varphi \leqslant \frac{2 \pi}{q-1}
\end{aligned}
$$

It is easily checked that both A and B are positive for $0<\theta \leqslant \pi / q$. So (54) will certainly hold if

$$
-A-B t^{2}(q-2) \frac{\sin \alpha \theta}{\sin \theta}+\left\{B+A(q-2) \frac{\sin q \theta}{\sin \theta}\right\} t<0,
$$

ie.

$$
(A-B t)\left\{-1+t(q-2) \frac{\sin q \theta}{\sin \theta}\right\}<0
$$

Since $0<t \leqslant \frac{3}{q\left(q^{2}-4\right)}$, the second factor is negative and so
it is sufficient to show that A - Bt is positive, i.e.
(55) $\sin 2 \theta \cos \theta-2 \sin \theta \cos 2 \theta-$

$$
-\frac{3}{q\left(q^{2}-4\right)}(2 \sin q \theta \cos 2 \theta-q \sin 2 \theta \cos q \theta)>0
$$

The expression on the left-hand side of (55) vanishes for $\theta=0$ and its derivative which is equal to $\frac{3}{q}(\sin 2 \theta)$. - $(q \sin \theta-\sin q \theta)$ is positive for $0<0 \leqslant \pi / q$. Hence (55) holds for $Q \in(0, \pi / q]$ and in turn so does (54). Thus we have proved that

$$
\bigcap_{0 \leqslant \theta \leqslant \pi / q} \frac{1}{2 \cos \theta} \overline{G_{\theta}}=\frac{1}{2} \bar{G}_{0}
$$

Now we shall show that if $0<t \leqslant \frac{3}{q\left(q^{2}-4\right)}$. then for $\frac{\pi}{q} \leq \theta \leq \frac{\pi}{2}$,

$$
\frac{1}{2} \bar{G}_{0} \subseteq \frac{1}{2 \cos \theta} \bar{G}_{\theta} .
$$

so that for such values of t

$$
0 \leqslant \theta \leqslant \pi / 2 \frac{1}{2 \cos \theta} \overline{G_{\theta}}=\frac{1}{2} \overline{G_{0}} .
$$

Since

$$
\frac{1}{2} \overline{G_{0}} \subseteq\left\{w:|w| \leqslant \frac{1}{2}\left(1+\frac{3}{q^{2}-4}\right)\right\}
$$

and

$$
\left\{v:|w| \leqslant \frac{1}{2 \cos \theta}\left(1-\frac{3}{q\left(q^{2}-4\right)} \frac{\operatorname{lsin} q \theta \mid}{\sin \theta}\right) \leq \frac{1}{2 \cos \theta} \bar{G}_{\theta}\right.
$$

We will simply check that

$$
1+\frac{3}{q^{2}-4} \leqslant \frac{1}{\cos \theta}\left(1-\frac{3}{Q\left(q^{2}-4\right)} \frac{|\sin q \theta|}{\sin \theta}\right) \text { for } \frac{\pi}{Q} \leqslant \theta \leqslant \frac{\pi}{2}
$$

For values of (2) under consideration

$$
\frac{1}{\cos \theta} \geqslant \frac{1}{\cos \frac{\pi}{q}}, \quad \frac{|\sin \theta \theta|}{\sin \theta} \leqslant \frac{1}{\sin \frac{\pi}{q}}
$$

Hence it is enough to verify that

$$
\begin{equation*}
1+\frac{3}{q^{2}-4} \leqslant \frac{1}{\cos \frac{\pi}{q}}\left(1-\frac{3}{q^{2}-4} \frac{1}{q \sin \frac{\pi}{q}}\right) \tag{56}
\end{equation*}
$$

Since q sin $\frac{\pi}{q} \geqslant 3$ for $q \geqslant 6$ the expression on the rieht-hand
 hold if

$$
\cos \frac{\pi}{q} \leqslant \frac{q^{2}-5}{q^{2}-4}
$$

were true. Since this latter inequality is indeed true Theorem 3 is completely proved.

REFERENCES

[1] Bohl, P., Zur Theorie der trinomischen Gleichungon, Kath. Ann. 65(1908), 556-566.
[2] Biemacki, M., Sur les équations alcébriques contenant des parametres arbitraires (Thèse), Bull. Acad. Polon. Sci. Sér. Sci. .hath. Astronom. Pbys. Sórie A, 1927, 541-685.
[3] Brannan, D.A., Coefficient regions for univalent polynomials of small decree, l.athematika 14(1967), 165-169.
[4] Comling, V.F., Roystor, W.C., Domains of variability for univalent polynomials, Proc. Amor. Brath. Soc.: 19(1963), 767-772.
[5] Dieudonné, J., La thcioric analytjiçue des polynomis é une Variable, Mémor. Sci. Math. No. 93, Gauthier-Villars, Paris, 1938.
[6] Herglotz, G., Über die Wurzeln trinomischer Gleichungen, Leipziger Berichte, Math.-Phys. Klasse 74(1922), 1-8.
[7] Landau, E., Uber den Picardschen Satz, Vierteljahrsschrift Naturforsch. Gesellschaft Zürich 51(1906), 252-318.
[8] ., . Sur quelques généralisations du théoreme de $\mathbb{4}$. Picard, Ann. Sci. Ecole Sup. (3) 24(1907), 179-201.
[9] Rahman, Q.I., Szynal, J., On some classes of polynomials, Canad. J. Math., 30(1978), 332-349.
[10] Rahman, Q.I., Waniurski, J., Coefficient regions for univalent trinomials, Canad. J. Math. 32(1980), 1-20.
[11] Ruscheweyh, St., Wirths, K.J., Über die Koeffizienten spezieller schilchter Polynome, Ann. Polon. Math., 28(1973), 341-355.

STRITSZCZERTIB

W niniejszej pracy zajmujemy się okresleniem warunkóm koniecznych 1 dostatecznych na to by wielomian $f_{t}(z)=z-$ $-a_{p} z^{p}+t z^{q}$ by jednolistny w kole $|z|<1$. Podajemo tez warunki na to by wielomian $f_{t}(z)$ lokalnie jednolistny by z równiez globalnie jednolistny w kole $|z|<1$.

Реагие

В данной работе опредөлены необходимые и достаточные условия для того, чтобы полином $f_{t}(z)=z-a_{p} z^{p}+t z^{q}$ был однолистннй в круге $|z|<1$. Они дарт тякже условия к тому, чтооы локально однолистный полином $f_{t}(z)$ являлоя такае глсбальво однолистным в круге $|z|<1$.

