ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XXXIII, 17

SECTIO A

1979

Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Canada Instytut Matematyki, Universytet Marii Curie-Skłodowskiej, Lublin

Qazi Ibadur RAHMAN and Józef WANIURSKI

Coefficient Regions for Univalent Trinomials, II

Obszar zmienności współczynników trójmianów jednolistnych II Область изменения коэффициентов однолистных триполиноиов

In connection with his work on the Picard Theorem, Landau ([7], [8]) proved that every trinomial

(1)
$$1 + z + a_n z^n$$
, $n \ge 2$,

has at least one zero in the circle $|z| \leq 2$. Using a simple rule due to Bohl [1], Herglotz [6] and Biernacki [2] showed (also see [5, p. 53]) that the trinomial

(2)
$$1 + z^{n_1} + a_{n_2} z^{n_2}, \quad 1 \le n_1 \le n_2$$

has at least one zero in

$$|z| \leq \left(\frac{n_2}{n_2 - n_1}\right)^{1/n_1}$$
 if n_2 is an integral multiple of n_1

 $\begin{pmatrix} 1 & \text{if } n_2 \text{ is not an integral multiple of } n_1 \text{.}$ It is easily seen that the result of Herglotz and Biernacki 190 Qazi Ibadur Rahman, Józef Waniurski is equivalent to the following

(3)
$$1 + a_{n_1} z^{n_1} + a_{n_2} z^{n_2}, \quad 1 \le n_1 \le n_1$$

does not vanish in |z| < 1, then

(4)
$$|a_{n_1}| \leq \frac{n_2}{n_2 - n_1}$$
 if n_2 is an integral multiple of n_1

if n₂ is not an integral multiple of n₁.

The examples

$$p(z) = 1 - \frac{k}{k-1} z^{n_1} + \frac{1}{k-1} z^{kn_1} =$$
$$= (1 - z^{n_1})(1 - \frac{1}{k-1} \sum_{j=1}^{k-1} z^{jn_j})$$

and

$$q(z) = 1 + (1 - \varepsilon)z^{n_1} + \frac{\varepsilon}{2}z^{n_2}, \quad \varepsilon > 0$$

show that (4) is best possible. However, we can claim more precisely (see [10]) that if G denotes the region determined by the curve

$$\varphi \longrightarrow \Theta^{-in_1}\varphi + a_{n_2}\Theta^{i(n_2-n_1)}\varphi, \quad 0 \le \varphi \le 2\pi$$

and containing the origin, then (3) is $\neq 0$ in |z| < 1 if and only if $-a_{n_1} \in \overline{G}$. This observation was used to deal with a related and in fact more difficult problem of Cowling and Royster [4], namely the determination of the precise region of variability of (a_2, a_k) for the univalent trinomial $z + a_2 z^2 + a_k z^k$ where $k \ge 3$. In fact, we considered arbitrary Coefficient Regions for Univalent Trinomials, II 191 trinomials $z + a_p z^p + a_q z^q$ where p < q. Denoting the region determined by the curve

(5)
$$w(\varphi) = e^{-i(p-1)\varphi} + t \frac{\sin q\Theta}{\sin \theta} e^{i(q-p)\varphi}, \quad 0 \le \varphi \le 2\pi,$$

 $0 \le t \le \frac{1}{2}$

and containing the origin by $G_{\Theta} = G_{\Theta}(p,q,t)$ where $G_{O}(p,q,\frac{1}{q})$ stands for the interval [-2,2] if q = 2p - 1, and for {0} otherwise, we proved [10]:

THEOREM B. The trinomial

$$f_t(z) = z - a_p z^p + t z^q, \quad (p < q, 0 < t \leq \frac{1}{q})$$

is univalent in |z| < 1 if and only if

where for $\theta = \frac{\pi}{p}$, $2\frac{\pi}{p}$, \dots , $\left[\frac{p}{2}\right]\frac{\pi}{p}$, $\frac{\sin\theta}{\sin p\theta} \,\overline{c}_{\theta} = \mathbb{C}$.

Besides, we carried out a closer study of trinomials of the forms

(1)	Z	- a	2 ² 2	+	tz4
(11)	z	- a	3z3	+	tz ⁴
(111)	z	- 8	2 z ²	+	tz ⁵
(iv)	Z	- a	4z4	+	tz ⁵

which along with the previously known result ([11], [9]) about polynomials of the form $z + a_p z^p + a_{2p-1} z^{2p-1}$, gave us a reasonably good understanding of the coefficient region for univalent trinomials of degree ≤ 5 .

Here we carry our investigation further and prove the

192 Qazi Ibadur Rahman, Józef Waniurski following results.

THEOREM 1. Let G_{Θ} be as defined above. If 2p-1>q>p, then the trinomial

$$f_{t}(z) = z - a_{p}z^{p} + tz^{q}, \qquad (0 < t \le \frac{1}{q})$$

$$= \text{ univalent in } |z| < 1 \text{ if and only if}$$

$$a_{p} \in \frac{1}{q} \quad \overline{G_{0}}.$$

THEOREM 2. Again let G_{Θ} be as defined above. If q>2p-1, then provided q-1 is not an integral multiple of p-1, the trinomial

$$f_t(z) = z - a_p z^p + t z^q, \qquad (0 < t \leq \frac{1}{q})$$

is univalent in |z|<1 if and only if

11

$$a_p \in \frac{1}{p} \overline{G_0}$$
.

The conclusion of Theorems 1 and 2 does not hold in general if q - 1 is a multiple of p - 1. However, it is known ([3], [4], [10]) that according as q is equal to 3, 4 or 5 the trinomial

$$f_t(z) = z - a_2 z^2 + t z^q$$
, (t>0)

is univalent in |z| < 1 if and only if

$$a_2 \in \frac{1}{2} \overline{G_0} = \frac{1}{2} \overline{G_0(2,q,t)}$$

provided t does not exceed 1/5, 1/16 or 1/35 respectively. Here we prove Coefficient Regions for Univalent Trinomials, II 193 THEOREM 3. The trinomial

$$f_t(z) = z - a_2 z^2 + t z^q$$
, (q>3)

is univalent in |z|<1 if and only if

$$a_2 \in \frac{1}{2} G_0(2,q,t)$$

provided $0 < t \leq \frac{3}{q(q^2 - 4)}$.

Since $\frac{1}{p} G_0(p,q,\frac{1}{q}) = \{0\}$ if $q \neq 2p - 1$, it is an immediate consequence of Theorem B that

$$f_{1/q}(z) = z - a_p z^p + \frac{1}{q} z^q, \qquad (q \neq 2p - 1)$$

is univalent in |z| < 1 if and only if $f'_{1/q}(z)$ does not vanish there. This proves Theorems 1 and 2 in the case t = 1/qand so hereafter we will restrict ourselves to values of $t \in (0, \frac{1}{q})$.

We need various auxiliary results which we collect as lemmas.

LEMMA 1. If l-1 and m-1 are relatively prime, then the set of points

(7)
$$\exp(-i\frac{2\mu(l-1)\pi}{m-1}), \quad \mu = 0, 1, 2, ...$$

is identical with the set

(8)
$$\exp(-i\frac{2\mu T}{m-1}), \quad \mu = 0, 1, 2, \dots, m-2$$

Proof. First, let us observe that for $\mu = 0, 1, 2, ..., m-2$ the points $\exp(-i \frac{2\mu(l-1)\pi}{\pi-1})$ are all distinct. In fact

$$exp(-i \frac{2\mu(l-1)\pi}{m-1}) = exp(-i \frac{2\nu(l-1)\pi}{m-1})$$

194 Qazi Ibadur Rahman, Józef Waniurski for some μ , ν such that $0 \le \mu < \nu \le m - 2$ if and only if

(9)
$$\exp(\frac{l-1}{m-1}(y-\mu)2\pi i) = 1$$

Since, by hypothesis, l = 1 and m = 1 have no common factors and $v = \mu \le m = 2$ it is easily seen that $\frac{l = 1}{m = -1}(v - \mu)$ cannot be an integer and so (9) cannot hold.

On the other hand, the numbers (7) are of the form

$$\{\exp(-i(l-1)2\mu\pi)\}^{1/(m-1)}, \mu = 0, 1, 2, \dots, n$$

i.e. they are amongst the (m - 1)-st roots of unity. In other words, the set of numbers (7) is a subset of the set (8).

The above two considerations show that the sets (7) and (8) are identical.

LEMMA 2. Let $\frac{p-1}{q-1} = \frac{l-1}{m-1}$, where l-1 and m-1are relatively prime. Then there exists a positive integer n such that

$$\exp(-i\frac{p-1}{q-1}2n\pi) = \exp(i\frac{2\pi}{n-1}).$$

Proof. According to Lemma 1 there exists a positive integer n such that

$$exp(-i \frac{2(m-2)\pi}{m-1}) = exp(-i \frac{2n(l-1)\pi}{m-1})$$

Hence

$$\exp(i \frac{2\pi}{m-1}) = \exp(-i \frac{2(m-2)\pi}{m-1}) = \exp(-i \frac{2n(\ell-1)\pi}{m-1}) = \exp(-i \frac{p-1}{m-1} 2n\pi).$$

The region G_{φ} is determined by a curve of the form (10) $w(\varphi) = w(b, \varphi) = e^{-i(p-1)\varphi} + be^{i(q-p)\varphi}, \quad 0 \le \varphi \le 2\pi$ Coefficient Regions for Univalent Trinomials, II 195 where $-b_0 \le b < 1$ with $0 < b_0 < 1$. In [10] we noted some important properties of the curve Γ_b defined by (10). For example, a point w lies on Γ_b if and only if its conjugate does. This in conjunction with the fact that $0 \in G_b$ implies:

LEMMA 3. The region G_{Θ} is symmetrical about the real axis.

Here we prove

LEMMA 4. If $\frac{p-1}{q-1} = \frac{l-1}{m-1}$ where l-1 and m-1are relatively prime then the curve Γ_b and hence the region G_b is symmetrical about the line

$$Im\{we^{-i\pi/(m-1)}\}=0$$

Proof. Let n be as in Lemma 2. If we define $w(\varphi)$ outside the interval $[0,2\pi]$ by periodicity, then

 $w(\frac{2n\pi}{q-1} - \varphi) = \exp\{-i(q-1)(\frac{2n\pi}{q-1} - \varphi)\} + b \exp\{i(q-p)(\frac{2n\pi}{q-1} - \varphi)\} = e^{2\pi i/(m-1)}e^{i(p-1)\varphi} + be^{2n\pi i}e^{2\pi i/(m-1)}e^{-i(q-p)\varphi} = e^{2\pi i/(m-1)}\{e^{i(p-1)\varphi} + be^{-i(q-p)\varphi}\} = e^{2\pi i/(m-1)}\overline{w(\varphi)}.$

This means that a point w lies on \int_{b} if and only if $e^{2\pi i/(m-1)}w(\varphi)$ does. Hence we have the desired result.

We are now ready to prove

LEMMA 5. Let $\frac{p-1}{q-1} = \frac{l-1}{m-1}$, where l-1 and m-1are relatively prime. Then $G_{\Theta}(p,q,t)$ is symmetrical about the lines 196 Qazi Ibadur Rahman, Józef Waniurski

(11)
$$\operatorname{Im}\left\{w \exp\left(-1 \frac{k\pi}{n-1}\right)\right\} = 0, \quad k = 0, 1, 2, \dots, 2n-3.$$

Proof. From the definition of $w(\phi)$ it is readily seen that

$$w(\varphi + \frac{2\pi}{q-1}) \equiv w(\varphi) \exp(-\frac{i(2p-1)\pi}{q-1}).$$

Hence a point w lies on I if and only if the points

$$w \exp(-1 \frac{2\mu(l-1)\pi}{\pi-1}), \quad \mu = 0, 1, 2, \dots$$

do. But according to Lemma 1 this set of points is identical with the set

$$w \exp(-i \frac{2\mu\pi}{m-1}), \quad \mu = 0, 1, 2, \dots, m-2.$$

The desired result is now a simple consequence of Lemmas 3 and 4.

The next four lemmas give some useful information about the curve Γ_b and the region G_{Θ} .

LEMMA 6. Let

$$g(z) = z^{-(p-1)} + bz^{q-p}$$
, (q>p>1)

where -1 < b < 1. If 2p - 1 > q then the vector $g(e^{1} \varphi)$ turns monotonically in the clockwise direction as ϕ increases from 0 to 27.

Proof. It is enough to show that

(12)
$$\operatorname{Re}\left\{zg'(z)/g(z)\right\} < 0$$
 for $|z| = 1$.

Writing $z = e^{i\varphi}$ we see that (12) holds if and only if

Coefficient Regions for Univalent Trinomials, II 197 $L(b, \varphi) := b^{2}(q-p) - b(2p - 1 - q)\cos\{(q - 1)\varphi\} - (p - 1) < 0$ for $0 \le \varphi \le 2\pi$. But clearly

$$L(b, \varphi) \leq b^{2}(q - p) + |b|(2p - 1 - q) - (p - 1),$$

and so for -1 < b < 1

$$L(b, \varphi) < (q - p) + (2p - 1 - q) - (p - 1) = 0$$

LEMMA 7. Under the conditions of Lemma 6 the tangent to the curve

$$w(\varphi) = g(e^{1\varphi}), \qquad 0 \leq \varphi \leq 2\pi$$

turns monotonically in the clockwise direction as φ increases from 0 to 2π .

Proof. It is clearly enough to verify that

(13)
$$\operatorname{Re}\left\{1 + zg''(z)/g'(z)\right\} < 0$$
 for $|z| = 1$,

or equivalently

(14)
$$b^2(q-p)^3 + b(q-p)(p-1)(2p-1-q)\cos\{(q-1)\phi\}$$

$$-(p-1)^2 < 0$$
 for $0 \le \varphi \le 2\pi$.

But the expression on the left hand side of (14) cannot exceed

$$(q - p)^{2} + (q - p)(p - 1)(2p - 1 - q) - (p - 1)^{2}$$

which is negative since it can be written in the form

$$-(2p-1-q)\left\{(q-p)^{2}+(p-1)^{2}\right\}.$$

LEMMA 8. Let

$$g(z) = z^{-(p-1)} + bz^{q-p}, \qquad (q>p>1).$$

If 2p - 1 < q then for $-(p - 1)/(q - p) \le b \le (p - 1)/(q - p)$ the vector $g(e^{i\varphi})$ turns monotonically in the clockwise direction as φ increases from 0 to 2π .

Proof. We observe that if -(p - 1)/(q - p) < b < (p - 1)/(q - p) then (12) holds, or equivalently

 $L(b, \varphi) := b^2(q - p) + b(q - 2p + 1)cos \{(q - ')\varphi\} -$

-(p-1)<0 for $0 \le \phi \le 2\pi$.

In fact

$$\begin{split} L(b, \varphi) &\leq b^2(q - p) + |b|(q - 2p + 1) - (p - 1) = \\ &= \{(q - p)|b| - (p - 1)\}(|b| + 1) < 0 \\ & \text{if } - (p - 1)/(q - p) < b < (p - 1)/(q - p) \;. \end{split}$$

If $b = \frac{t}{(p-1)/(q-p)}$ then $L(b, \varphi) < 0$ except at the points where $\cos \{(q-1)\varphi\} = \frac{b}{|b|}$. At such points $L(b, \varphi) = 0$. Hence the lemma holds.

LEMMA 9. Let

 $g(z) = z^{-(p-1)} + bz^{q-p}$, (q > p > 1, -1 < b < 1).

If 2p - 1 < q then for $|b| \ge (p - 1)/(q - p)$ the tangent to the curve

$$w(\varphi) = g(e^{1\varphi}), \qquad 0 \le \varphi \le 2\pi$$

Coefficient Regions for Univalent Trinomials, II 199 turns monotonically in the counter-clockwise direction as φ increases from 0 to 2π .

Proof. We observe that if |b| > (p - 1)/(q - p)then

(13')
$$\operatorname{Re}\left\{1 + zg''(z)/g'(z)\right\} > 0$$
 for $|z| = 1$,

or equivalently

$$\mathcal{L}(b,\varphi) := b^{2}(q-p)^{3} - b(q-p)(p-1)(q-2p+1)\cos\{(q-1)\varphi\} - (p-1)^{3} > 0 \quad \text{for } 0 \le \varphi \le 2\pi.$$

In fact

$$\mathcal{L}(b, \varphi) \ge b^2 (q - p)^3 - |b|(q - p)(p - 1)(q - 2p + 1) - (p - 1)^3 = \{|b|(q - p)^2 + (p - 1)^2\}\{|b|(q - p) - (p - 1)\} > 0 \quad \text{if } |b| > (p - 1)/(q - p).$$

If $b = \frac{1}{p} (p - 1)/(q - p)$ then $\mathcal{L}(b, \varphi) > 0$ except at the points where $\cos\{(q - 1)\varphi\} = \frac{b}{|b|}$. At such points $\mathcal{L}(b, \varphi) = 0$. Hence Lemma 9 holds.

We will also need

LEMMA 10. Let $\frac{p-1}{q-1} = \frac{\ell-1}{m-1}$ where $\ell-1$ and m-1are relatively prime. Further, let $\frac{p-1}{\ell-1} = \frac{q-1}{m-1} = s$, and for $k = 0, 1, 2, \dots, m-2$

15)
$$\Psi_{k} = \begin{cases} -\frac{\ell-1}{m-1}(2k+1)\pi & \text{if} \quad t \frac{\sin q\theta}{\sin \theta} > 0\\ -\frac{\ell-1}{m-1}(2k\pi) & \text{if} \quad t \frac{\sin q\theta}{\sin \theta} < 0 \end{cases}$$

Qazi Ibadur Rahman, Józef Waniurski

Then the part of the boundary of G_{Θ} contained in the sector $|\arg w - \psi_k| \leq \frac{\pi}{m-1}$ is the image of some subinterval $I_{\Theta,k} := [\alpha_{\Theta,k}, \beta_{\Theta,k}]$ by the mapping (10) with $b = t \frac{\sin \alpha_{\Theta}}{\sin \Theta}$.

Proof. Since $w(\varphi + \frac{2\pi}{s}) \equiv w(\varphi)$ for all real φ , $w(\varphi) = e^{-i(p-1)\varphi} + be^{i(q-p)\varphi}$, $0 \le \varphi \le 2\pi/s$

is a closed curve γ_b whose trace is the same as that of the curve Γ_b .

Now let b > 0. Note that the minimum distance between the origin and a point on the boundary of G_{Θ} is 1-b and the points of the boundary for which this distance is attained are precisely the points

(16)
$$(1 - b)e^{\frac{1}{2}\Psi k}, \quad k = 0, 1, 2, \dots, m-2$$

In the same way as for Lemma 1 it can be shown that this set of points is identical with the set

$$(1 - b)\exp(-i\frac{2\pi}{m-1}), \qquad \mu = 0, 1, 2, \dots, m-2$$

or the set

$$(1 - b)exp(-i \frac{(2\mu + 1)\pi}{m - 1}, \mu = 0, 1, 2, ..., m - 2$$

according as l-1 is even or odd.

The region Go being symmetrical about the lines

$$\operatorname{Im}\left\{w \exp\left(-i \frac{k\pi}{m-1}\right)\right\} = 0, \quad \mu = 0, 1, 2, \dots, 2m-3$$

the part $\gamma_{b,k}$ of its boundary lying in the sector $|\arg w - \gamma_k| \leq \frac{\pi}{m-1}$ is either the image of an interval $I_{0,k} \subset [0, 2\pi/s]$ by $w(\varphi)$ or else it contains at least two

Coefficient Regions for Univalent Trinomials, II 201 points w^{\sharp} , $\overline{w^{\sharp}}_{0}^{21} \overline{\psi_{k}}$ not lying on the rays arg $w = \psi_{k} \stackrel{\sharp}{=} \frac{\pi}{m-1}$ where the curve γ_{b} cuts itself. Clearly then, the curve γ_{b} cuts itself also in the points $\{w^{\sharp}\exp(i\frac{2\mu\pi}{m^{2}-1})\}^{m-2}$ and $\{w^{\sharp}e^{-\frac{\mu}{k}}exp(i\frac{2\mu\pi}{m^{2}-1})\}^{m-2}$. Thus, there are at least $\binom{\mu}{4}(m-1)$ values of φ in $[0, 2\pi/s]$ such that $|w(\varphi)| = |w^{\sharp}|$. However, this is impossible. In fact, the curve γ_{b} is the union of m-1 congruent arcs C_{k} described by the moving point $w(\varphi)$ as φ increases from $\frac{k}{m-1}\frac{2\pi}{s}$ to $\frac{k+1}{m-1}\frac{2\pi}{s}$, $k = 0,1,2,\ldots,m-2$. On each of these arcs $|w(\varphi)|$ decreases from 1 + b to 1 - b and then increases to 1 + b. Hence $|w(\varphi)|$ cannot assume any value more than twice in the interval $\left[\frac{k}{m-1}\frac{2\pi}{s}, \frac{k+1}{m-1}\frac{2\pi}{s}\right]$ and can assume any given value at most 2(m-1) times in $[0, 2\pi/s]$.

The argument is similar in the case b < 0.

In addition we will need the following lemma which is proved in [10].

LEMMA 11. Let F(z,x) be a complex valued function of z (complex) and x (real) having the following properties: (i) there exists an absolute constant \$\alphi > 0\$ such that for each x belonging to the interval I := {x : a < x < b}, F(z,x) is analytic in the annulus A_{\alpha} := {z : 1 - \alpha < |z|<1 + \alpha} and is univalent on the arc

 $\gamma_{\mathbf{x}} := \{ z = e^{\mathbf{i}\varphi} : \varphi_1(\mathbf{x}) \leq \varphi \leq \varphi_2(\mathbf{x}) \},$

where $\varphi_1(x)$, $\varphi_2(x)$ are continuous functions of x satisfying $0 < \varphi_2(x) - \varphi_1(x) < 2\pi$,

(ii) for each z_0 lying on γ_{x_0} where x_0 is an arbitrary point of I there exists a left-hand neighbourhood

$$N(x_0; \delta(z_0)) := \{x : x_0 - \delta(z_0) < x \leq x_0\}$$

of x_0 in which $\frac{\partial F}{\partial x}$, $\frac{\partial^2 F}{\partial x^2}$, $\frac{\partial^2 F}{\partial x \partial z}$ exist and are bounded, (111) there exists an absolute constant M such that for all $x \in I$ and $z \in \overline{A_{\infty/2}}$,

$$|F(z,x)| \leq M.$$

For each x &I, let C, be the arc

$$w = F(e^{1\varphi}, x), \qquad \varphi_1(x) \leq \varphi \leq \varphi_2(x)$$

Now, if

(17)
$$\operatorname{Re}\left[\frac{\partial}{\partial x} F(z,x)/\left\{z - \frac{\partial}{\partial z} F(z,x)\right\}\right] > 0$$

for all $x \in I$, $z \in \mathcal{J}_x$, then the arcs C_{x_1} , C_{x_2} where $x_1 \in I$, $x_2 \in I$ do not intersect each other if $|x_1 - x_2|$ is sufficiently small. In particular, if the arcs C_x , except for their end points, remain confined to the interior of a fixed angle $\alpha_1 < \psi < \alpha_2$ of opening $< 2\pi$ whereas, each arc has its initial point on $\psi = \alpha_2$ and its terminal point on $\psi = \alpha_1$, then the sectorial region bounded by C_x and the two rays $\psi = \alpha_1$, α_2 shrinks as x increases.

Proof of Theorem 1. First of all we wish to prove that

$$\bigcap_{0 \leq \Theta < \pi/q} \overline{G}_{\Theta} = \overline{G}_{0}.$$

It is clearly enough to show that the part of G_{9} lying in the sector $|\arg w - \psi_0| \leq \frac{\pi}{m-1}$, where ψ_0 is defined in (15), shrinks monotonically as Θ decreases from π/q to 0.

Coefficient Regions for Univalent Trinomials, II 203 For this we apply Lemma 11 to the function

$$F(z,x) = z^{-(p-1)} + t \frac{\sin q\theta}{\sin \theta} z^{q-p}, \qquad x = \cos \theta$$

where for γ_x we take $\{z = e^{i\varphi} : \varphi \in [\alpha_{\theta,0}, \beta_{\theta,0}]\}$. The numbers $\alpha_{\theta,0}$, $\beta_{\theta,0}$ are the same as in the statement of Lemma 10. The part of the boundary of G_{θ} lying in the sector $|\arg w - \psi_0| \leq \frac{\pi}{m-1}$ is then the arc C_x of Lemma 11. A simple calculation shows that condition (17) is equivalent to

(18)
$$(q \cos q\theta \sin \theta - \cos \theta \sin q\theta) \left\{ -(p - 1)\cos(q - 1)\phi + t(q - p) \frac{\sin q\theta}{\sin \theta} \right\} < 0$$
.

The quantity within the first pair of brackets is negative for $\theta \in (0, \pi/q)$ whereas the quantity within the second pair of brackets is positive for $\varphi \in (\frac{\pi}{2(q-1)}, \frac{3\pi}{2(q-1)})$ and $\theta \in (0, \pi/q)$.

Now let us show that

(19)
$$(\alpha_{\theta,0}, \beta_{\theta,0}) \subset (\frac{\pi}{2(q-1)}, \frac{3\pi}{2(q-1)}).$$

If we denote by Arg w, the value of the argument lying in $[-2\pi, 0)$, then

Arg w(
$$\alpha _{0,0}$$
) = $-\frac{p-1}{q-1}\pi + \frac{\pi}{m-1}$,
Arg w($\beta _{0,0}$) = $-\frac{p-1}{q-1}\pi - \frac{\pi}{m-1}$,
Arg w($\frac{\pi}{2(q-1)}$) = $-\frac{p-1}{2(q-1)}\pi + \psi^{*}$
Arg w($\frac{3\pi}{2(q-1)}$) = $-\frac{3(p-1)}{2(q-1)}\pi - \psi^{*}$

Qazi Ibadur Rahman, Józef Waniurski

where ψ^* is the unique root of the equation tan $\psi = \pm \frac{\sin \alpha \theta}{\sin \theta}$ in (0, $\pi/4$].

In order to prove (19) it is enough, in view of Lemma 6, to verify that

(20)
$$\arg w(\alpha \theta, 0) < \arg w(\frac{\pi}{2(q-1)}),$$

(21)
$$\operatorname{Arg } w(\frac{3\mathbf{T}}{2(q-1)}) < \operatorname{Arg } w(\beta \Theta, c)$$

It is easily seen that inequalities (20), (21) hold if and only if

(22)
$$\frac{\pi}{m-1} < \frac{1}{2} \frac{\ell-1}{m-1} \pi + \psi^*$$

The hypothesis 2p - 1 > q which is equivalent to $\frac{l-1}{m-1} = \frac{p-1}{q-1} > \frac{1}{2}$ implies that $l-1 \ge 2$. Hence (22) does hold and in turn so do (20), (21).

Thus (18) certainly holds for $\varphi \in (\alpha \Theta, 0, \beta \Theta, 0)$, i.e. the curves C_x do not intersect each other as x varies from $\cos(\pi/q)$ to 1. Indeed we have shown that the region G_{Θ} shrinks monotonically as Θ decreases from π/q to 0.

Since $\frac{1}{p} \leq \frac{\sin \theta}{\sin p\theta}$ for $\theta \in [0, \pi/q)$ and $\overline{G_0} \subset \overline{G_{\theta}}$ for all θ in this range it follows that $\frac{1}{p} \overline{G_0}$ is a fortiori contained in $\frac{\sin \theta}{\sin p\theta} \overline{G_{\theta}}$, i.e.

$$\begin{array}{c} (\cdot) \\ \underline{\sin \Theta} \\ \overline{\operatorname{G}} \\ \underline{\sin \Theta} \\ \overline{\operatorname{G}} \\ \underline{\operatorname{G}} \\ \underline{\operatorname{G}} \\ \underline{\operatorname{G}} \\ \underline{\operatorname{G}} \\ \underline{\operatorname{G}} \\ \underline{\operatorname{G}} \end{array} = \frac{1}{p} \overline{\operatorname{G}}_{0} \ .$$

The theorem will be completely proved if we show that $\frac{1}{p} \overline{G}_0 \subset \frac{\sin \Theta}{\sin p\Theta} \overline{G}_{\overline{\Theta}}$ for all $\overline{\Theta} \in \left[\frac{\pi}{q}, \frac{\pi}{2}\right]$. We shall in fact show that

(23)
$$\frac{1}{p} \max_{w \in G_0} |w| \leq \frac{\sin \theta}{|\sin p\theta|} \min_{w \in \partial G} |w| \text{ for } \theta \in \left[\frac{\pi}{q}, \frac{\pi}{2}\right],$$

Coefficient Regions for Univalent Trinomials, II 205 and thereby complete the proof of the theorem.

There are m = 1 points on ∂G_0 where $\max_{w_+ \in \overline{G}_0, w_+ \in \overline{G}_$

(24)

$$\max_{w \in \overline{G_0}} |w| \leq (1 - tq) \sec \frac{\pi}{m - 1}$$
Since $\min_{w \in \overline{\partial G}} |w| = 1 - t \left| \frac{\sin q\Theta}{\sin \Theta} \right|$ inequality (23) will proved if we show that

$$\frac{1}{p} (1 - tq) \sec \frac{\pi}{m-1} \le \frac{\sin \theta}{|\sin p\theta|} (1 - t \frac{|\sin q\theta|}{\sin \theta})$$

for
$$\theta \in \left[\frac{\pi}{q}, \frac{\pi}{2}\right]$$
.

We shall indeed prove that for $\Theta \in \left[\frac{\pi}{q}, \frac{\pi}{2}\right]$ the stronger inequality

(25)
$$\frac{|\sin p\Theta|}{\sin \Theta}$$

holds.

First let $\pi/q \le \Theta \le \pi/p$. Then, in view of the hypothesis 2p - 1 > q we have $\frac{\pi}{2} + \frac{\pi}{20} and so$

$$0 \leq \sin p \theta < \cos \frac{\pi}{2q}$$
, $\sin \theta \geq \sin \frac{\pi}{q}$.

Consequently $\frac{\sin p\theta}{\sin \theta} < 1/(2 \sin \frac{\pi}{2q})$ and for (25) to be true for $\pi/q \le \theta \le \pi/p$ it is enough that the inequality

(26)
$$2p \sin \frac{\pi}{2q} \cos \frac{\pi}{m-1} \ge 1$$

hold for values of p, q and m under consideration. Now if $m - 1 \ge 4$ then also $q - 1 \ge 4$ and the hypothesis $2p - 1 \ge q$

206 Qazi Ibadur Rahman, Józef Waniurski implies that $p \ge 3$. Hence, the left-hand side of (26) is at least equal to $\sqrt{2} p \sin \frac{\pi}{4p}$. Now using the fact that $\frac{1}{x} \sin(\frac{\pi}{4} x)$ is a decreasing function of x in (0,2) we obtain

$$\sqrt{2} p \sin \frac{\pi}{4p} \ge 3\sqrt{2} \sin \frac{\pi}{12} > 1$$

In the case m - 1 = 3 we write $p = 1 + s(\ell - 1)$ and q = 1 + s(m - 1) where of course $\ell - 1 = 2$ and s is a positive integer. The left-hand side of (26) becomes $(1 + 2s)sin \frac{\pi}{2(1 + 3s)}$ which is larger than $(1 + 2s)sin \frac{\pi}{3(1+2s)}$. Again using the fact that $\frac{1}{x}sin(\frac{\pi}{3}x)$ is a decreasing function of x in $(0,\frac{3}{2})$ we conclude that

$$(1 + 2s) \sin \frac{\pi}{3(1 + 2s)} \ge 3 \sin \frac{\pi}{9} > 1.$$

With this the proof of (25) for $\Theta \in [\pi/q, \pi/p]$ is complete.

If $\pi/p \le \Theta \le \pi/2$ then $\sin \Theta \ge \sin \frac{\pi}{P}$ and so (25) will be proved if we show that

(27)
$$p \sin \frac{\pi}{p} \cos \frac{\pi}{m-1} \ge 1$$
.

The hypothesis 2p - 1 > q implies that m - 1 is necessarily >3 and so is p. Hence the left-hand side of (27) is at least equal to $\frac{3\sqrt{3}}{4}$ and is therefore greater than 1. Here again we have used the fact that $\frac{1}{x} \sin(\pi x)$ is a decreasing function of x in (0,1/2).

The following result which is quite surprising is a simple consequence of Theorem 1.

COROLLARY 1. If 2p - 1>q, then the trinomial

$$z + a_z^P + a_z^R$$

Coefficient Regions for Univalent Trinomials, II 207 is univalent in |z| < 1 if and only if its derivative does not vanish there.

REMARK. From (24) it readily follows that if the trinomial

$$1 + a_{n_1} z^{n_1} + a_{n_2} z^{n_2}$$
 $(n_1 < n_2 < 2n_1)$

does not vanish in |z| < 1 and $\frac{n_1}{n_2} = \frac{\gamma_1}{\gamma_2}$ where γ_1 , γ_2 are relatively prime, then

(28)
$$|a_{n_1}| \leq (1 - |a_{n_2}|) \sec \frac{\pi}{\sqrt{2}}$$
.

We can, in fact, prove the following result which is to be compared with Theorem A.

THEOREM A'. If

$$1 + a_{n_1} + a_{n_2} + a_{n_2} = (n_1 < n_2 < 2n_1)$$

does not vanish in |z| < 1 and $\frac{n_1}{n_2} = \frac{v_1}{v_2}$ where v_1 , v_2 are relatively prime, then

(29)
$$|a_{n_1}| \leq \begin{pmatrix} \min\{(1 - |a_{n_2}|) \sec \frac{\pi}{v_2}, 1 - |a_{n_2}| + |a_{n_2}|^2 \} \\ 1 - |a_{n_2}|^2 & \text{if } v_1 = 2 \\ 1 - |a_{n_2}|^2 & \text{if } v_1 = 2 \end{pmatrix}$$

Proof. In view of (28) and Corollary 1 it is enough to prove that if

 $z + a_p z^p + t z^q$ (p < q < 2p - 1, $0 < t < \frac{1}{q}$) is univalent in |z| < 1 and $\frac{p-1}{q-1} = \frac{l-1}{m-1}$ where l-1and m-1 are relatively prime, then

(30)
$$P|a_p| \leq \begin{cases} 1 - tq + t^2q^2 & \text{if } l - 1 \geq 3 \\ \\ 1 - t^2q^2 & \text{if } l - 1 = 2 \end{cases}$$

There are m - 1 points on the boundary of G_0 whose absolute value is equal to $\max_{w \in \overline{G}_0} |w|$. There is one whose Argument is equal to $-\frac{\ell-1}{m-1}\pi + \frac{\pi}{m-1}$. Call it w_0 . The point w_0 lies on the portion of $\int_{tq}^{t} described by the$ moving point

$$w(\varphi) = e^{-i(p-1)\varphi} + tge^{i(q-p)\varphi}$$

as φ increases from 0 to $\frac{T}{q-1}$. Since $|w(\varphi)|$ decreases see monotonically from 1 + tq to 1 - tq as φ increases from 0 to $\frac{T}{q-1}$ there is a unique value of φ , say φ_0 , in $(0, \frac{T}{q-1})$ such that $w(\varphi_0) = w_0$, and the points lying on the portion γ of Γ_{tq} which is the image of $[0, \varphi_0]$ must be of modulus $\ge \max_{w \in G_0} |w|$. Now we wish to show that

(31)
$$w(\frac{2}{3}\frac{3t}{q-1}) \in \gamma$$

which would imply that

(32)
$$\max_{\mathbf{w}\in\mathbf{G}_0} |\mathbf{w}| \leq \left| \frac{\mathbf{w}(\frac{2}{3} \cdot \frac{\mathbf{\pi}}{\mathbf{q}-1}) \right|$$

Since Arg w(φ) decreases from 0 to $-\frac{l-1}{m-1}\pi + \frac{\pi}{m-1}$ as φ increases from 0 to φ_0 it is enough to show that

(33). Arg
$$w(\frac{2}{3} \frac{\pi}{9-1}) > Arg w_0$$
.

If α_0 is the unique root of the equation

$$\tan \alpha = \frac{(\sqrt{3}/2)t_0}{1 - (1/2)t_0}$$

Coefficient Regions for Univalent Trinomials, II 209 in (0,] then

$$\operatorname{Arg} = \frac{2}{3} \frac{1}{9} \frac{1}{9} = -\frac{2}{3} \frac{1}{1} \frac{1}{1} + \alpha_0$$

and (33) is equivalent to

 $\frac{1}{3}\frac{l-1}{n-1}\mathbf{I} + \alpha_0 > 0$

which is certainly true for $l \ge 4$. The case $l = 1 \ge 3$ of inequality (30) is now an immediate consequence of (32) since

$$\left| \frac{2}{3} \frac{\pi}{q-1} \right| = 1 - tq + t^2 q^2$$

If $\ell - 1 = 2$, then m - 1 is necessarily equal to 3 and in that case it follows from our study of the coefficient region of univalent trinomials of the form $z - a_3 z^3 + t z^4$, $0 < t \leq \frac{1}{4}$ that (see [10, Corollary 2])

$$p|a_p| \leq \max_{w \in G_0} |w| \leq 1 - t^2 q^2$$

which completes the proof of (30) and in turn that of Theorem A'.

Proof of Theorem 2. First we observe that

$$0 \leq \Theta < \pi/q \quad \frac{\sin \Theta}{\sin p\Theta} \quad \overline{G}_{\Theta} = \frac{1}{p} \quad \overline{G}_{\Theta} \quad .$$

The reasoning used in the first part of the proof of Theorem 1 to prove this fact in the case 2p - 1 > q remains valid. Indeed, the condition 2p - 1 > q was used only to conclude that $\ell - 1 \ge 2$ but that is true here as well since, by hypothesis, q - 1 is not a multiple of p - 1.

What we need to show now is that

Qazi Ibadur Rahman, Józef Waniurski

(34)
$$\frac{1}{p} \overline{G}_0 \subseteq \frac{\sin \theta}{\sin p\theta} \overline{G}_0$$
 for all $\theta \in \begin{bmatrix} \mathbf{X}, \mathbf{X} \\ q, 2 \end{bmatrix}$

This would follow if we could show that

(35)
$$\max_{\mathbf{w}\in G_0} |\mathbf{w}| \leq \min_{\mathbf{w}\in \partial G_0} |\mathbf{w}| \quad \text{for all } \Theta \in \begin{bmatrix} \mathbf{x}, \mathbf{x} \\ \mathbf{q}, \mathbf{z} \end{bmatrix}$$

Since we do not know the precise value of $\max_{w \in G_0} |w|$ we look for a good enough upper estimate. For this let w_0 be the point of ∂G_0 such that $\max_{w \in G_0} |w| = |w_0|$, and $\arg w_0 = -\frac{l-1}{m-1}\pi + \frac{\pi}{m-1}$. Denote by ∂_{tq} the portion of the curve Γ_{tq} described by

$$\mathbf{w}(\boldsymbol{\varphi}) = e^{-\mathbf{i}(\mathbf{p}-\mathbf{1})\boldsymbol{\varphi}} + tqe^{\mathbf{i}(\mathbf{q}-\mathbf{p})\boldsymbol{\varphi}}$$

as φ increases from 0 to $\frac{\pi}{q-1}$. Thus the initial and terminal points of χ_{tq} are 1 + tq and $(1-tq)\exp(-i\frac{l-1}{m-1}\pi)$ respectively. As φ increases from 0 to $\frac{\pi}{q-1}$, $|w(\varphi)|$ decreases monotonically from 1 + tq to 1 - tq and according to Lemma 8 the vector $w(\varphi)$ turns monotonically in the clockwise direction provided $tq \leq \frac{l-1}{m-l}$. From the expression for $w(\varphi)$ and Lemma 9 it follows that if $t > \frac{l-1}{m-l}$ then $\operatorname{Im}\{w(\varphi)\}$ first increases and then decreases monotonically as φ increases from 0 to $\frac{\pi}{q-1}$. Now set $\varphi_{\lambda} = \lambda \frac{\pi}{q-1}$ where $0 < \lambda < 1$. If arg w denotes the value of the argument lying in $\left[-\frac{3\pi}{2}, \frac{\pi}{2}\right]$ then in view of the above mentioned properties of χ_{tq} we may take $|w(\varphi_{\lambda})|$ as an upper estimate for $|w_0|$ provided

(36)
$$\arg w(\varphi_1) \ge \arg w_0 = -\frac{\ell-1}{m-1}\pi + \frac{\pi}{m-1}$$

Inequality (36) holds if and only if

Coefficient Regions for Univalent Trinomials, II 211

(37)
$$\alpha^* + \{(l-1)(1-\lambda)-1\} \xrightarrow{\pi}{\pi-1} \ge \frac{\pi}{2}$$

where α^* is the unique root of the equation

(38)
$$\tan \alpha = \frac{\operatorname{tg sin}(\lambda \pi)}{1 + \operatorname{tg cos}(\lambda \pi)}$$

in the interval [0, T].

Now let us set $\lambda = 1 - \frac{\epsilon}{L-1}$ (0 < $\epsilon \le 1$). Then (37) takes the form

(39)
$$\alpha^* \ge \frac{\pi}{m-1} (1-\varepsilon) ,$$

Using (38) we see that (39) is true if

(40)
$$t \ge \frac{1}{q} \frac{\tan(\frac{\pi}{m-1}(1-\epsilon))}{\sin(\frac{\pi}{\ell-1}\epsilon) + \cos(\frac{\pi}{\ell-1}\epsilon) \tan(\frac{\pi}{m-1}(1-\epsilon))}$$

Thus we may use the estimate

(41)
$$\max_{\mathbf{w} \in G_0} |\mathbf{w}|^2 \leq |\mathbf{w}(\varphi_{\lambda})| = 1 + t^2 q^2 - 2tq \cos(\frac{\pi}{t-1}\epsilon)$$

provided (40) holds. In particular,

$$\max_{w \in \overline{G}_0} |w|^2 \leq 1 + t^2 q^2 - 2tq \cos \frac{\pi}{l-1} \quad \text{for all } t \in [0, \frac{1}{q}]$$

Besides.

Henc

$$\min_{\substack{W \in \partial G_{\theta}}} |w| = 1 - t \frac{|\sin q\Theta|}{\sin \Theta} \ge 1 - t/(\sin \frac{\pi}{q}) \text{ for } \Theta \in [\frac{\pi}{q}, \frac{\pi}{2}]$$

Hence inequality (35) will be proved for all $t \in [0, \frac{1}{q}]$ if it turns out that

(42)
$$1 + t^2 q^2 - 2tq \cos \frac{\pi}{l-1} \le \{1 - t/(\sin \frac{\pi}{q})\}^2$$

After simplification inequality (42) takes the form

Qazi Ibadur Rahman, Józef Waniurski

(43)
$$t\left\{q^2 - 1/(\sin\frac{\pi}{q})^2\right\} + 2/(\sin\frac{\pi}{q}) \leq 2q \cos\frac{\pi}{\ell-1}$$

Using the estimate $\frac{1}{1-x} \le 1 + \frac{1}{1-a} x$ which is valid for $0 \le x \le a < 1$ we obtain

(44)
$$1/(\sin \frac{\pi}{q}) < \frac{q}{\pi}(1 + 1.048 \frac{\pi^2}{6q^2})$$
 for all $q \ge 6$.

Hence (43) would hold for $q \ge 6$ if the inequality

(45)
$$tq(1-\frac{1}{\pi^2}) + \frac{2}{\pi} + 1.048 \frac{\pi}{q^2} \le 2 \cos \frac{\pi}{l-1}$$

were true. Inequality (45) turns out to be true i? $\ell - 1 \ge 5$ since in that case $q \ge 12$. Thus (34) holds if $\ell - 1 \ge 5$.

Now let l - 1 = 4. Then clearly $q \ge 10$ and it is a matter of simple verification that (45) (and so (34)) holds for tq<0.75. In order to deal with the case $0.75 < tq \le 1$ we take $\epsilon = \frac{2}{3}$ in (41) and obtain the estimate

(46)
$$\max_{\mathbf{w} \in G_0} |w|^2 \leq 1 + t^2 q^2 - \sqrt{3} t q$$

valid for $1 \ge tq \ge \frac{2 \tan(\pi/27)}{1 + \sqrt{3} \tan(\pi/27)}$ and so certainly for $1 \ge tq > 0.75$. Thus (35) would hold if

(47)
$$1 + t^2 q^2 - \sqrt{3} t q \le \{1 - t/(\sin \frac{\pi}{2})\}^2$$

were true for $1 \ge t_q > 0.75$ and $q \ge 10$. That it is indeed the case can be easily checked using the estimate (44). Hence (34) holds also if l - 1 = 4.

If l-1=3 then $q \ge 8$ and (45) holds for $tq \le 0.36$ though not for all $tq \le 1$. Setting $\varepsilon = \frac{1}{2}$ in (41) we see that in the case $1 \ge tq > 0.36$ we can use the estimate (46) for $\max_{w \in G_0} |w|^2$. Hence (35) would hold if (47) were true for $1 \ge tq > 0.36$ and $q \ge 8$. It does indeed turn out to be the case

Coefficient Regions for Univalent Trinomials, II 213 and so (35) and in turn (34) holds for l-1=3 as well. The case l-1=2 cannot be handled in quite the same

way. We will, in fact, need a couple of additional lemmas.

LEMMA 12. The function $\frac{\sin p\theta}{\sin \theta}$ decreases from p to 0 as θ increases from 0 to π/p .

Since cos t is a decreasing function of t in $(0,\pi)$ the conclusion follows immediately from the fact that

$$\frac{\sin p\theta}{\sin \theta} = \begin{cases} 1 + 2\cos 2\theta + 2\cos 4\theta + \dots + 2\cos (p-1)\theta & \text{if } p \text{ is odd} \\ 2\cos \theta + 2\cos 3\theta & + \dots + 2\cos (p-1)\theta & \text{if } p \text{ is even.} \end{cases}$$

LEMMA 13. If l-1 (= 2), m-1 are relatively prime, then a point w lies on the curve

$$\int_{b}^{\infty} : w_{1}(\varphi) = e^{-2si\varphi} + be^{i(m-3)s\varphi}, \quad 0 \le \varphi \le 2\pi$$

if and only if it lies on the curve

$$\Gamma_{-b}: w_2(\varphi) = e^{-2si\varphi} - be^{i(m-3)s\varphi}, \quad 0 \le \varphi \le 2\pi.$$

Proof. Since 2, m - 1 do not have common divisors, m - 1 and so m - 3 must be odd. Hence

$$w_{1}(\varphi + \frac{\pi}{s}) = \exp\{-2si(\varphi + \frac{\pi}{s})\} + bexp\{i(m - 3)s(\varphi + \frac{\pi}{s}) = e^{-2si\varphi} + be^{i(m-3)s\varphi}e^{i(m-3)\pi} = e^{-2si\varphi} - be^{i(m-3)s\varphi} = w_{2}(\varphi).$$

The case l - 1 = 2 of Theorem 2. We already know that

(48)
$$\frac{1}{p}\overline{G_0} \leq \frac{\sin\theta}{\sin p\theta}\overline{G_0}$$
 for $\theta \in (0, \frac{\pi}{q}]$

214 Qazi Ibadur Rahman, Józef Waniurski where we may refer to Theorem A for the case $\Theta = \frac{\pi}{q}$. Next we wish to prove that

(49)
$$\frac{1}{p} \overline{G_0} \leq \frac{\sin \Theta}{\sin p\Theta} \overline{G_0} \quad \text{for } \Theta \in (\frac{\pi}{q}, \frac{\pi}{p}].$$

Let us recall that G_{Θ} is the region containing the origin and determined by the curve Γ_{b} where $b := t \frac{\sin \Theta}{\sin \Theta}$. As Θ increases from 0 to π/q , b decreases monotonically (and continuously) from tq to 0. Hence if we take a Θ arbitrary in $(\frac{\pi}{q}, \frac{\pi}{p}]$, then in view of Lemma 13 there exists a $\Theta \in (0, \frac{\pi}{q}]$ such that $G_{\Theta} = G_{\Theta}$. Thus (49) is equivalent to

(50)
$$\frac{1}{p} \overline{G}_0 \subseteq \frac{\sin \theta}{\sin p \theta} \overline{G}_{\theta^*}$$

But by (48) we have

$$\frac{1}{p} \overline{G_0} \leq \frac{\sin \theta^*}{\sin p \theta^*} \overline{G_0^*}$$

which implies (50) since the regions GA are starlike and

$$\frac{\sin \theta}{\sin p \theta} \leq \frac{\sin \theta}{\sin p \theta}$$

by Lemma 12.

Finally, we shall prove that

(51)
$$\frac{1}{p} \overline{G}_0 \subseteq \frac{\sin \theta}{\sin p \theta} \overline{G}_{\theta}$$
 for $\theta \in (\frac{\pi}{p}, \frac{\pi}{2}]$.

For this it is enough to verify the inequality

(52)
$$\frac{1}{p}(1 + tq) \leq \frac{\sin \theta}{|\sin p\theta|} (1 - t \frac{|\sin q\theta|}{\sin \theta})$$

Coefficient Regions for Univalent Trinomials, II 215 But (52) would certainly hold if

$$(53) 1 + tp + tq \leq p \sin \frac{\pi}{p}$$

were true. As it is easily checked, (53) is indeed true for $p \ge 5$ and therefore so does (52). That (52) holds also in the only remaining case p = 3 is seen by noting that

$$\frac{\sin \Theta}{|\sin 3\Theta|} = \frac{1}{4 \sin^2 \Theta - 3} \ge 1$$
$$\frac{|\sin \alpha \Theta|}{\sin \Theta} \le \frac{1}{\sin \Theta} \le \frac{2}{\sqrt{3}}$$

and $t \leq \frac{1}{q} \leq \frac{1}{6}$.

As an immediate consequence of Theorem 2, we have

COROLLARY 2. If q > 2p - 1, then provided q - 1 is not an integral multiple of p - 1, the trinomial

$$z + a_p z^p + a_q z^q$$

is univalent in |z| < 1 if and only if its derivative does not vanish there.

Proof of Theorem 3. Since the result is already known to be true for q = 3, 4 and 5 we shall assume $q \ge 6$. It is easily checked that

$$w(\varphi) = e^{-i\varphi} + t \frac{\sin q\theta}{\sin \theta} e^{i(q-2)\varphi}, \quad 0 \le \varphi \le 2\pi$$

defines a Jordan curve for $0 < t \le \frac{1}{q(q-2)}$. According to Lemma 8 it is also starlike. We wish to show that as θ decreases from T/q to 0 the region $\frac{1}{2\cos\theta}$ G₀ shrinks monotonically to the region $\frac{1}{2}$ G₀. In view of Lemma 5 it is 216 Qazi Ibadur Rahman, Józef Waniurski enough to show that the subregion

$$\Delta_{\Theta} := \left\{ w : -\frac{2}{q-1} < \operatorname{Arg} w < 0 \right\} \cap \frac{1}{2 \cos \Theta} G_{\Theta}$$

shrinks monotonically as θ decreases from π/q to 0. For this we apply Lemma 11 to the function

$$F(z,x) = F(z, \cos \Theta) := \frac{(\sin \Theta)z^{-1} + t(\sin q \Theta)z^{q-2}}{\sin 2\Theta}$$

and take for $\sqrt[3]{x}$ the arc $z = e^{i\varphi}$, $0 \le \varphi \le \frac{2\pi}{q-1}$. Computing $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial z}$ we see that if

$$A = \sin 2\Theta \cos \Theta - 2 \sin \Theta \cos 2\Theta,$$

$$B = 2 \sin q \Theta \cos 2\Theta - q \sin 2\Theta \cos q\Theta$$
,

then (17) is equivalent to

(54)
$$-A - Bt^{2}(q-2) \frac{\sin q\theta}{\sin \theta} + \left\{ B + A(q-2) \frac{\sin q\theta}{\sin \theta} \right\} t \cos(q-1)\phi < 0$$

for
$$0 \le \varphi \le \frac{2\pi}{q-1}$$

It is easily checked that both A and B are positive for $0 < \Theta < \pi/q$. So (54) will certainly hold if

$$-A - Bt^{2}(q-2) \frac{\sin q\Theta}{\sin \Theta} + \left\{B + A(q-2) \frac{\sin q\Theta}{\sin \Theta}\right\}t < 0,$$

i.e.

$$(A - Bt)\left\{-1 + t(q - 2) \frac{\sin q\theta}{\sin \theta}\right\} < 0$$

Since $0 < t \leq \frac{3}{q(q^2 - 4)}$, the second factor is negative and so

Coefficient Regions for Univalent Trinomials, II 217 it is sufficient to show that A - Bt is positive, i.e.

(55) $\sin 2\theta \cos \theta - 2 \sin \theta \cos 2\theta -$

$$-\frac{3}{q(q^2-4)}$$
 (2 sin q θ cos 2 θ - q sin 2 θ cos q θ)>0

The expression on the left-hand side of (55) vanishes for $\theta = 0$ and its derivative which is equal to $\frac{2}{q}(\sin 2\theta)$. $\cdot(q \sin \theta - \sin q\theta)$ is positive for $0 < \Theta \leq \pi/q$. Hence (55) holds for $\Theta \in (0, \pi/q]$ and in turn so does (54). Thus we have proved that

$$\bigcap_{\substack{\alpha \leq \alpha \neq q}} \frac{1}{2 \cos \theta} \overline{G}_{\theta} = \frac{1}{2} \overline{G}_{0}$$

Now we shall show that if $0 < t \le \frac{3}{q(q^2 - 4)}$, then for $\frac{1}{q} \le 0 \le \frac{3}{2}$,

$$\frac{1}{2}\overline{G}_0 \leq \frac{1}{2\cos\theta}\overline{G}_\theta ,$$

so that for such values of t

$$\bigcap_{0 \leq \Theta \leq \pi/2} \frac{1}{2 \cos \Theta} \overline{G}_{\Theta} = \frac{1}{2} \overline{G}_{O}$$

Since

$$\frac{1}{2}\overline{G_0} \subseteq \left\{ w : |w| \le \frac{1}{2} \left(1 + \frac{3}{q^2 - 4}\right) \right\}$$

and

$$\left\{ \forall : |\psi| \leq \frac{1}{2\cos\theta} (1 - \frac{3}{q(q^2 - 4)} \frac{|\sin q\theta|}{\sin\theta}) \leq \frac{1}{2\cos\theta} \overline{G}_{\theta} \right\}$$

we will simply check that

 $1 + \frac{3}{q^2 - 4} \leq \frac{1}{\cos \theta} (1 - \frac{3}{q(q^2 - 4)} \frac{|\sin q\theta|}{\sin \theta}) \quad \text{for } \frac{\pi}{q} \leq \theta \leq \frac{\pi}{2}$

Qazi Ibadur Rahman, Józef Waniurski

For values of Q under consideration

$$\frac{1}{\cos\Theta} \ge \frac{1}{\cos\frac{\pi}{Q}}, \qquad \frac{|\sin\varphi\theta|}{\sin\theta} \le \frac{1}{\sin\frac{\pi}{Q}}$$

Hence it is enough to verify that

(56)
$$1 + \frac{3}{q^2 - 4} \leq \frac{1}{\cos \frac{\pi}{4}} \left(1 - \frac{3}{q^2 - 4} + \frac{1}{q \sin \frac{\pi}{4}}\right)$$

Since $q \sin \frac{\pi}{q} \ge 3$ for $q \ge 6$ the expression on the right-hand side of (56) is $\ge \frac{1}{\cos \frac{\pi}{q}} \frac{q^2 - 5}{q^2 - 4}$, and so (56) would certainly hold if

$$\cos \frac{T}{q} \leq \frac{q^2 - 5}{q^2 - 4}$$

were true. Since this latter inequality is indeed true Theorem 3 is completely proved.

REFERENCES

- Bohl, P., Zur Theorie der trinomischen Gleichungen, Math. Ann. 65(1908), 556-566.
- [2] Biernacki, M., Sur les equations algébriques contenant des parametres arbitraires (Thèse), Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. Sórie A, 1927, 541-685.
- [3] Brannan, D.A., Coefficient regions for univalent polynomials of small degree, Mathematika 14(1967), 165-169.
- [4] Cowling, V.F., Royster, W.C., Domains of variability for univalent polynomials, Proc. Amor. Math. Soc., 19(1963), 767-772.
- [5] Dieudonné, J., La théorie analytique des polynomes d'une variable, Mémor. Sci. Math. No. 93, Gauthier-Villars, Paris, 1938.

Coefficient Regions for Univalent Trinomials, II 219

- [6] Herglotz, G., Über die Wurzeln trinomischer Gleichungen, Leipziger Berichte. Math.-Phys. Klasse 74(1922), 1-8.
- [7] Landau, E., Über den Picardschen Satz, Vierteljahrsschrift Naturforsch. Gesellschaft Zürich 51(1906), 252-318.
- [8] ,, , Sur quelques généralisations du théoreme de M.
 Picard, Ann. Sci. Ecole Sup. (3) 24(1907), 179-201.
- [9] Rahman, Q.I., Szynal, J., On some classes of polynomials, Canad. J. Math., 30(1978), 332-349.
- [10] Rahman, Q.I., Waniurski, J., Coefficient regions for univalent trinomials, Canad. J. Math. 32(1980), 1-20.
- [11] Ruscheweyh, St., Wirths, K.J., Über die Koeffizienten spezieller schlichter Polynome, Ann. Polon. Math., 28(1973), 341-355.

STRESZCZENIE

W niniejszej pracy zajmujemy się określeniem warunków koniecznych i dostatecznych na to by wielomian $f_t(z) = z - a_p z^p + tz^q$ był jednolistny w kole |z| < 1. Podajemy też warunki na to by wielomian $f_t(z)$ lokalnie jednolistny był również globalnie jednolistny w kole |z| < 1.

Резрие

В ланной работе определены необходимые и достаточные условия для того, чтобы полином $f_t(z) = z - a_p z^p + t z^q$ был однолистный в круге |z| < 1. Они дают также условия к тому, чтобы локально однолистный полином $f_t(z)$ являлся также глобально однолистным в круге |z| < 1.

