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O6nacTs u3IMeHeHUA KO3(DPULMEHTOB ORHOJMCTHBIX TPHITOJIMHOHUOB

In connection with his work on the Picard Theorem, Landau
([7], [_8])lproved that every trinomial

(1 L1+ 2+ anzn, nx2,

has at least one zero in the circle |z|<2. Using a simple
rule due to Bohl [1], Herglotz [6] and Biernacki [2] showed
(also see [ 5, p. 53]) that the trinomial

n
(2) 1+z1+a znz, 1{4<n,y

has at least one zero in
[ 1/
[P SRR .

if n, is an integral multiple of o,
'n, = n

l 1 if n, is not an integral multiple of n,e

It is easily seen that the result of Herglotz and Biernacki
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is equivalent to the following

THECREM A. Z{
- ,
(3) 1 "2

14+ anqz + 82, 1<n,<n,

e

does not vanish in |z |<£1, then

__nz__ .1_{ n, 3331_1_ integral multiple 9_£ n,
(%) ]en"*-
1 2_{ n, .’ﬁ Eﬁ an integr_a} mult}ple o_f. D4

The examples

n kn,
p(z) = 1 = E z | + 1 e
k-1 k - 1 ”
=1 4
= (1 -znﬁ)(1 -—i—-sz‘)
k=1 4=1
)
and
q(z)=1+(1-e)zn1+gzn2, € >0

show that (4) is best possible. However, we can claim more

precisely (see [10]) that if G denotes the region determined

by the curve

-in,¢ i(n,-n)@
‘f — 0 + anae »

and containing the origin, then (3) is £ 0 in |z|<1 if

0 éq‘><2:u‘

and only if -an1e E. This observation was used to deal with
a related and in fact more -difficult problem of Cowling and
Royster [4], namely the determination of the precise rcgilon
of variability of (az,ak) for the univalent trinomial

zZ + a222 + akzk where k>3. In fact, we considercd arbitrary




Coefficient Regions for Univalert Trinomials, II 191

trinomials z + a_zP + a(‘zq where p<£ Q. Denoting the region
4

P
determined by the curve

(5) wiep) = e~1(p=Ne | ¢ :—E—Bg o1 (3PP | o< opsgar,
1
0<t<t

and containing the origin by Gy = Gg(pya,t) where
Go(p.q,%) stands for the interval [-2,2] 1f q=2p -1,
and for {0} otherwise, we proved [10]s

THEOREM B. The trinomial
£.(2) = z - apzp + t29, (p<q, 0<t§%)

is univalent in |z[<1 4if and only if

(6) - m —L—G

069 ‘x sinp

where for 9:%', 2%,...,[&]%.%% = ¢.

Besides, we carried out a closer study of trinomials of

the forms
(1) zZ - 3222 + tzq'
(11) 3 z - a}zz' + tz*
(141) Z - a2z2 + tz5
(iv) B aq_zq' + tzs

which along with the previously known result ([11], [9]) about

p L)
reasonably good understanding of the coefficient region for

polyromicls of the form 2z + a_zP + azp_122p'1 gave us a

univalent trinomials of degree =< 5.

Here we carry our investigation further and prove the
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following results.

THEOREM 1. Let GG be as defined above. If 2p-1>q>p,

then j;_hg trinomii]_.

2,(2) = 2 = asP + t29, (0<ted

4

is univalent in lel<1 if and only if
4 —
%€p %

TEEOREM 2, Again let GO be as defined above. l{

q>2p - 1, then provided qQ - 1 1is not an integral multiple

of p -1, $he trinomial
2,(2) = 2z = apzp + tz9, (0<t<%)

is univalent in [z|<1 4if and only if

1 —_—
The conclusion of Theorems 1 and 2 does not hold in gene-

ral if Q =1 is a multiple of p - 1. However, it is known

([3], (4], [10]) that according as q 4is equal to 3, &4 or 5
the trinomial

£,(2) = z = az,z2 + tzq, (£>0)
1s univalent in [z[<1 4if and only if
B, €x G = o G(2,q,t)
2€7 8 = 7 5plery

provided t does not exc.eed 1/5, 1/16 or 1/35 respectively.

Here we prove
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THEOREL 3., The trinomial

£,(2) = 2 - a222 + tzq, (a3 3)

is univalent o . 1z]<1. if.apd Qely-if

ay€ 3 Go(2,a,t)

provided o<t<Tzl-4—) ;
ale® -

Since %Go(p.q,al) =10} 42 q#2p -1, it is an imme-

diate consequence of Theorem B that

£1/q(2) = 8 -asz+§zq, (Qé2p -1

is univalent in [z])<1 if and only if f."/q(z)  does not
vanish there. This proves Theorems 1 and 2 in the case t = 1/q
and so hereafter we will restrict ourselves to values of
1 \ '
€ r O
t €(0, q)
We need various auxiliary results which we collect as

lemmas.

LEMMA 1, If {-1 and m-1 are relatively prime,
then the get of points

Q) | exp(- 1 2ptt - X,

A ‘|‘_= 0.1.2’000

is identical with the et

(8) exp(~ 1 3—#-717). = 041025000 2
M =

Prootf. First, let us observe that foru= 0,1,2,¢¢ 02

the points exp(- 1 2—%5 £ X DX are all distinct. In fact

exp(-iz,“” DX _ gpe g 200 = DX,
m-1 -1
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for some r , v such that 0< ’.A<.94m - 2ifand only if

m-1

(9) oxp it = y2xi) =

Since, by hypothesis, /f -1 and m - 1 have no common
factors and vV - /A £m -2 it is easily seen that b—-—(’-r)
cannot be an integer and so (9) cannot hold.

On the other hand, the numbers (7) are of the form

5}1/(1!\-1)'

{ exp(~ 4( C-‘1)2Iu:x f= 001520000

i.e. they are amongst the (m - 1)=st roots of urity. In other
words, the set of numbers (7) is a subset of the set (8).
The above two considerations show that the sets (7) and

(8) are identical,

LEMMA 2, Let H:f—:—-}r, where f-1 and m -1
are relatively prime. Then there exists a positive integer =n

such that

* exp(- 1 P—-— 2nx ) = exp(d _§_§‘_1).
Q-1 m

Proof, According to Lemma 1 tliere exists a positive

integer n such that

(- 1 2@ -12)::) = exp(- g 2L -Dx,
M e

‘me=1
Hence
exp(1 2X ) _exp(-s2m=2x, _ o 2l nx)
3 m-1 m- 1 me-1
=exp(-12—2n:lr) .
q-

The region G9 is determined by a curve of the form

(10)  w(@) = w(b, ¢) = o 1-1)P | pella-Ple 0Ospe2x
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where - b &b<1 with 0<by<1. In [10] we noted some
important properties of the curve r; defined by (10),-For
exarple, a point w lies on Fb if and only if its conjuga-
te does., This in conjunction with the‘ fact that OeGe implies:

LEMMA 3. The region G9 is symmetrical about El_xg .1_-_91_11
axis.

Here we prove

LEWA 4, If lg-—:q'}rm‘—:-;‘r where { -1 and m -1

are relatively prime then the curve [, and hemce the region
Ge is symmetrical about the line

Infme=i¥ /(m=D} _ o

Proof., Let n be as in Lemma 2, If we define "(‘?)
outside the interval [0,2:!] by periodicity, then

W(Zn:ﬂ'

(2113'
qQ =1

-<r)=exp{-1(q-1) -p}

+ b exp{i(q - p)(inf1 - cf)}:.

e211/(m—1)e;(p-1)<f + beed¥12x1/(n-1) -1(q-p)p _

eril(m-1){ei(p-1)<p p be-i(q-p)?}, 231/(n—1)w((‘,) g

This means that a point w 1ies on [, 4f and only if
r
ez"'”'/‘m'1 )wzq) does. Hence we have the desired result.

We are now ready to prove

LEMMA 5. Letp—-r 3'1, where [ -1 and m -1
are relatively prime. Then Ge(p,q,t) is symmetrical about
the lines
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(11) In{w exp(-  —£X )} alf K = 0,1,2,.4,,2m=3.
{ m-1

Proof, From the definition of w(t.?) it is readily
seen that
o+ 2X_ ) = w(q@) exp(- 42(p = DX 5
Hence a point w 1lies on r'-b if and only if the points

’ M=0,1.2'oo.

12‘“(1-1)1)
m -1

w oxp(-

do. But according to Lemma 1 this set of points i.. identical
with the set

'Om(-i%ﬁ%). illg 0'1.2'.o.’m-2 L]

The desired result is now a simple consequence of Temmas 3 and

4,
The next four lemmas give-some_useful information about

the curve r; and the region GO .
LEVMA 6. Let
g(z) = l-(p.1) % bzq'p, (@>p>1)

where =-1<b<1, If 2p - 1>q then the vector g(ei?)

turns monotonically in the clockwise dirc.tion as ¢ 1increa-

geg from -0 to'-2%.
Proof, It is enough to show that

(12) Reizg:‘(z)/g(z)}<o for (z]| = 1.

Writing z = e? we see that (12) holds if and only if



Coe’ficient Regions for Univalent Trinomials, IX 197
L(b, ) 1= b2(q- P) = b(2p =1 = q)cos{(q - 1)4(;}- (p - 1)<0

for Oécr <2% ,
But clearly

L(b,q) <@ = p) + [b](2p =1 = @) = (p = 1),
and so for -=-1<b<1

L(b,(r)<(q -p)+ (@ -1-q =(p=1)30

LEMMA 7. Under the conditions o_f Lemma 6 El_xg tangent E_g_'

the curve

w( @) = gel?), 0Og 2w

—— R it o ——

turns monotonically in the clockwise direction as ¢ increa-

ges from O to 2x.
Proof, It is clearly enough to verify that
(13) Re{'] + zé”(z)/s'(z)}<0 for |z| = 1,.
or eqQuivalently
(14)  b2(gq = p) + Bla = P)(p - 1)(2p = 1 = Q)cos{(a - 1)} -
- (p - 1’<0 for IO(?(ZI.
But the expression on the left hand side-of (14) cannot exceed
(@-p) + (a=p)p-1(2p=-1-0q) = (p-NH3

which is regative since it can be written in the form

- @ -1-ai@-p24+ -3
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LEMMA 8. Let
g(2) = g~ (P-1) bedP, (e>p>1).

If 2p - 1<q then for =-(p - 1)/(q = p)&b<(p - 1)/(q = p)
1_5.!_12 vector g(ei‘f) turns monotonically }2 the g‘l_qgkwisg

direction as ¢ increases from 0. to 2%,

Prootf, We observe that if -(p - 1)/(q = p)<b <L
(p - 1)/(q = p) then (12) holds, or equivalently

L(b:‘f) t= bz(q - p) 4+ b(q = 2p + 1)cos{(q - “)?\ -
-( =-1)<0 for Ohcrsaa'._
In fact
L(b;q)sba(q -p)+dl(@g=2p+1) =(p=1) =
= {(q = p)bl = (p = D}(B] + 1N<O
it - (p = 1)/(q = p)IK®<L(p - 1)/(q = D) .

I b= : (p = 1)/(q = p) then L(b,c?)<0 except at the
points where cosi(q - 1)(9} = -‘%r « At such points
~ L(b, (f’) = O, Hence the lemma holds.

LEMMA 9. Let
gz) = 2=(P=1) | pp9-P, (@a>p>1, =1<b<1).

if 2p - 1<q then for Ivi>(p = 1)/(q - p) the tangent to
the curve :

w(P) = g(eiq’), 0< pg2X
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turns rornctornically in the counter-clockwise direction as ¢

increases from 0O to 2Xx.

Proof, We observe that if |b|>(p - 1)/(q - p)
then

(13°) Re{1 + zg"’(2)/g’(2)}>0 . for \z| = 1',-
or equivalently
I,(b:cp) 1= b2(q - p)> -
- b(q - p)(p = 1)(q = 2p + 1)cos {(q - 1)(|>}-
- (@ - 13>0 for 0K G4 2%.
In fact
oL (b, @)>b%(q = p>> = Iol(qa - pP)(p = 1)(q = 2p + 1) -
- (-1 ={bla - p2 + - 13Hlol(qa = p) -
- (p - N}>0 iz |v| > - 1)/(q - p).

If b="(p-1)/(a-p) then of(b,q)>0 except at the
points where cos{(q - 1)?} = -,%r « At such points
L(b,@) = C. Hence Lemma 9 holds.

We will also need

LEMMA 10, Let H— = E{F:—?r where -1 and m -1

are relatively prime. Further, let §=7 = 3= =s, and

for k = 0,1,2,.,..,0=2

S A NP 1r “poingd g
m -1 = sine
(15) ¥y =
- _(';1_ 2k ¥ if t si_n_g@_<o

, m -1 == sin®
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Then the part of the boundary of Gg
|ars W - Yk\ &5 ‘f = 1s the image of some subinterval
Tgut= [@g k0 Pox] bY Ehe mapping (10) with

&
b=t r

contained in the sector

Proof, Since w(¢ + g—LL) E w((f») for all real ¢« ,
w(@) = e P-DP , pellaP)e | ocpc2wye

is a cloged curve ;I’b whose trace is the sams as that of
the curve [ . i

Now let b>0. Note that the minimum distance between
the origin and a point on the boundary of Gg is 1-b and
the points of the boundary for which this distance is attained
are precisely the points

(16) (1 -~ b)e*?k. k = 0,1 ,2’.no’m-2 °

In the same way as for Lemma 71 it can bs shown that this set

of points is identical with the set

(1 = b)exp(- 4 Qﬁ;). U= 0,1,2,0.0,m2
m -

or the set
(1 - blexp(- 1 2 + 50,8, v me2
m-1 r

according as £ -1 1s even or odd.

The region GG being symmetrical about the lines

Im{w exp(- 1 m?‘ 1)} 10, p= 0,1,2, 004,203

the part '5b,k of its boundary lying in the sector
larg W = j’kl‘ﬁ—‘:—-"f is either the image of an interval
I 9|‘kt.'.[t'.}, 2'11.’/3] by w(‘f) or else it contains at least two
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— 2l vy,
¥

points w¥, w®e not lying on the rays arg w =\, = a‘-'tvqr
where the curve ’b('o cuts itself, Clearly then, the cugire
Me,
Kb cuts itself also in the points {w exp(i )} and
2i\rk > m-2 p=1
{w e exp(i -F—‘!-T)} « Thus, there are at least 4(m - 1)
p=1
values of ¢ 4in (O, 2%/s] such that lw(cf)l iw*|.

However, this is impossible. In fact, the curve ‘xb is the

union of m - 1 congruent arcs ck described by the moving

point w(¢) as ¢ increases from —1_(-1-2’; to H%g"

k = 0,1,2,00.,m=2. On each of these arcs |w( q?)[ decreases
from 1+ b to 1 -b and then increases to 1 + b, Hence
[w(cf’)l cannot assume any value more than twice in the inter-
val [m;l-:—’l' a?—. :—H QTL] and can assume any given value
at most 2(m - 1) times in [0, 2w /s].

The argument is similar in the case b<O.,

In addition we will need the following lemma which is

proved in [10].

LEMMA 11, Let F(z,x) be a complex valued function of

z (complex) and x (real) having the following propertiess:

(1) there exists an absolute constant of >0 such that

for each x- belonging to the interval I :={x : a<x<b},

F(z,x) 1is analytic in the annulus Ay :={z t 1 -« <|2I<1 +a}

and 3._8_ univalent on the arc

i3 g:{z = oi®? . ¢ x) = ‘F's(\oa(X)}'-

vhers ¢ (x), p(x) are continuous functions of x gatis-
fying 0< Po(x) - ¢ (x)<27r,

(11). for each 1z, lying on Tx, 2heze :¥o- is.an ashls
STy Redsl of I gt St 1__...ef t-cand neighbourhood




202 Qazi Ibadur Rahman, Jézef ("aniurski

N(xo;‘ 8(20)) = {x 1 Xq - 8(zo)<x<xo }
3%

r %
of Xo ip mhich %7' g2’ 9xoz exist and are bounded,
(111) there exists an absolute constant M such that for

all xel apd zeldo o
[P(z,x) | <.

For each x €I, let C, be the arc

W= F(ei? X )y (2 (x)< ‘f < lfa(x) .
How, if
“17) ne[% P(z,00/fz g5 F(z,0}] >0
for all xe€I, z6€ ‘xx, then the arcs Cx1, sz where

x, €I, x,€I do not intersect gach other if |xq - X,| is

sufficiently small. In particular, if the arcs C

except

x!
for their end points, remain confined to the interior of a

fixed angle a1<Y<d2 of opening < 2x whereas, each
arc has its initial polnt on \p= oC; and its terminal point
8 \{ = %q -fhen the sectorlal pegiog bounded by -C, gad
the two rays W= o, X, ghrinks ags x Jincreases.

Proof of Theorem 1, First of all we wish to prove

that '
() = .5
. o.
0‘9<T/q 6

It i8 clearly enough to show that the part of G0 lying in

the sector {arg W - YO\""' nTzr:T’ where Y, 1is defined in
(15), shrinks monotonically as © decreases from T/q to O.
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For this we apply Lemma 11 to the function

F(z,x) = =1 g sin 9@ 29°P, x = cos®
sin®
» -
where for "x w_e- take {z = ¢-? ¢ e[oae.o, P0,0]}‘
The numbers OLG,O' F’0,0 are the same as in the statement
of Lemma 10, The part of the boundary of GO lying in the

sector larg w - ‘l’o[‘m—-L‘l' is then the arc C, of Lemma 11,
A simple calculation shows that condition (17) is equivalent to

(18) (q cos qO sin® - cosBsin q@ )l- (p = 1)cos(q = 1)(? +

+ t(q — p) Ml(o "
sin® J

The quantity within the first pair of brackets is negative
for © € (0, ®/q) whereas the quantity within the second pair

of brackets is positive for ‘f"(z'(q—,ETT ’ F(%E-_ﬂ') and
0 € (0, ®/q).

Now let us show that

(19) o B e el B LB iy
9'0'-P9'° 2(q =1 '2(g -1

It_’ we d_enqte by A_rg w, the value of the argument lying in
(- 2x ,0), then

Arg (g ) = =R=1lg, X
9,0_ qQ =1 m-1'

Arg w( )=-p'1:|:- %
PQO q =1 n-1"

Arg w(——l——. :-—u.ﬂ—-xq.nY“'
qQ=-1) 2(q = 1)

Arg w( 51‘—}:-}_(2_"._1.13- .r#



204 Qazi Ibadur Rahman, Jézef Waniurski
where ;y‘ is the unique root of the equation tan y =
=t %%593 in (0, T/4l.
In order to prove (19) it is enougb, in view of Lemma 6,
to verify that

(20) . Arg w( o e-—0)<Arg w(—‘!-'—-— [
! 2(q = 1)
(21) - AP w(—z‘!—-——-——)<Ars w( D5
: & ~2(q = 1) Fe,o

It is easily seen that inequalities (20), (21) hold if and
only if

(22) P 'e"'"jr+\y
: rn -1 n -1
The hypothesis 2p = 1>q which is equivalent to mi-':’Tl -

= B=7>] imlies that £ - 1>2. Hence (22) does hold
and in turn so do (20), (21).

Thus (18) certainly holds for <p €( °"6,0' F‘@.O}' i.e.
the curves Cx do not intersect each other as x varies from
0c08(X/q) to ‘1. Indeed we have shown that the region Gg
shrinks monotonically as 2] decreases from X/q to O.

sin 6

Since —‘W for 9&[0, ®/q) and E(-)C_Ee for

all © 1in this range 1t 'follows that 1y (.‘;E) is a fortiori

P
contained in -:%%%g— -G_s' y 1.e.

ﬂ sin O iy 4~
sitnpg © P O°
0% © <%/q P
. The theorem will be completely proved if we show that

%Goc-:-}g—@-— Gy for a1l O¢ [X,F] We shall in fact
show that

_=inb min |w| for Ge[g,:g-].

(23) U lwl<
pw:ﬁa vl {sin pO| we Q6
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and thereby complete the proof of the theorem.

There are m = 1 points on 3(‘:0 where mag {wl is
attained. If w5 is such a point, then arg wo i -2-?1- are
two of the directions in which min = [w| = 1- tq is attained.
Lemmas 6, 7 imply that the regio:e(‘:zGois convex, from which

it readily follows that

(24) [w|<(1 - tq) sec — X,
m -1

Since min Iw| =1 = tl%&e-l inequality (23) will
W& oG
proved if we show that

X ain 6 sin 980
< 1=t )
m-1 [sin pB| ~ 8in ®

% (1 = tq)sec

963'7

for 3

We shall indeed prove that for Qé[g 3 Iz] the stronger ine-

quality
(25) J&LGL < p cos

: 8in © o - 1
holds.

Pirst let H/a € O <Fp. Then, in view of the hypothe-
sis 2p -~ 1>q we have E + %<p0$'x and so

O0<sin p9<cos:'£, sineasin%.

2q
Consequently 2%&%e—<1/(2 sin 2’-&) and for (25) to be true

for %/q <0< X/p 41t is enough that the inequality

(26) 2p sin X cos

2q me- 1

;1
hold for velues ¢cf p, 9 and m under consideration. Now if

m - 1>4 then also q = 124 and the hypothesis 2p - 1>4q
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implies that p>3. Hence, the left-hand side of (26) is at
least equal to Y2 p sin % . Now using the fact that
% sin({ x) 18 a decregasing function of x in (0,2) we
obtain
Y2 p sin 2 >3V§' sin X >1

y 4p 12
In the case m - 1 =3 we write p=1+s(t-1) and
Qo1+ 8(m~1) where of course £_1-2 ana s is a po-
sitive integer. The left-hand side of (26) becomes

— €1 & 28)8in which is larger than (1 + és)sinz-%z-gj-.

. Again using the ;ac:Jthat 31- ain(? x) 18 a decreasing function
of x in (0.3) we conclude that
(1 + 28) sin —L—>3 sin §>1.
3(1 + 28) _
With this the proof of (25) for © "-['x/q, '-l’/p] is complete.
It X/p& O<X/2 then sin@®>sin X and so (25) will
be proved if we show that . P

(&) p 8in % cos %;1 .

The hypothesis 2p = 1>q implies that m - 1 1is necessarily
>3 and so is p. Hence the left-hand side of (27) is at
least equal to 2#_. and is therefore greater than 1. Here

again we have used the fact that ::'E sin(arx) 41s a decreasing

function of x 4in (0,1/2),

The following result which is quite surprising is a simple

consequence of Theorem 1.
‘COROLIARY 1. If 2p - 1>q, then the trinomial

L+ apzp + aqzq
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is univalont in {z|<1 1f and only if its derivative does

Dot vanish there,

REMARK, Prom (24) it readily follows that if the trino-
mial

1+ An1zn1 + anzznz (ny<n,<2n,)
does not vanish in |z{<1 and %:i: where ”1, 2 P

are relatively prime, then

(28) l%“\ﬁ(‘i - 8| 000 -% .

We can, in fact, prove the following result which is to
be compared with Theorem A,

_THEOREM A°. If

1 +un1:n1 + anzznz

does not vanish in |z|<1 apd —=T£"hen TR A

B
Ty

are relatively prime, then

{mm{m - gl omee =0 1 - Jag | + [ay)° )

it 23

.

(29) <

[%,| 3 =
1 - lanal . it 91 a2 °

Proof., Inview of (28) and Corollary 1 it ies enough
to prove that if

z + apzp + tzd (p<q<?p - 1, 6<t‘%)

is univalent in |z|<1 and H = ;!_—"1—1 where { - 1

and n» - 1 are relatively prime, then
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1 - tq + t¢° it L-123

(30 plag| =

1 - 342 12 Lo1=2,

There are m - 1 points on the boundary of GO whoge

absolute value is equal to ma;é_ |#l. There is one whose
we

(6]
Argument 1s equal to = %:—}x + E—-f—sr . Call it wg. The

point L lies on the portion of r't;q described by the
moving point

w(»(p) = .-i(p-1)tp + tgei(q"p)(P

as ¢ 1increases from O to q—l;-7. Since ‘w((?)‘ decrea=-

ses monotonically from 1 + t@ to 1 - tq as ‘f’ increases
from 0 to q—;I? there is a unique value of ¢, say Por
in (0, Tg_‘l') such that w( @,) = W,, and the points lying
on the portion 7% of F.tq Iwhich is the image of [O"?o]

must be of modulus > max !wl. Now we wish to show that
w eG'(')

(31) WG g € X

which would imply that

(32) max \w (\_w(g X )\ 3
Lo \ l 3q=-11

Since Arg w(<f‘) decreases from O to = mt--‘I‘l T+ m{c,!

as @ increases from O to Po it is enough to show that

(33 . arg wE —ZE _y>arg Wg .
" 3q-1 -

It -ozo is the unique root of the equation

SIRLNE W3 2)te
1 - (1/2)tq
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in (o.§] then

Arg w2 _L) _‘t'_“.‘ * 0
3 q 3 a=1
and (33) is equivalent to
1 -1—-—1- X+ a,o>0
3 | - 1

which is certainly true for { 4., The case £ =133 of
inequality (30) is now an immediate comsequence of (32) since
|w(2—!'—)] =1 - tq + t2°
3q-

It £s1= 2, then m - 1 48 necessarily equal to 3
and in that case it follows from odur stud.y of the coefficient
region of univalent trinomials of the form gz - a533 + ts‘,
0<ts;‘; that (see [10, Corollary 23

: 2.2
P wi<1 - t¢
1< g
which completes the proof of_ (30) and in turn that of Theorem
A’, ' '

Proof. of Theorem 2, PFirst we observe that

and g 15,
0% e'<'x/q sin p@® D51

The reasoning used in the first part of the proof of Theorem 1
to prove this fact in the case 2p - 1>q remains valid.
Indeed, the condition 2p = 1>q was used only to conclude
that -e - 122 but that is true here as well since, by hypo-
thesis, q = 1 4is not a multiple of p - 1.

What we need to show now is that
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452 8in® — QelE X
(34) -G C—=————G . for all y =\
p 0 sinpd © q 2
This would follow if we could show that

(35) max_ |W|< min fwl for all Qe[!, %]
we§6 weBGe a' 2]

Since we do not know the precise value of max ([w| we
W e
look for a good enough upper estimate. For this let 0 W be
the point of DG, such that maé_ [w| =iwy{, and
w

0
Arg wy = = nl-11 X+ 5 f:r . Denote by .. tk s portion

of the curve [, described by

q
) = e 11 | toeila-P)P

a8 ¢ increases from O to -q—-g_-‘;r. Thus the initial and
terminal points of xtq are 1 + tq and (1-tq)exp(-i %E}Jr)
respectively., As ¢ increases from O to -q-.l_t-ar - lw( tf)‘
decreases monotonically from 1 + tq to 1 - tq and according

to Lemma 8 the vector w(¢) turns monotonically in the clock=-

wise dire&tion provided tqsm‘t_' d « From the expression for
- .
w(¢) and Lemma 9 it follows that if - >m“—_7t—1 then
Im{w((f)} first increases and then decrcases monotonically as
x qn X
¢ increases from O to T=T° Now set ?A = A‘E—-—'l—

where 0< A<1, If argw denotes the value of the arpgument

lying in [_- 2;;' g) then in view of the above mentioned

oroperties of Ytq Ve may take lw( Pa )I as an upper esti-
mate for ]wo] provided

I .
(36) arg w( ‘?J )zarg‘wo = - {1 T+ X

m-1 m=-1

Inequality (36) holds if and only if
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7 a*+ el -na -2y -1} >1

n -1

where of* is the unique root of the equation

(38) T o tq 8in( AX )
1 + tq cos( Ax )

-

in the interval [0, §].
Now let us set A =1 = _I"T’I' (0<z2<1). Then (37)
takes the form

(39) o> —E_(1-¢),
¥ m -1
Using (38) we see that (39) is true if
_ tan(——(1 = &))
50) tx1 , aad
qQ sin(—%—¢g) + cos(l g) tan(—L(1 -&))
£~ 421 T
Thus we may use the estimate
(#1) mag Iwll<|wl o )| =1+ t2% - 2tq cos(——8)
o S P PR g

provided (40) holds. In particular,

mag, [w]?<1 + t2¢% - 2tq cos ¥ for all tﬁ[o,%

weGy _ ; {-1 s
Besides,

min  |w| =1 =t L‘“—“#'-;*f - t/(sin ) for ee[g, |

w €3Gy sin¥ ]

Hence inequality (35) will be proved for all te[o,% if it

turns out that

; 2.2 x x\12
(42) 1 + t°¢° = 2tq cos €)1 - t/(s8in ) o
: {-1 { 9}

After simplification inequality (42) takes the form
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2 2 T X
(43) t{a® - 1/(sin %) }+ 2/(sin g) <24 cos | A

Using the estimate "I—‘I:—x"l + T%"E x which is valid for
0<x<a<1 we obtain

2
(24) 1/(sin Ty < 2(1 + 1.048 612) for all Q36 .
] Q<
Hence (43) would hold for q>6 if the inequality

1

(45) tal = =) + 24+ 1088 i{,ga cos —x

1-1

were true. Inequality (45) turns out to be true ¢ € - 1>5

.8ince in that case @=>12., Thus (34) holds if £- 12 5,
Now let | 4, Then clearly q=10 and it is

a matter of simple verification that (45) (and so (34)) holds

for tq@<0.75. In order to deal with the case 0.75<Ltq <1

' we take & = % in (41) and obtain the estimate

(46) max  |wl°s1 + t2¢° - V3 tq
weG‘o'
valid for 1>tg> 2 tan(X/27) ard so certainly for

A Ftan('n'/a?)
12t9>0.75, Thus (35) would hold if

(47) L 14822 - T taglt - /G D2
q

were true for 1>t9>0.75 and q>10, That it is indeed the
case can be easily checked using the estimate (44), Hence (34)
holds also it £-1 = 4,

.12 £-1=3 then q3»8 and (45) holds for tq<0.36
though not for all tq<1. Setting g = 2? in (41) we see
that in the case 12ta>0,36 we can use the estimate (46)
for wmea%. |w!2. Hence (35) would hold if (47) were true for
1;tq>0.96 and q=>8, It does indeed turn out to be the case
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and so (35) and in turn (34) holds for £ -1 =3 as well.
The case £ =1 = 2 cannot be handled in quite the same
vay. Woe will, in fact, need a couple of additional lemmas.

LEMMA 12, The function %3%9_ decreases from p to

O as & increases from O to %/p. _
Since cos t is a decreasing function of t in (0,qTr)
the conclusion follows immediately from the fact that

1 + 2c0820 + 2c0840 +...+ 2cos(p-1Y0 if p is odd
sin

8in© -
2c080 + 2c0830 +...+ 2cos(p-1)@ 1f p is even.

I_;EMMA'!}. It [-1 (=2), m=1 are relatively

prime, then a point w 1lies on the curve
| 3+ w(@) = e2819 poi(m-3)sq o<k
Af and only if it lles on the curve
r:b (@) = o281 _ be“m"B)sq’,' oOLp&2x.

Proof, Since 2, m -1 do not have common divisors,

m-1 and 80 m s 3 must be odd. Hence

xX. x x
Wal o + =) = exp{= 281(@ + =)} + bexp{i(m = 3)a(cp + =) =
10 + = {- 2s1¢ + D] { o

9-251? + bei(m—})aef °1.(!:1-3)"‘

o °-2siq> Y bei(m—})s? e’ "2“?’ .

The case £ =1 = 2 of Theorem 2. We already know that

e gin@ — x
(48) - G -
= < o1n p6 Gg tor Oe(o, ql

a
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where we may refer to Theorem A for the case @“?-é. Next we

wish to prove that

= sine =

1
(49) - G
2 p C ™ sin p@ e

e
for @e(-‘g, 13}.

Let us rec‘all that GO is the region containing the origin
and determined by the curve r; where b := ¢ %ﬂ v As
© increases from O to X/q, b decreases monotonically

(and continuously) from tq to O, Hence if we take a O
arbitrary in (g, g], then in view of Lemma 13 there exists
a 9'6 (o, %] such that G9 = Ga. « Thue (49) is equiva-
lent to :

5 ' p ogsinpg GO’

But by (48) we have

*
1§'gsin9 T e
P 0 sin p@

which implies (50) since the regions Ge are starlike and

sin 9’ & sin 6
sin pgr sin p6

by Lemma 12,
Finally, we shall prove that

(51 15 czein® & L
51) pGogsian Ge for Qé(p,zl.

For'this it is enocugh to verify the inequality

% (sin Pe’ sin ©
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But (52) would certainly hold if

(53) 1+ tp + tagp sin%

were true. As it is easily checked, (53) is indeed true fop
P>5 and therefore so does (52). That (52) holds also in
the only remaining case p = 3 1s seen by noting that

sin 6 1 )
= - ;
|sin 38| 4 sin“@ - 3 >
{sin qB | 1 < -2
8in® . sin 0 F—
and tS%sg— . 4

As an immediate consequence of Theorem 2, we have

COROLIARY 2, If q>2p - 1, then provided q -1 1is
"not an intsgral multiple of p - 1, the trinomial

P q
2+ 8,z + a.s
is univalent in [z| <1 if and only if its derivative does

not vanish there,

Proof of Theorem ,3_. ' Since the result is already
known to be true for Q =3, 4 and 5 we shall assume Q6.
It is easily checked that

w( (p) = e'i? + t a_ig_qg_ ’:I.(q-a)? . (oF 4 q>42!

sin@ -

1
defines a Jordan curve for 0<tsm o According to
Lemma 8 it is also starlike. We wish to show that as © de-
1

creascs from ‘X/q to O the region Tcosg— Gp shrinks
monotonically to the region %Go. In view of Lemma 5 it is
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enough to show that the subregion

<Arg w -<.0}ﬂ—-1——— G

2 cos®@ O

A9,=’lw:-q-1

shrinks monotonically as € decreases from x/q to O.

For this we apply Lemma 11 to the function

- -1 Q=2
P(z,x) = P(z, cos ®) := (sin @)z~ + t(sin ¢0 )z
' sin 20

i
and take for 'xx the arc z = e T, 0$‘f sa_a_ﬁﬂ. Compu-~
ting %—E, -g—z- we see that if

A

sin 20 cos® - 2 sinBOcos 20 ,

B =2 sin q®cos 20 - q sin 20 cos a6 ,

then (17) is equivalent to
(54) — A - Bt3(q -2y 81390
. 8in®
+ B+.ll&(q-2)§-i—r-1—q—9— t cos(g = 1) <O
{ . Sine } ‘?

2%
qQ -1

for Os(()s

It is easily checked that both A and B are positive for
0< O <F/q. So (54) will certainly hold if

~ A - Bt3(q - 2) 8in 0@ {8+ aCa - 2) 2in @@\, <o,
sin 8in® J

A - Bt){- 1+ tlq - 2) -"—i-‘l—‘é-e—}<o g
sin

Since 0<t-$;(—q—g———4)- s the second factor is negative and so
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it is sufficient to show that A - Bt 1s positive, i.e.

(55) 8in 20cos® -2 sin®cos 20 -

a1 __2.—_ (2 sin q@cos 20 - q sin 20 cos q@ )>0
a(Q”™ - &) |

The expression on the left-hand side of (55) vanishes for

® = 0 and its derivative which is equal to %(sin 20)-
-(q sin® - sin q0) s positive for 0< © £¥/q. Hence
(55) holds for G € (0, */q] and in turn so does (54). Thus
we have proved that

() 5 1%
0% @ &%/q 2 o8P

Now we shall show that if 04t 6—%——( : o then for
x T q(q” - 4 ' '
qﬁgiz.

—_— 1 —_—

1
g ——2_G
AN 2 cos® CI
s0 that for such values of ¢

PEGane W

Since
}Eégltw : lwl‘% “+ ?3'——4)}
and
1 3 lsin ¢Bl 1 =
v i {w|& (1~ : )< G
{ 2 cosP a(q® - 4) sin® T 2cos® ©

we will simply check that

1 3 1 (1 = 3 'Bin qel
A} @ -4 $°ose qQ(q® - 4) 8in®

x X
) for qs@&z_
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For values of @ under consideration

1 : \sin a®l _ 1
> —
cos® 7 cos :-g- Y sin® sin'%

Hence it is enough to verify that

(56) By g =l O ' i i o7
Q" -4 ocos ¥ Q° - 4 q sin
Since q sin %}3 for ' Q=6 tl}e oxpression on the right-hand

side of (56) is > ] 31—:—2, and so (56) would certainly
cosxq- Q< - 4
hold if

alﬂi

2
Vi =

were true. Since this latter inequality is indeed true Theorem

3 18 completely proved.
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STRESZCZENIE

W ninlejszej pracy zajmujemy 8sie¢ okresleniem warunkéw
koniecznych 1 dos;atecznych na to by wielomian ft(z) =2 =
= apzp + tz9 byl jednolistny w kole |z|<1. Podajemy tez
warunki na to by wielomian ft(z) lokalnie jednolistny byl
réwnies globalnie -jednolistny w kole |z\<1.

-~

Peanue

B naxHO!l paGoTe onpelneneHH HEOOXOAWMHE W AOCTATOYHHE yC=-
7OBUA INA TOTO, YTOOW MNOJUHOM QCZ)=2-QpZ’4-f2‘ Oun 0ZHOAUCT=
unlt 8 kpyre 12|<?7 ., OHw A8KT TBKKE YCHOBUSA K TOMY, qTOCH
JNOKANBHO OLHONWCTHHI MONWHOM ft(z)' AABIANGA TAKXE IJCO8JBHEO
oxaxonvcTHEM B kpyre |z| <1,
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