VOL. XXXIII. 16

SECTIO A

1979

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

Boleslaw PRUS

On a Minimization of Functionals in Banach Spaces

O minimalizacji funkcjonałów w przestrzeniach Banacha
О минимизации функционалов в банаховых пространствах

1. INTRODUCTION

Throughout this paper X will denote a real Banach space with the norm | . | .

Let a function $\gamma : \mathbb{R}_+ \longrightarrow \mathbb{R}$ be continuous, $\gamma(t)/+\infty$, $t \longrightarrow +\infty$; $\gamma(t) \downarrow 0$, $t \longrightarrow 0$. Set

$$\gamma_1(s) := \int_0^s \gamma(t) dt, \quad s \geqslant 0,$$

and, for $t \in \langle 0,1 \rangle$, $s \geqslant 0$,

$$\Gamma(t,s) := t \gamma_1((1-t)s) + (1-t) \gamma_1(ts)$$
.

Let Ψ be a fixed real functional defines on X, such that

(i) There exists a function $\beta: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, nondecreasing continuous and satisfying:

(1.1)
$$|x_1| \le r \rightarrow |\Psi(x_1) - \Psi(x_2)| \le \beta(r) |x_1 - x_2|$$
,
 $x_1 \in X$; $i = 1, 2$.

(ii) For any $t \in (0,1)$ and $x,h \in X$

(1.2)
$$\psi(x + th) - \psi(x) \leq t \left[\psi(x + h) - \psi(x) \right] - \Gamma(t, \|h\|).$$

Let ϕ denote a fixed real functional defined on X, such that

(i) There exists a function $\beta': \mathbb{R}_+ \longrightarrow \mathbb{R}_+$, nondecreasing and continuous, such that

(1.3)
$$\|\mathbf{x}_1\| \leqslant \mathbf{r} \Rightarrow |\phi(\mathbf{x}_1) - \phi(\mathbf{x}_2)| \leqslant \beta'(\mathbf{r}) \|\mathbf{x}_1 - \mathbf{x}_2\|, \quad \mathbf{x}_1 \in \mathbf{X},$$

$$1 = 1, 2.$$

(ii) For any $t \in (0,1)$ and $x,h \in X$

(1.4)
$$\phi(x + th) = \phi(x) \le t [\phi(x + h) - \phi(x)].$$

In this paper we shall consider the problem of the existence of a minimum (unconditional and conditional - with the condition depending on Ψ) of the functional Φ . The results obtained in sections 2 and 3 will be applied to the theory of partial differential equations.

We shall make use of the results obtained by T. Leżański [1]. Therefore, we restate at the moment several results from [1].

LEMMA 1.1. Ψ is bounded from below and $\Psi(x) \longrightarrow +\infty$

(1.5) $\|\mathbf{x}_1 - \mathbf{x}_2\| \leqslant \sum_{i=1}^{2} \gamma_1^{-i} (\Psi(\mathbf{x}_i) - \mathbf{d}),$

where $d:=\inf_{x\in X} \Psi(x)$.

LEMMA 1.3. If

then

(1.7)
$$\|x - y\| \leq \chi_1^{-1} (\Psi(y) - \Psi(x)).$$

THEOREM 1.4. There exists a unique element $\tilde{x} \in X$ such that $\Psi(\tilde{x}) = d = \inf_{x \in X} \Psi(x)$. Moreover

$$(1.8) \qquad \bigwedge_{x \in X} \|x - \widetilde{x}\| < \gamma_1^{-1}(\Psi(x) - d)$$

2. CONDITIONAL MINIMUM OF THE FUNCTIONAL O

Set

$$2:= \{x \in X : \Psi(x) \leq 0\}.$$

In this section we consider the problem of minimization of the functional Φ on Z.

For $\lambda > 0$ we define

(2.1)
$$\phi_1(x) := \frac{1}{\lambda} \phi(x) + \psi(x), \quad x \in X.$$

First note that, for any fixed $\lambda > 0$, the functional φ_{λ} satisfies the assumptions (i) and (ii) (with Ψ replaced by φ_{λ}). Therefore, in view of Theorem 1.4, for any fixed $\lambda > 0$ there exists a unique element $\mathbf{x}_{\lambda} \in \mathbf{X}$ such that $\varphi_{\lambda}(\mathbf{x}_{\lambda}) = \inf_{\mathbf{x} \in \mathbf{X}} \varphi_{\lambda}(\mathbf{x})$, i.e.

(2.2)
$$\frac{1}{\lambda} \varphi(x_{\lambda}) + \Psi(x_{\lambda}) \leq \frac{1}{\lambda} \varphi(x) + \Psi(x), \quad x \in X$$

LEMMA 2.1. [1]. The following implications hold:

(I)
$$\forall (x) \leq \forall (x_{\lambda}) \Longrightarrow \varphi(x) \geqslant \varphi(x_{\lambda});$$

(II)
$$\phi(x_{\lambda}) \geqslant \phi(x) \Rightarrow \psi(x_{\lambda}) \leq \psi(x), \quad x \in X$$

Proof. From (2.2) we obtain $\frac{1}{\lambda}(\Phi(x_{\lambda}) - \Phi(x)) + (\Psi(x_{\lambda}) - \Psi(x)) \leq 0$, which implies (I) and (II). The proof is complete.

For $\lambda > 0$ we set

$$\varphi(\lambda) := \varphi(x_{\lambda})$$

$$\varphi(\lambda) := \Psi(x_{\lambda}).$$

LEMMA 2.2. The function φ is nondecreasing and bounded from above; the function ψ is nonincreasing and bounded from below.

Proof. Assume that $\lambda > 0$, $\mu > 0$ and put $x = x_{\mu}$ in (2.2):

$$\Psi(\mathbf{x}_{\lambda}) \leq \frac{1}{\lambda} \Phi(\mathbf{x}_{\mu}) + \Psi(\mathbf{x}_{\mu}) - \frac{1}{\lambda} \Phi(\mathbf{x}_{\lambda})$$

In view of the analogous inequality:

$$\Psi(\mathbf{x}_{\mu}) \leq \frac{1}{\mu} \Phi(\mathbf{x}_{\lambda}) + \Psi(\mathbf{x}_{\lambda}) - \frac{1}{\mu} \Phi(\mathbf{x}_{\mu})$$

we obtain

$$\Psi(\mathbf{x}_{\lambda}) \leq \frac{1}{\lambda} \phi(\mathbf{x}_{\mu}) + \frac{1}{\mu} \phi(\mathbf{x}_{\lambda}) + \Psi(\mathbf{x}_{\lambda}) - \frac{1}{\mu} \phi(\mathbf{x}_{\mu}) - \frac{1}{\lambda} \phi(\mathbf{x}_{\lambda})$$

Hence

$$0 \leq \frac{1}{\mu}(\phi(x_{\lambda}) - \phi(x_{\mu})) - \frac{1}{\lambda}(\phi(x_{\lambda}) - \phi(x_{\mu})),$$

i.e.

$$(\phi(\mathbf{x}_{\lambda}) - \phi(\mathbf{x}_{\mu}))(\frac{1}{\mu} - \frac{1}{\lambda}) \geq 0.$$

If $0 < \mu \le \lambda$ we then have $\phi(x_{\mu}) \le \phi(x_{\lambda})$, i.e. the function φ is nondecreasing. Hence it follows from Lemma 2.1 (II) (with $x = x_{\mu}$) that ψ is nonincreasing.

The function ψ is bounded from below in view of Lemma 1.1. Moreover, it follows from Theorem 1.4 that

$$\psi(\lambda) = \psi(x_{\lambda}) \geqslant \psi(\tilde{x}) = \inf_{x \in X} \psi(x), \quad \lambda > 0.$$

Hence it follows from Lemma 2.1 (I) (with $x = \tilde{x}$) that

$$\varphi(\lambda) = \varphi(x_{\lambda}) \leqslant \varphi(\tilde{x})$$
 for all $\lambda > 0$,

i.e. the function φ is bounded from above, so the proof is complete.

COROLLARY 2.3. For any $\lambda > 1$ we have $\phi(x_{\lambda}) > \phi(x_{1})$.

LEMMA 2.4. The functions q and w are continuous.

Proof (due to T. Leżański). Assume that $\lambda > 0$, $\mu > 0$. For $x \in X$ we set

$$\widetilde{\phi}_{\lambda}(x) := \phi(x) + \lambda (\Psi(x) - d),$$

where $d = \inf_{X \in X} \Psi(x)$. In view of the inequality (2.2), the functional Φ_{λ} attains at the point $x_{\lambda} \in X$ its minimum. Furthermore, we obtain

$$\widetilde{\Phi}_{\mu}(\mathbf{x}_{\lambda}) = \Phi(\mathbf{x}_{\lambda}) + \mu(\Psi(\mathbf{x}_{\lambda}) - \mathbf{d}) =$$

$$= (\Phi(\mathbf{x}_{\lambda}) + \lambda \Psi(\mathbf{x}_{\lambda}) - \lambda \mathbf{d}) - \lambda \Psi(\mathbf{x}_{\lambda}) + \lambda \mathbf{d} + \mu \Psi(\mathbf{x}_{\lambda}) - \mu \mathbf{d} =$$

$$= \widetilde{\Phi}_{\lambda}(x_{\lambda}) + (\mu - \lambda)(\Psi(x_{\lambda}) - d) \leq \widetilde{\Phi}_{\lambda}(x_{\mu}) + (\mu - \lambda)(\Psi(x_{\lambda}) - d) =$$

$$= \Phi(x_{\mu}) + \lambda(\Psi(x_{\mu}) - d) + (\mu - \lambda)(\Psi(x_{\lambda}) - d) =$$

$$= (\Phi(x_{\mu}) + \mu\Psi(x_{\mu}) - \mu d) - \mu\Psi(x_{\mu}) + \lambda\Psi(x_{\mu}) + \mu\Psi(x_{\lambda}) - \lambda\Psi(x_{\lambda}) =$$

$$= \widetilde{\Phi}_{\mu}(x_{\mu}) + (\mu - \lambda)(\Psi(x_{\lambda}) - \Psi(x_{\mu})).$$

Hence

$$0 \leqslant \widetilde{\Phi}_{\mu}(\mathbf{x}_{\lambda}) - \widetilde{\Phi}_{\mu}(\mathbf{x}_{\mu}) \leqslant (\lambda - \mu)(\Psi(\mathbf{x}_{\mu}) - \Psi(\mathbf{x}_{\lambda})) \leqslant$$

$$\leqslant |\lambda - \mu| (\Psi(\mathbf{x}_{\mu}) - \mathbf{d}).$$

Let us fix \mu and put \mu = \mu_0. It follows that

$$0 \le \phi_{\mu_0}(x_{\lambda}) - \phi_{\mu_0}(x_{\mu_0}) \le \frac{|\lambda - \mu_0|}{\mu_0} (\psi(x_{\mu_0}) - d)$$

Hence $\Phi_{\mu}(x_{\lambda}) - \Phi_{\mu}(x_{\mu}) \rightarrow 0$ when $|\lambda - \mu_{0}| \rightarrow 0$. Then by (1.5) (with $x_{1} = x_{1}$, $x_{2} = x_{\mu_{0}}$, $\forall = \Phi_{\mu_{0}}$) it follows that $|x_{\lambda} - x_{\mu_{0}}| \rightarrow 0$ when $|\lambda - \mu_{0}| \rightarrow 0$.

Now choose $r_1>0$ such that $\|x\| \| \leq r_1$. If λ is close enough to μ_0 , it follows that $\|x_{\lambda} - x_{\mu}\| \leq r_1$ and then $\|x_{\lambda}\| \leq \|x_{\lambda} - x_{\mu}\| + \|x_{\mu}\| \leq 2r_1$. Hence we can apply the assumption (i') (with x_1 replaced by x_{λ} and x_2 replaced by x_{μ}):

$$|\phi(x_{\lambda}) - \phi(x_{\mu_0})| \leq \beta'(2r_1) ||x_{\lambda} - x_{\mu_0}||$$

This means that φ is continuous at any point $\mu_0 > 0$.

The continuity of ψ is obtained by using (i). This concludes the proof of the lemma.

LETIMA 2.5. There exists the limit
$$\lim_{\lambda \to +\infty} \Psi(x_{\lambda})$$
 and $\lim_{\lambda \to +\infty} \Psi(x_{\lambda}) = \Psi(x) = \inf_{x \in X} \Psi(x)$

Proof. It follows from Lemma 2.2 that there exists $p:=\lim_{x\to\infty} \Psi(x_{\lambda}). \quad \text{We shall prove that} \quad p=\Psi(\widetilde{x}).$

Assume that $0 < \mu \le \Lambda$. Since the function φ is non-decreasing (Lemma 2.2), $\Phi(\mathbf{x}_{\mu}) - \Phi(\mathbf{x}_{\lambda}) \le 0$. Hence, by using (ii'), it follows that $\Phi(\mathbf{x}_{\lambda} + \mathbf{t}(\mathbf{x}_{\mu} - \mathbf{x}_{\lambda})) - \Phi(\mathbf{x}_{\lambda}) \le \mathbf{t} \left[\Phi(\mathbf{x}_{\mu}) - \Phi(\mathbf{x}_{\lambda})\right] \le 0$, i.e.

$$\phi(\mathbf{x}_{\lambda} + \mathbf{t}(\mathbf{x}_{\mu} - \mathbf{x}_{\lambda})) \leq \phi(\mathbf{x}_{\lambda}),$$

where $t \in (0,1)$. Hence it follows from Lemma 2.1 (II) that

$$\Psi(x_{\lambda} + t(x_{\mu} - x_{\lambda})) - \Psi(x_{\lambda}) \ge 0.$$

Therefore, by Lemma 1.3,

(2.3)
$$\|x_{\lambda} - x_{\mu}\| \leq \chi_{1}^{-1}(\Psi(x_{\mu}) - \Psi(x_{\lambda}))$$
.

Consequently $\|x_{\lambda} - x_{\mu}\| \longrightarrow 0$ when $\lambda, \mu \longrightarrow +\infty$, $\mu < \lambda$. Hence there exists $x^{*} := \lim_{\lambda \to +\infty} x_{\lambda}$. Now choose $r_{1} > 0$ such that $\|x^{*}\| \leqslant r_{1}$. For λ sufficiently large we have $\|x_{\lambda} - x^{*}\| \leqslant r_{1}$ and then $\|x_{\lambda}\| \leqslant \|x_{\lambda} - x^{*}\| + \|x^{*}\| \leqslant 2r_{1}$. Then, by the assumption (i), $\Psi(x^{*}) = \lim_{\lambda \to +\infty} \Psi(x_{\lambda})$.

To prove that $x^* = \tilde{x}$ we first observe that since $\Psi(\tilde{x}) \leq \Psi(x_{\lambda})$ ($\lambda > 0$), $\varphi(\tilde{x}) \geqslant \varphi(x_{\lambda})$ for all $\lambda > 0$ in view of Lemma 2.1 (I). Hence it follows from Corollary 2.3 that for $\lambda > 1$

$$\frac{\Phi(\mathbf{x}_1)}{\lambda} \leqslant \frac{\Phi(\mathbf{x}_{\lambda})}{\lambda} \leqslant \frac{\Phi(\widetilde{\mathbf{x}})}{\lambda},$$

so $\lim_{\lambda \to +\infty} \frac{\phi(x_{\lambda})}{\lambda} = 0$. Using (2.2) and passing to the limit when $\lambda \to +\infty$ we obtain that $\psi(x^*) \leq \psi(x)$, $x \in X$. Hence $x^* = x$ in virtue of Theorem 1.4. The proof is complete.

LEMMA 2.6. If

$$\Psi(x_1) < 0$$
 for any $\lambda > 0$,

then there exists x0 ∈ Z such that

 $\phi(x^0) \le \phi(x)$ for any $x \in X$.

Moreover

$$\phi(x^0) = \lim_{\lambda \to 0} \phi(x_{\lambda}).$$

Proof. Suppose that for any $\lambda > 0$, $\psi(x_{\lambda}) < 0$. Since the function ψ is nonincreasing (Lemma 2.2), there exists $\lim_{\lambda \to 0} \Psi(x_{\lambda})$. Assume that $0 < \mu \le \lambda$. Hence it follows from (2.3) that there exists $x^0 := \lim_{\lambda \to 0} x_{\lambda}$.

We shall prove that $\phi(x^0) = \lim_{\lambda \to 0} \phi(x_{\lambda})$. Choose $r_1 > 0$ such that $\|x^0\| \le r_1$. There exists $\lambda_0 > 0$ such that $\|x_{\lambda} - x^0\| \le r_1$ for $\lambda \in (0, \lambda_0)$. Hence $\|x_{\lambda}\| \le \|x_{\lambda} - x^0\| + \|x^0\| \le 2r_1$. Then, by (1')

 $\|\phi(\mathbf{x}_{\lambda}) - \phi(\mathbf{x}^{0})\| \le \beta(2\mathbf{r}_{1})\|\mathbf{x}_{\lambda} - \mathbf{x}^{0}\|$ for $\lambda \in (0, \lambda_{0})$

Hence $\phi(x^0) = \lim_{\lambda \to 0} \phi(x_{\lambda})$.

To prove that $\phi(x^0) \leq \phi(x)$, $(x \in X)$ we use the inequality:

(2.4)
$$\phi(x_{\lambda}) + \lambda \Psi(x_{\lambda}) \leq \phi(x) + \lambda \Psi(x), \quad x \in X$$

which follows immediately from (2.2). Observe that

$$\lambda \inf_{x \in X} \Psi(x) \leq \lambda \Psi(x_{\lambda}) < 0,$$

whence $\lim_{\lambda \to 0} \lambda \Psi(x_{\cdot}) = 0$. Then, passing to the limit when $\lambda \to 0$ in (2.4), we obtain $\Phi(x^0) \leq \Phi(x)$, $x \in X$. This ends

the proof of Lemma 2.6.

REMARK 2.7. The assumption of Lemma 2.6 may be replaced by the following:

$$\bigvee_{\lambda_0>0} \bigwedge_{\lambda \in (0, \lambda_0)} \Psi(x_{\lambda}) < 0$$

THEOREM 2.8. Assume that Ψ satisfies (i), (ii) and that there exists $x' \in X$ such that $\Psi(x') < 0$. If Φ satisfies (i') and (ii'), then there exists $\overline{x} \in Z$ such that

$$\varphi(\bar{x}) \leqslant \varphi(x)$$
 for each $x \in \mathbb{Z}$.

Proof. Assume first that there exists $\mu_0>0$ such that $\Psi(x)>0$. From Lemma 2.5 it follows that

$$\lim_{\lambda \to +\infty} \Psi(x_{\lambda}) = \Psi(\tilde{x}) = \inf_{x \in X} \Psi(x) < 0.$$

Then there exists $\mu_1 > 0$ such that $\Psi(x_{\mu_1}) < 0$. Since Ψ is continuous (Lemma 2.4), it follows that there exists $\mu_2 > 0$ such that $\Psi(x_{\mu_1}) = 0$. Then we have $x_{\mu_2} \in \mathbb{Z}$ and, by (2.2),

$$\frac{1}{\mu_{2}} \phi(x_{\mu_{2}}) = \frac{1}{\mu_{2}} \phi(x_{\mu_{2}}) + \Psi(x_{\mu_{2}}) \leq \frac{1}{\mu_{2}} \phi(x) + \Psi(x) \leq \frac{1}{\mu_{2}} \phi(x), \qquad x \in \mathbb{Z},$$

i.e. $\phi(x_{\mu_2}) \leq \phi(x)$, $x \in \mathbb{Z}$. Putting $\overline{x} := x_{\mu_2}$ we complete the proof in this case.

Now suppose that for any $\lambda > 0$, $\Psi(x_{\lambda}) < 0$. It follows from Lemma 2.6 that there exists $x^0 \in \mathbb{Z}$, $x^0 = \lim_{\lambda \to 0} x_{\lambda}$, such that $\Phi(x^0) \leq \Phi(x)$, $x \in X$, i.e. the functional Φ attains

its minimum at $x^0 \in Z$. Putting $\overline{x} := x^0$ we complete the proof in this case.

Thus Theorem 2.8 follows in every case.

3. UNCONDITIONAL MINIMUM OF THE FUNCTIONAL O

In this section we apply the results obtained in section 2 to prove the following theorem:

THEOREM 3.1. The following assertions are equivalent:

- (a) The functional φ is bounded from below and it attains its minimum.
 - (b) There exists a constant C>0 such that

(3.1)
$$|x_{\lambda}| \leq c$$
 for any $\lambda > 0$.

Moreover, if (a) or (b) holds, then there exists $x^0 := \lim_{\lambda \to 0} x_{\lambda}$ and

$$\phi(x^0) = \inf_{x \in X} \phi(x) .$$

Proof. (a) \Longrightarrow (b). Assume that φ is bounded from below and that there exists $x^* \in X$ such that $\varphi(x^*) \leqslant \varphi(x)$, $x \in X$. Hence, for any $\lambda > 0$, $\varphi(x^*) \leqslant \varphi(x_{\lambda})$. Therefore, in view of Lemma 2.1 (II),

$$\Psi(\mathbf{x}_{\lambda}) \leq \Psi(\mathbf{x}^*)$$
.

Set $\Psi_0(x) := \Psi(x) - \Psi(x^*)$, $x \in X$; since $\Psi_0(x^*) = 0$ and $\Psi_0(x_\lambda) \le 0$, $\lambda > 0$, it follows from (1.5) that

$$\|x^* - x_{\lambda}\| \le \gamma_1^{-1} (\Psi(x^*) - d) + \gamma_1^{-1} (\Psi(x_{\lambda}) - d) \le 2\gamma_1^{-1} (-d)$$

175

On a Minimization of Functionals ...

where $d = \inf_{x \in X} \Psi(x)$. If we choose $C := 2 \gamma_1^{-1}(-d) + \|x^*\|$, then

$$\|x_{\lambda}\| \le \|x^* - x_{\lambda}\| + \|x^*\| \le 2\gamma_1^{-1}(-d) + \|x^*\| = c$$
.

(b) \rightarrow (a). Assume that there exists C>0 such that $|x_1| \le C$ for any $\lambda > 0$. By virtue of (i)

For x ∈ X let

$$\Psi_1(x) := \Psi(x) - \Psi(0) - \beta(c) \cdot c - 1$$
.

It is obvious that the functional V_1 satisfies the assumptions (i) and (ii) (with V replaced by V_1). Moreover, by virtue of (2.2) we have for $\lambda > 0$ fixed:

$$\frac{1}{\lambda} \phi(\mathbf{x}_{\lambda}) + \Psi_{1}(\mathbf{x}_{\lambda}) \leq \frac{1}{\lambda} \phi(\mathbf{x}) + \Psi(\mathbf{x}) - \Psi(0) - \beta(0)C - 1 =$$

$$= \frac{1}{\lambda} \phi(\mathbf{x}) + \Psi_{1}(\mathbf{x}), \qquad \mathbf{x} \in \mathbf{X}$$

Further, for any $\lambda > 0$,

$$\Psi_1(x_{\lambda}) = \Psi(x_{\lambda}) - \Psi(0) - \beta(c)c - 1 < 0$$
.

Therefore ψ_1 satisfies the assumptions of Lemma 2.6 (with ψ replaced by ψ_1). Hence it follows from Lemma 2.6 that there exists $\mathbf{x}^0 \in \mathbf{X}$ such that $\phi(\mathbf{x}^0) \leq \phi(\mathbf{x})$, $\mathbf{x} \in \mathbf{X}$ and $\mathbf{x}^0 = \lim_{\lambda \to 0} \mathbf{x}_{\lambda}$.

The proof is complete.

REMARK 3.2. Using Remark 2.7, we may replace (3.1) by the following:

$$\bigvee_{\sigma>0} \bigvee_{\lambda_o>0} \bigwedge_{\lambda\in(0,\lambda_o)} \|x_{\lambda}\| \leq c,$$

which is equivalent to (3.1).

4. APPLICATION TO THE THEORY OF QUASI-LINEAR EQUATIONS

4.1. Let H denote a real Hilbert space with the scalar product (·,·) and the norm 【· 】 and M⊂H a linear subset, dense in H. Let H₁⊂H be the completion of M in the norm 【· ▮₁, where

$$\|\mathbf{x}\|_{1} := \sqrt{(\mathbf{x},\mathbf{x})_{1}} \ge \alpha \|\mathbf{x}\|, (\mathbf{x},\mathbf{y})_{1} := (\mathbf{A}\mathbf{x},\mathbf{y}) \quad \text{for } \mathbf{x},\mathbf{y} \in \mathbb{M}$$
 and $\alpha > 0$

A: M — H is a linear operator, symmetric and strictly positive (cf. [4], NO 124).

Let $\widetilde{\phi}$ denote a real valued functional defined on M×M. Suppose that $\widetilde{\phi}$ satisfies the following properties:

(a) $\widetilde{\Phi}(x,\cdot)$ is a linear functional for any fixed $x\in M$ and

(4.1.1)
$$|\widetilde{\Phi}(0,h)| \leq K \|h\|_1$$
, $h \in M$, $K > 0$

(b) For heM

$$(4.1.2) \qquad \frac{\widetilde{\phi}(h,h)}{\|h\|_1} \longrightarrow +\infty \quad \text{if} \quad \|h\|_1 \longrightarrow +\infty$$

- (c) For any fixed $x, f, h \in M$ a function $(t,s) \mapsto \widetilde{\Phi}(x + th + sf,h)$, $t,s \in \mathbb{R}$ possess continuous partial derivatives of the first order.
 - (d) There exists the derivative $\widetilde{\Phi}'$:

$$\widetilde{\Phi}'(x,h,f) := \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left[\widetilde{\Phi}(x + \varepsilon h,f) - \widetilde{\Phi}(x,f) \right], \quad x,h,f \in M$$

linear and symmetrical with respect to h and f:

(4.1.3)
$$\widetilde{\phi}'(x,h,f) = \widetilde{\phi}'(x,f,h)$$

and furthermore

$$|\widetilde{\phi}(x,h,f)| \leq m \|h\|_1 \|f\|_1, \quad m>0$$

and

$$(4.1.5) \qquad \qquad \widetilde{\varphi}'(x,h,h) \geqslant 0.$$

First observe that, in view of (4.1.4),

(4.1.6)
$$\left|\widetilde{\Phi}(x,h) - \widetilde{\Phi}(y,h)\right| \le m \|x - y\|_1 \|h\|_1$$
, $x,y,h \in M$ and that from (4.1.5)

$$(4.1.7) \qquad \widetilde{\phi}(x+h,h) - \widetilde{\phi}(x,h) > 0$$

(see [3]).

From (4.1.1) and (4.1.6) it follows that the functional $\widetilde{\Phi}$ can be extended from M×M to $H_1 \times H_1$ in a unique way so that the extended functional (which we shall denote also by $\widetilde{\Phi}$) satisfies (a) - (d) (with M replaced by H_1).

Because of (4.1.1) and (4.1.6) we get

(4.1.8)
$$|\widetilde{\phi}(x,h)| \leq (K + m ||x||_1) ||h||_1, x, h \in H_1$$

(cf. [3]). Hence it follows from the Riesz theorem that for $x \in \mathbb{H}_1$ there exists a unique element $F(x) \in \mathbb{H}_1$ such that

(4.1.9)
$$\widetilde{\Phi}(x,h) = (F(x),h)_1$$
 for $x,h \in H_1$.

Using (4.1.6), (4.1.7) and (4.1.2) we obtain

(4.1.10)
$$\|F(x) - F(y)\|_{1} \le m \|x - y\|_{1}$$

(4.1.11)
$$(F(x + h) - F(x),h)_1 \ge 0$$
,

$$(4.1.12) \qquad \frac{(F(h),h)_1}{\|h\|_1} \longrightarrow +\infty \quad \text{if} \quad \|h\|_1 \longrightarrow +\infty,$$

x,y,h ∈ H1.

LEMMA 4.1.1. Let $F: H_1 \longrightarrow H_1$ be defined by (4.1.9). Then there exists a functional $\Phi: H_1 \longrightarrow \mathbb{R}$ such that $F(x) = \operatorname{grad} \Phi(x)$, $(x \in H_1)$; moreover, the functional Φ satisfies (1') and (11') (with $X = H_1$).

Proof. The existence of the functional φ follows because of (c) and (4.1.3) (see [5]).

Now we prove (i'). Assume that $\|x_1\|_1 \le r$, $\|x_2\|_1 \le r$, $\|x_2\|_1 \le r$, $\|x_2\|_1 \le r$, $\|x_2\|_1 \le r$, In view of (4.1.8) we have

(we have used the identity $\widetilde{\Phi}(x,h) = \Phi'(x,h)$). Setting $\beta'(r) := K + 3mr$, (i') is proved.

To prove (ii') we observe that in view of (4.1.11), the operator F is monotone; hence the functional φ is convex (cf. [5]).

The proof is thus complete.

Let Ψ denote a real valued functional defined on H_1 . Assume that there exists $G(x):= \operatorname{grad} \Psi(x)$, $x\in H_1$, and moreover, that G is a bounded operator mapping H_1 into H_1 , and

$$(4.1.13) (G(y) - G(x), y - x)_{1} ||y - x||_{1} \gamma(||y - x||_{1}),$$

$$x, y \in H_{1}$$

LEMMA 4.1.2. The functional Ψ satisfies the conditions (i) and (ii) (with $X = H_1$).

Proof. To prove (i) suppose that $\|x_1\|_1 \le r$, $\|x_2\|_1 \le r$, $\|x_2\|_1 \le r$, $\|x_1\|_1 \le r$, Since G is bounded on $\|x_1\|_1 \le r$, fore obtain

$$\begin{aligned} & |\Psi(x_1) - \Psi(x_2)| = |\int_0^1 \frac{d}{dt} \Psi(x_1 + t(x_2 - x_1)) dt| = \\ & = |\int_0^1 \Psi'(x_1 + t(x_2 - x_1), x_2 - x_1) dt| = \\ & = |\int_0^1 (G(x_1 + t(x_2 - x_1), x_2 - x_1) dt| \le \\ & = \int_0^1 |G(x_1 + t(x_2 - x_1))| \|1\|x_2 - x_1\|_1 dt \le \\ & \leq ||x_1 - x_2||_1 \int_0^1 |L||x_1 + t(x_2 - x_1)||_1 dt \le \end{aligned}$$

 $L(2 | x_1 | 1 + | x_2 | 1) | x_1 - x_2 | 1 \le 3Lr | | x_1 - x_2 | 1$

where L>0 is a constant such that $\|G(x)\|_1 \le L \|x\|_1$, $x \in \mathbb{H}_1$. Putting $\beta(r) := 3Lr$ we complete the proof of (1).

Now we sketch the proof of (11); we refer the reader for details to the paper [1]. Observe that, in view of (4.1.13), the inequality

$$\psi(y) - \psi(x) = \int_{0}^{1} \frac{d}{dt} \psi(x + t(y - x)) dt =
= \int_{0}^{1} \frac{1}{t} (G(x + t(y - x)) - G(x), t(y - x))_{1} dt + (G(x), y - x)_{1} \ge
\ge \int_{0}^{1} \frac{1}{t} \gamma(t \| y - x \|_{1}) t \| y - x \|_{1} dt + (G(x), y - x)_{1} =
= \gamma_{1}(\| y - x \|_{1}) + (G(x), y - x)_{1}$$

holds. Defining $x_0 := sx + (1 - s)y$, $s \in (0,1)$, we have

$$s \Psi(x) - s \Psi(x_0) + (1 - s) \Psi(y) - (1 - s) \Psi(x_0) \ge$$

$$\ge s \gamma_1(\|x - x_0\|_1) + (1 - s) \gamma_1(\|y - x_0\|_1)$$

and consequently

$$\mathbf{s}\,\Psi(\mathbf{x})\,+\,(\mathbf{1}\,-\,\mathbf{s})\,\Psi(\mathbf{y})\,-\,\Gamma(\mathbf{s},\,\|\,\mathbf{y}\,-\,\mathbf{x}\,\|_{\mathbf{1}})\geqslant\Psi(\mathbf{s}\mathbf{x}\,+\,(\mathbf{1}\!-\!\mathbf{s})\mathbf{y})$$

(we have used the identities: $x - x_0 = (1 - s)(x - y)$, $y - x_0 = s(y - x)$). Putting y = x + h, s = 1 - t and using the fact that $\lceil (1 - t, s) = \lceil (t, s) \rceil$ we obtain (ii), which completes the proof.

LEMMA 4.1.3. Assume that $\widetilde{\Phi}$ satisfies (a), (c), (d) and that $\widetilde{a} \in \mathbb{H}$. If there exists R>0 such that

(4.1.14)
$$\|\tilde{a}\| < \frac{\alpha}{R} \tilde{\phi}(h,h)$$
 if $\|h\|_{1} = R$, $h \in H_{1}$

then there is x0 e H such that

$$\widetilde{\Phi}(\mathbf{x}^0,\mathbf{h}) + (\widetilde{\mathbf{a}},\mathbf{h}) = 0$$
 for any $\mathbf{h} \in \mathbb{H}_1$,

and || xº || 1 < R.

Proof. Suppose that for $\widetilde{a} \in H$ (4.1.14) is fulfilled. Then for $h \in H_1$, $\|h\|_1 = R$ we have $\|\widetilde{a}\| \|h\|_1 < \alpha \widetilde{\Phi}(h,h)$. Hence and from the inequality $\|h\|_1 \geqslant \alpha \|h\|$ it follows that $\|\widetilde{a}\| \|h\| < \widetilde{\Phi}(h,h)$, i.e. $(-\widetilde{a},h) \leq \|-\widetilde{a}\| \|h\| < \widetilde{\Phi}(h,h)$. Consequently

$$\hat{\Phi}(h,h) + (\tilde{a},h) > 0$$
, $\|h\|_1 = \mathbb{R}$, $h \in \mathbb{R}_1$.

Now for x,h & H, put

$$\widetilde{\Phi}_1(x,h) := \widetilde{\Phi}(x,h) + (\widetilde{a},h)$$
.

Observe that Φ_1 is linear and bounded (in the norm $\|\cdot\|_1$) with respect to the second variable (the boundedness follows from (4.1.1)). In view of the Riesz theorem we then have

$$\hat{\Phi}_1(x,h) = (F_1(x),h)_1, x,h \in H_1$$

where $F_1(x)$ is an element of H_1 (cf. (4.1.9)). Further, from (c) and (4.1.3) it follows that F_1 is a potential operator, i.e. there exists a functional $\phi_1: H_1 \longrightarrow \mathbb{R}$ such that $F_1(x) = \operatorname{grad} \phi_1(x)$, $x \in H_1$.

Using the previous result we obtain

$$(F_1(h),h)_1>0$$
 if $|h|_1=R$.

Hence it follows that there exists $x^0 \in H_1$, $\|x^0\|_1 < R$, such

that

$$\phi_1(\mathbf{x}^0) \leq \phi_1(\mathbf{x}), \qquad \mathbf{x} \in \mathbf{H}_1,$$

i.e. $F_1(x^0) = 0$ (see [5], theorem 9.8). Finally

$$\widetilde{\Phi}(\mathbf{x}^0,\mathbf{h}) + (\widetilde{\mathbf{a}},\mathbf{h}) = 0, \quad \mathbf{h} \in \mathbf{H}_1,$$

which completes the proof.

THEOREM 4.1.4. Assume that $\widetilde{\Phi}$ satisfies (a) - (d) and that $\widetilde{a} \in H$. Then there exists a solution of the equation (4.1.15) $\widetilde{\Phi}(x,h) + (\widetilde{a},h) = 0$ for any $h \in H_1$.

Moreover, if G is a potential and bounded operator, satisfying (4.1.13), then for any $\lambda > 0$ there exists a unique element $x_{\lambda} \in \mathbb{H}_1$ such that

(4.1.16)
$$\frac{1}{\lambda} \left[\widetilde{\Phi}(x_{\lambda}, h) + (\widetilde{a}, h) \right] + (G(x_{\lambda}), h)_{1} = 0$$

for any heH

and there exists the limit $x^0 := \lim_{\lambda \to 0} x_{\lambda}$, which is a solution of (4.1.15).

Proof. First observe that in view of (4.1.2) the assumption (4.1.14) of Lemma 4.1.3 is valid for any $\tilde{a} \in H$. Hence it follows from Lemma 4.1.3 that for any $\tilde{a} \in H$ there exists a solution of the equation (4.1.15).

. For x,h ∈H4 put

$$\widetilde{\Phi}_1(x,h) = \widetilde{\Phi}(x,h) + (\widetilde{a},h).$$

We have $\widetilde{\phi}_1(x,h) = (F_1(x),h)_1$ and $F_1(x) = \operatorname{grad} \phi_1(x)$ (see the proof of Lemma 4.1.3). Note that ϕ_1 satisfies the con-

ditions (1') and (11') (with ϕ replaced by ϕ_1) ((11') follows from (4.1.5)). Further, in view of Lemma 4.1.3, there exists $x^0 \in \mathbb{R}_1$ such that

$$\Phi_1(x^0) \leq \Phi_1(x), \qquad x \in \mathbb{H}_1.$$

Hence it follows from Theorem 3.1 that the function $\lambda - x_{\lambda}$ $\lambda > 0$ defined by the inequality:

$$\frac{1}{\lambda} \phi_1(x_{\lambda}) + \Psi(x_{\lambda}) \leqslant \frac{1}{\lambda} \phi_1(x) + \Psi(x), \qquad x \in \mathbb{H}_1$$

(i.e. by (4.1.16) with $G(x) = \text{grad } \Psi(x)$) has the limit $x = \lim_{\lambda \to 0} x_{\lambda}$ and

$$\Phi_1(\tilde{x}^0) = \inf_{x \in H_1} \Phi(x),$$

i.e. $F_1(\tilde{x}^0) = 0$. Hence \tilde{x}^0 is a solution of the equation (4.1.15), which proves the theorem.

4.2. Let $\Omega \subset \mathbb{R}^n$, $n \in \mathbb{N}$, denote an open set, bounded and simply connected, with the boundary $S := \partial \Omega$ smooth. Set $H := \int_{\Omega}^{2}$, $H := \{u \in \mathbb{C}^{2}_{\Omega} : u|_{S} = 0\}$,

$$(x,y) := \int_{\mathbb{R}} x(\xi)y(\xi)d\xi, \qquad x,y \in \mathbb{H},$$

$$(u,v)_1 := \int_{\mathbb{R}} \frac{\partial u}{\partial \xi_1} \frac{\partial v}{\partial \xi_1} d\xi, \qquad u,v \in \mathbb{M},$$

where $\xi := (\xi_1, \dots, \xi_n) \in \Omega$.

Observe that M is dense in H (in the norm 1 · 1) and that

(4.2.1)
$$|x|_1 \ge d|x|, \qquad x \in \mathbb{N}, \quad \alpha > 0$$

$$(||x||_1 = \sqrt{(x,x)}, \quad ||x||_1 = \sqrt{(x,x)},). \quad \text{It follows from the}$$

theory of Friedrichs that there exists H_1 (MCH₁CH) - the completion of M in the norm $I \cdot I_1$ (see [4], N⁰ 124). It is obvious that the inequality (4.2.1) is valid for any $x \in H_1$.

Let $a_i: \mathbb{R}^n \times \Omega \longrightarrow \mathbb{R}$, $i=1,\ldots,n$, be continuous functions with the continuous partial derivatives of the first order $a_{ik} = \frac{\partial}{\partial t_k} a_i$, $i,k=1,\ldots,n$, $t=(t_1,\ldots,t_n) \in \mathbb{R}^n$. We assume that

(4.2.2)
$$a_{ik} = a_{ki}$$
, $i,k = 1,...,n$,
(4.2.3) $\left| \sum_{i,k=1}^{n} a_{ik} s_{i} r_{k} \right|^{2} \le m \left[\sum_{i=1}^{n} s_{i}^{2} \right] \left[\sum_{k=1}^{n} r_{k}^{2} \right] \quad m > 0$,
(4.2.4) $\sum_{i,k=1}^{n} a_{ik} s_{i} s_{k} \ge 0$,

(4.2.5)
$$a_i(s_1,...,s_n,\xi)s_i \ge \tilde{\alpha}|s_i|^2 - \sum_{k=1}^n |\beta_{ik}(\xi)||s_k| - |c_i(\xi)|$$

for $i = 1,...,n$ and $\xi \in \Omega$

101 1 1 1, ..., n and 5

where $s_i, r_i \in \mathbb{R}$, i = 1, ..., n, $\tilde{\alpha} > 0$, $\beta_{ik} \in \mathcal{L}_{\Omega}^2$, $c_i \in \mathcal{L}_{\Omega}$ i, k = 1, ..., n.

We consider the following boundary value problem:

(4.2.6)
$$\sum_{i=1}^{n} \frac{\partial}{\partial \xi_{i}} a_{i}(u_{\xi_{1}}, \dots, u_{\xi_{n}}, \xi) + \tilde{a}(\xi) = 0, \quad \xi \in \Omega,$$

$$u(\xi) = 0 \text{ for } \xi \in S,$$

where $u: \Omega \rightarrow \mathbb{R}$, $u_{\frac{1}{2}i} = \frac{\partial u}{\partial \xi_i}$, i = 1,...,n and $\tilde{a} \in \mathcal{L}^2_{\Omega}$.

For u,heM set

(4.2.7)
$$\widetilde{\Phi}(u,h) = \int_{1=1}^{n} a_1(u_{\xi_1},...,u_{\xi_n},\xi)h_{\xi_1}d\xi$$

LEMMA 4.2.1. Fhe functional ϕ defined by (4.2.7) satisfies the conditions (a) - (d).

Proof. The inequality (4.1.1) follows from (4.2.7) with the aid of Holder's inequality. To prove (4.1.2) observe that by Holder's inequality and (4.2.5) we have

$$\widetilde{\phi}(h,h) = \int_{\Omega}^{n} a_{1}(h_{\frac{1}{5}1}, \dots, h_{\frac{1}{5}n}, \frac{1}{5})h_{\frac{1}{5}1}d\frac{1}{5} \geqslant \\
\ge \widetilde{\alpha} \int_{0}^{n} h^{2}_{\frac{1}{5}1}d\frac{1}{5} - \int_{\Omega}^{n} \sum_{i=1}^{n} \left(\sum_{k=1}^{n} |\beta_{ik}(\frac{1}{5})| h_{\frac{1}{5}k}\right)d\frac{1}{5} - \\
- \int_{0}^{n} |c_{1}(\frac{1}{5})| d\frac{1}{5} \ge \widetilde{\alpha} \|h\|_{1}^{2} - b \|h\|_{1} - c,$$

where $b := (\int_{0}^{\frac{\pi}{2}} (\sum_{i=1}^{n} |\beta_{ik}(\xi)|)^2 d\xi)^{\frac{1}{2}}$, $c := \int_{0}^{\frac{\pi}{2}} |c_i(\xi)| d\xi$ (cf. [5]). Hence $\frac{\partial (h,h)}{\|h\|_1} \ge \tilde{\alpha} \|h\|_1 - b - \frac{c}{\|h\|_1} \longrightarrow +\infty$ if $\|h\|_1 \longrightarrow +\infty$.

The condition (c) and the existence of $\widetilde{\Phi}'$ follow from the continuity of a_i and a_{ik} , $i,k=1,\ldots,n$. Moreover,

$$\widetilde{\phi}'(u,h,f) = \int_{1,k=1}^{n} a_{ik}(u_{\xi_1},\dots,u_{\xi_n},\xi)h f \int_{1}^{d} \xi,$$

$$u,h,f \in M$$

(cf. [3]). Hence it follows from (4.2.2) that (4.1.3) holds. The inequalities (4.1.4) and (4.1.5) follow because of (4.2.3) and (4.2.4) respectively (see [3], p. 138). This completes the proof of the lemma.

It follows from Lemma 4.2.1 that we can apply 4.1 to the functional $\tilde{\Phi}$ (defined by (4.2.7)). Therefore, $\tilde{\Phi}$ can be extended to all of $H_1 \times H_1$ in a unique way so that the exten-

sion (which we shall denote also by Φ) satisfies (a) - (d) (with M replaced by H_1) and there exists $F: H_1 \longrightarrow H_1$ such that $\Phi(u,h) = (F(u),h)_1$, $u,h \in H_1$. Moreover, $F(u) = \operatorname{grad} \Phi(u)$, $u \in H_1$, where $\Phi: H_1 \longrightarrow \mathbb{R}$ satisfies (i') and (ii') (with $X = H_1$).

DEFINITION 4.2.1. We say that a function $u^0 \in H_1$ is a generalized solution of the problem (4.2.6) if

$$\widetilde{\Phi}_1(u^0,h) := \widetilde{\Phi}(u^0,h) + (\widetilde{a},h) = 0$$
 for any $h \in \mathbb{H}_1$

HEMARK 4.2.2. Note that if $u^0 \in M$ is a solution of (4.2.6), then u^0 is a generalized solution and vice versa, if $u^0 \in C^2_{L}$ is a generalized solution of (4.2.6), then u^0 is a solution of this problem (see [2], Théoreme 4.3.1).

In view of Theorem 4.1.4 we have

THEOREM 4.2.3. Let the assumptions (4.2.2) - (4.2.5) be fulfilled. Then there exists a generalized solution of the problem (4.2.6).

Moreover, if G is a potential and bounded operator, satisfying (4.1.13), then for any $\lambda > 0$ there exists a unique element $x_{\lambda} \in H_1$ such that

$$\frac{1}{\lambda} \dot{\Phi}_{1}(\mathbf{x}_{\lambda}, \mathbf{h}) + (G(\mathbf{x}_{\lambda}), \mathbf{h})_{1} = 0,$$
 $\mathbf{h} \in \mathbf{H}_{1}$

and there exists the limit $\lambda = 0$ which is a generalized solution of the problem (4.2.6).

REFERENCES

- [1] Leżański, T., Sur le minimum des fonctionnelles (to appear).
- [2] ,, Sur les équations du type: $\Psi(x,h) = 0$ (I), Studia Math., 59(1976), 155-175.
- [3] ,, Sur les solutions généralisées des équations quasi-linéaires, Studia Math., 29(1968), 133-142.
- [4] Riesz, F., Bela Sz.-Nagy, Leçons d'analyse fonctionnelle, Budapest 1952.
- [5] Vajnberg, M.M., Variational method and the method of monotone operators in the theory of non-linear equations (Russian), Moscow 1972.

STRESZCZENIE

Pierwsza część pracy poświęcona jest problemowi osiągania kresu dolnego przez rzeczywisty funkcjonał ф, określony na rzeczywistej przestrzeni Banacha X i spełniający założenia (1') oraz (1i'). Udowodniono twierdzenia o minimum warunkowym i bezwarunkowym oraz skonstruowano pewien ciąg zbieżny do punktu, w którym ф osiąga swój kres dolny. Opierając się o uzyskane wyniki, w drugiej części pracy wykazano twierdzenie o istnieniu rozwiązania uogólnionego pewnego równania różniczkowego cząstkowego quasi-liniowego.

Резрме

Первая часть работы посвящена проблеме достижимости нижней грани вещественного функционала Φ , определенного на вещественном банаховом пространстве X и удовлетворяющего условиям / i' / ii' /. Доказаны теоремы об условном и безусловном минимуме и построена некоторая последовательность сходящаяся к точке, в которой Φ достигает своей нижней грани. Основываясь на полученных результатах, во второй части работы установлено теорему о существовании обобщенного решения некоторого квази-линейного уравнения с частными производными.