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1. INTRODUCTION

Throughout this paper X will denote a real Banach space
with the norm f - .

Let a function 7y : R, —=[R be continuous, 7(&)/4-9,
t — +o03 'U(t)\o, t —— 0. Set

8
'31(8)1: j ‘X(t)dt, 8»0,
(0]

and, for t € <0,1>, s 20,
[(t,s):= ta&,((’l -t)s) + (1 = ¢) ’3’1(173) 5

Let W be a fixed real functional defineu on X, such
that

(1) There exists a function ? t R, — R, nondecreasing
continuous and satisfyings
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(1.1 Ixgf €r =|¥xp - Yopl< pod iz - %0

HEX; i=1,2.
(1) Por any t €¢(0,1) and x,h €X
(1.2) Y(x + th) - V(@0<t{V¥(x+n) - Y] -Tt,inb.

Let @ denote a fixed real functional defined on X,
such that
(1) There exists a function F' H B+ — R+, nondecrea=

sing and continuous, such that

(1.3)  [x]<r §l¢(‘1) - q>(x2)‘< P'(r)ﬂx., -], xeX,
' 1=1,2.

(41) Por any ¢t €¢(0,1) and x,heX
(1.4) d(x + th) = ¢Xx) gt [Px + b) - dx)].

In this paper we shall consider the problem of the exis-
tence of a minimum (unconditional' and conditional = with the
condition depending on Y ) of the functional ¢ ., The results
obtained in sections 2 and 3 will be zpplied to the theory of
partial differential equations,

We shall make use of the results obtaired by T. Lezanski [1].

Therefore, we restate at the moment several results from [1].

LEMMA 1.1, Y 4s bounded from below and W(x) —» + =

£ x| — +.
 LEMMA 1.2, If X4¢%; €X, then
2 of
(1.5) Iz =02 17 (Y - @,
. i=1

/
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where d:= inf W(x).
TR xeX \

LEMA 1.3, If
(1.6) Yix + t(y = x)) = Y(x)>0 for t < <0,1>
& x,ys %

khen
(1.7 Ix - 31 <7 ¥ - Y.

THEOREM 1.4, There exists a unique element X eX such

that W(X¥) = 4 = inf W(x). Moreover

(1.8) A =TIy Ve - o
x€X

LY
2. CONDITIONAL MINIMUM OF THE FUNCTIONAL ¢

Set
2:= {xex: W(x)<ol.

In this section we consider the problem of minimization
of the functional ¢ on 2.
For A >0 we define

(2.1) ¢, (x):= % P(x) + W(x), xeX.

First note that, for any fixed A >0, the functional
¢, satisfies the assumptions (1) and (i1) (with W repla-
ced by CPA ). Therefore, in view of Theorem 1.4, for any
fixed A > O there exists a unique element X, € X such that

$,(x,) = int D), t.e.
xeX
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(2.2) ;l- bix,) + \V(XA)S% Px) + YVx), x€X

LEMMA 2.1, [1]. The following implications hold:

(6 9) Y(x) € ¥(x ,) =>yd(x) > dx, )3
(1I) ¢(xl) >¢tx) = ‘V(x)‘) <VY(x), x €X
Proof, PFrom (2.2) we obtain ji(d’(xz) - d(x)) +
+ (‘V(x)) - W(x))<€0, which implies (I) and (II). The proof
is complete.
For A>O0 we Bet
PlA)= Plx, )

LEMMA 2,2, E function ¢ is nondecreasing g_n_g boun~

ded from abovej the function L 4 is nonincreasing E.EE bounded

from below,

Proof, Assume that A >0, r.l.>0 and put x = x
in (2.2):

r\

1 1
Yix, )<3-¢(x/.) + \y(xr) - I¢(xz )
In view of the analogous inequality:

g

r‘dxx,\) + Yix ) -/2-4><x/.)

\Y(x/. s
we.obtain
1 14 1 1
\.F(::A )$A¢(x/.) +ﬁd?(xa) + Yix,) - Fd)(xf‘) - ;d)(xa)

Hence
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Og;-‘(d)(xx) - dexy 0 - 1, - dexp ),

(4>(xz ) - ct:(xr

If 0 < M<) we then have ¢(xf‘)4 $(x,), 4.e. the

1 1
))(F - x) >0.

function cf? is nondecreasing. Hence it follows from Lemma

2.1 (II) (with x = xr) that 1 4is nonincreasing.

The function g i8 bounded from below in view of Lemma

1.1, Moreover, it follows from Theorem 1.4 that

y(A) = \V(xa)>\V('i) = inf VY(x), A>0.
xeX

Hence it follows from Lemma 2.1 (I) (with x = ¥) that
@(A) = Px,)<DE) for all  A>0,

i.e. the function P is bounded from above, so the proof is

complete.
COROLLARY 2,3, For any A>1 we have o&(x,) ad(x,).
LEMMA 2,4. The functions ¢ and -~y are continuous,

Proot?f. (due to T. Letanski). Assume that A >0,
r4>0. For xeX we set '

$A(i)x= dx) + A(Yx) - ),

where d = inf W(x). In view of the inequality (2.2), the
X €
functional éz attains at the point x, € X its minimum,

rurthermore, we obtain
Dulx,) = d(x,) +/u(‘*V(xA) -d) =

= (Plxy) +AVW(x, ) = Ad) =AW(x,) + Ad 4 u¥lxy) -ud =
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= Pylxqa) + (["A)(\V(xx) - d)ﬂd:a(xr) + (r-A)(W(xA) - d)

= <1>(xr.) A ) =)+ Cp=2)(Wx,) =) =

r
= (<b(xr) +,&W(x/‘) -/A a) -r\l’(xf‘) +)N’(xr) +FW(XA) -AV¥(x,) =

= ¢r<xr) +_<r-1 MY (x,) -V(xrn.
Hence

0sduxy) - dpuix

$[A-p| (Vx

r)é( A - )(‘Y(xr) -V¥Yx, nN<

r)-d)o

Let us fix rA and put rA = ro. It follows that

osd (x;)- $ )<—-|—"—:1"L‘(\¥(x ) - 4)
[o o Po Mo Mo
Hence ¢ (x,) - (b r‘)——'!--0 when lx-r\o‘—ro.
o
Then by (1'5) (with x,‘le, Le=xy,, ¥Y=0, ) 1t

Mo

follows that |[x, = xr | —0 when |2A- ro | —o0.
Now choose r,>0 such that f[x { <r,. If A 1is
e ° '
close enough to ro, it follows that ({x, =-x k <y
0
and then [x, | < Jx, - x, | + 1 x |< 2r,. Hence we
can apply the assumption (i’ ) (with x,] replaced by x, and

ro):

|dx,) - ¢(xr°)\ spriary) fxy - x|

x, replaced by x

)

This means that ‘f is continuous at any point rl°>0.

The continuity of Y is obtained by using (i). This con-
cludes the proof of the lemma.

LEMMA 2,5. There exists the limit lim W(x.) and
——— } ey A -

1im \V(x. ) = V(&) = inf W(x)

A~ 400 xeX
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Proof, It follows from Lemma 2.2 that there exists
pi= J\_1_1;11:"'0‘V(x,t )o We shall prove that p = '\lf('z').
Assume that O </¢ ¢A. Since the function ¢ is non-
decreasing (Lemma 2,2), ¢(xr) - (b(x‘ ) €0, Hence, by
using (11°), 1t follows that &(x, + t(xyu - x,)) = &(x,)

<t [ox,) - dx, )] <0, t.e.

bx, + tx -xl))<¢(xl),

,l.

where t €(0,1). Hence it follows from Lemma 2.1 (II) that

\lf(x‘1 + t(x, = xk)) - \V(IA)>°'

r
Therefore, by Lemma 1.3,

-1
(2.3) I=x ==l <73 (\V(xr)-‘y(xl)) 3
Consequently ﬂxA - xf‘n —- 0 when A, po—= 4o, r-x<l c
Hence there exists x":i= 1lim X, « Now choose r,>0 such
— '

that | x*l < ry. For A sufficiently large we have
Ix, -x*|<r; and then [x, ] <|x, -x* |+ | x*|<2r,.
Then, by the assumption (1), VY(x*) = lim W(x

).
hJ = +® )
To prove that x* = X we first observe that since
Y& <Yix, ) (A>0), O@ >d(x,) forall A>0 in
view of Lemma 2.1 (I)., Hence it follows from Corollary 2.3

that for A > 1

dxy)  dx,) <o

S y 2!
(x5 )
80 a&E‘;T— s 0, Using (2.2) and passingﬁ to the limit
when A —» +00" we obtain that W(x*)< WY(x), xeX.

Hence x*= X 4n virtue of Theorem 1.4, The proof is complste.
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LEMMA 2.6, If

WY(x, )<o0 for any A>0,
then there exists x°¢Z ' such that

¢(x°) < x) for any xeX.
Moreover

d(x°) = 1in dix,).
a—-0

Proof, Suppose that for any A >0, \If(::A )<O0.
Since the function VW 1s nonincreasing (Lemma 2.2), there
exists lim ‘l’(xl )o Assume that O <Iu <A. Hence it follows

A—~0Q

from (2,3) that there exists x°:= Jum xa .
We shall prove that P(x®) =A11m $(x, ). Choose r,>»0
-.0 L
such that [x°| < ry. There exists .}\o >0 such that
Ix, - x° | <r, for A €(o, A,). Hence l[le g ll::)l - x°ﬂ+

+ ]x°Né2r1. Then, by (1)
’Cb(xa) - 4>(x°)ﬂ<P(2r1) lx1 -x°f for _Ae(o, Ao)

Hence ¢ (x°) = 1im (x, ).
205
To prove that (P(x°) éd)(x). (x €¢X) we use the inequa-
1ity:

(2.4) 4)(12) + AW(x3)$¢(x) + A VY, x€X
which follows immediately from (2.2). Observe that
A inf W(x) € AWMx, )<0,
X ¢X

whence ~11m07t\y(x5) = O, Then, passing to the limit when
A—>
A —+=0 i4n (2.8), we obtain P(x°)< P(x), xeX. This ends
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the proof of Lemna 2.6.

REMARK 2.7, The assumption of Lemma 2,6 may be replaced

by the following:
/\ VY(x,)<0
Ag>0  Ae(0, Ay 2

THEOREM 2.8, Assume that Y satisfies (1), (ii) and
that there exists x’e X such that W(x“)<0, If <P satis=-

A TS s s ®  Eme —— -

fies (1°) and (i1i°), then there exists X eZ such that

. E———— —— Em———

d(x) < P(x) for each xeZ.

Proof. Assume first that there exists r.&°>~0 such
that W(x _ )>0. From Lemma 2.5 it follows that

f*o

1im ‘V(x = Y& = inf W(x)<oO.
p p——. xeX

Then there exists [M,>0 such that W(x I,“|)<0. Since ¥
is continuous (Lemma 2.4), it follows that there exists fl2>0

such that W(x =0k Then we have x r‘26. Z and, by
2
(2.2), ’

L ox = Prx, )+ Wz, dg—dx) + Vix) <

2 rZ Pa = 42 [®, s

~—1—¢(x), xezZ,
2
te. dix 2)<¢(x), x€Z, Putting Xi= :t:!n2 we complete

the proof in this case,
Now suppose that far any A >0, \V(xz )<0. It follows
from Lenma 2.6 that there exists xoez, x° = lim X, such

-~

that Px®)€ d(x), xeX, i.e. the functional ¢d attains
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its minimum at x°e 2. Putting Xx:= x° we complete. the
proof in this case,

Thus Theorem 2.8 follows in every case,

3, UNCONDITIONAL MINIMUM OF THE FUNCTIOMAL &

In this section we apply the results obtained in section
2 to prove the following theorem:

THEOREM 3.1. The following assertions are equivalent:

(a) The functional ¢ 1s bounded from below and it atta-

——— S ESees wmase

'_1_12 its minimum,

(b) There exists a constant C>O such that

(3.1) (=1 <c for any A >0,
Moreover, if (a) or (b) holds, then there exists x°i1= 1lim X,
IR Sl =, A—0
and

- (x®) = int Px) .
xeX

Proof, (a) =+ (b). Assume that ¢ 4is bounded
from below and that there exists x*¢X such that & (xF)¢d(x),

x ¢X. Hence, for any A >0, &(xH< ‘1>(x2). Therefore, in
view of Lemma 2.1 (II),

Vix, )< Y .

set VY (x)e= Y(x) - W(x*), xeX; since Y (x*) =0 and
¥, (x, ) <0, A >0, it follows from (1.5) that

27 - x, 1< (W - 0+ 477 Y ) - g3
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where d = inf W(x). If we choose Ci= 21;1(-d) + 1x*l,

x €X
then
Il <lhx*-x, § + “x'll(Z’Xfﬂ(-d) + Ix*| =c.

(b) =» (a), Assume that there exists C >0 such that
ﬂle < C for any A >0. By virtue of (1)

/ Yix,) - VO <pe)rc.
For xeX let
Vyxi= Wex) - Yo = Beer-c -1 .

It is obvious that the functional \V.I satisfies the assump-
tions (i) and (ii) (with WV replaced by \V1'). Moreover, by
virtue of (2.2) we have for A >0 fixed:

Fox,0 s W< b+ Voo - ooy - pere - 1 =
1
=x¢(x) + Y, (0, x €X
Further, for any A >0,
Wotx, ) = Wix,) - Yoy - pexe - 1<0..

Therefore \If.l satisfies the assumptions of Lemma 2.6
(with W replaced by \l/1). Hence it follows from Lemma 2.6
that there exists x°€X such that P(x°)< dXx), xeX and

o
X" = 1im x °
A0 A

The pr®of is complete,

REVARK 3.2. Using Remark 2.7, we may reilace (3.1) by
the following:
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V \/ /\ ix, 1 <c,

6>0 A4,>0 Aelo, A
which i8 equivalent to (3.1).

4, APPLICATION TO THE THEORY OF
' QUASI-LINEAR EQUATIONS

4,1, Let H denote a real Hilbert space with the scalar
product (-,-) and thenorm [-| and MCH a linear subset,
dense in H, Let H1CH be the completion of M in the norm
B l,, where

K=14 = (x,x)4 2a]x} , (x,3)4:= (Ax,y) for x,yeM
and & >0

A : M —H 1is a linear operator, symmetric and'strictly
positive (cf. [4], N° 12a), :
Let $ denote a real valued functional defined on M XM,
Suppose that 35 satisfies the following propertiess
(a) $(x,-) is a linear functional for any fixed xeM

and

(4.1.1) |$(o,h)}sx ln{,., nhew, k>0

(b) For heM

o~

(8.1.2) %‘—Iﬁl vt 42 B, — 4o
: 1

(¢) For any fixed x,f,hcM a function (t,8) —

~
"P(x + th + sf,h), t,seR possess continuous partial

derivatives of the first order.

~

(d) There exists the derivative &°:




w
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$’(x,h,0):= 1lin z|dx + &n,8) -« Sx,0], x,b,ten
£—=0 ‘
linear and symmetrical with respect to h and f:
Hl’ Nl
(4.1.3) ¢’(x,h,f) = ®'(x,£,h)

and furthermore

(4a1.8) |Dex,b, )] <m In L, U2 H,, n>0
and
(4.1.5) ¢’ (x,h,h) >0.

First observe that, in view of (4,1.4),
(4.1.6) [:ﬁ(x,h) - $(y,h)[4 mfx -y 1 in “1, x,y,heM
and that from (4.1.5)
(4.1.7) $(x + b,h) - $x,h)>0

(see [3]).
From (4.,1.1) and (4.1.,6) it follows that the functional
Eﬁ can be extended from M XM to H1 XH1 in a unique way so
that the extended functional (which we shall denote also by $)
satisfies (a) = (d) (with M replaced by _H,]).

Because of (4.,1.1) and (4,1.6) we get

(4.1.8) [dex,m)] < (& + mlx 0 Ial,, x,h € H,

(cf. [3]). Hence it follows from the Riesz theorem that for
xeH,; there exists a unique element F(x)e&H,; such that

(4.1.9) Eﬁ(x,h) = (F(x),h), for x,h €Hy .
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Using (4.1.6), (4.1.7) and (4,1.2) we obtain

(4.1.11) (P(x + h) - F(x),h),>0,
(F(h),h)
(4.1.12) —-—.—'—1 —_— OO 1f “h n1 e +°°'
iz |,
x,y,héﬂ1. ’

LEMMA 4,1.1, Lnﬁ P H1 ——-n.' Eg define&_tl (4.,1.9),
Then there exists a functional < IL| —= R 'such that

F(x) = grad Xx), (x eH1); moreover, the functional ) sa-
tisfies (1°) and (41°) (with X = H,).

Proof., The existence of the functional < follows
because of (c) and (4.1.3) (see [5]).

Now we prove (1°), Assume that Hx,{,<r, }=x, 1,%r,
X49%, €H;0  In view of (4.1.8) we havs

1.
|¢(x..|) < Cb(xz)l = [J %E¢(x1 + t(x, - y))dt‘:
0 1

1
" [ fd)(x,‘ + tlx, - x,'),z'c2 = x1)dt\ <
(o}
1

‘Hx1-x2|1f (K+mnfx; +tlx, = x) [ )t <
0
S ®+m@jfxy Iy I 0,0 45 -0, <
<K + 3m0) [ x, ~x; I

(we have used the identity (x,h) = °(x,h)). Setting
P'(r) t= K + 3mr, (1°) is proved.
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To prove (1i°) we observa that in view of (4.1.11), the

operator F is nouotone; hence the functional
Get, T

The proof is thus complete,

¢ 4s convex

Let Y denote a real valued functional defined on Hy.

Assume that there exists G(x):= grad W(x), x €H,, and more-

over, that G 1is a bounded operator mapping H1 into H1'

and

(4.1.13) (G(y) = G(x),y = )2y - x I, 'x( Ny - x 042,

X,y & H1

LEMMA 4.1.2, The functional W

satisfies the condi-
tions (1) and (ii) (with X = Hye

Proof. Toprove (1) suppose that | X4 |.14r,

| % §{4€1y x4x,€H;. Since G 4s bounded on Hy, we there=
fore obtain

l‘l’(::,) - Wx)| =|6( :—t\y(g + 60y = xat | 2

B l \{/'(x1 + 60Xy = Xg),%, = x,‘)dtl =

1
lj (Glxg + t(x;, = x9), x, -x1)1dt\£
dl
J{“G(xq+,(x2-x))“ fx = % [qat <
0
il

< |l % --:1c2|[1 (Lﬂx,, + t(x, -x1)([1dt <
o)
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el by e bl -nly < 30elxy -x 0, ,
where L>0 4s a constant such that [G(x) [4<Liix1,,
x€H,. Putting P(r) 1= 3Lr we complete the proof of (i),

Now we sketch the proof of (i1); we refer the reader for

details to the paper [1], Observe that, in view of .(4.1.13),
the inequality

: 1
Y&) - Yoo = ! L yox 4 v0y - 2t =
1

.= ! %(G(x + t(y = x)) = G(x), t(y = X)) 4t + (G(x),y - x)4 >
1

0

= Y41Clly = x 1) + (6lx),y - x),
holds. Defining x,:= s&x + (1 - 8)y, s €(0,1), we have

s Wix) - eWx) + (1 - )W) = (1 = 8) Wlx) >

and consequently

sW(x) + (1 - 8)Y(y) = M8,y - x 1) >Wisx + (1-9)y)

(we have used the 1dentit1;es: x=-x,=(1-38Xk-y)),
y-x%x,=8(y =x)). Putting y =x+h, 8=1-t and using
the-fact that [ (1 = t,8) = [(t,s) we obtain (ii), which

complet.:es the proof. ] :

~

LEMMA 4.1.3. Assume that @ satisfies (a), (c), (a)
and that ¥e€H. If there exists R>0 such that

— — e - ————
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(4.1,18) I3 < g dxn,b) i Inl,=R, beH
then there is x°e€H; guch that

Px°h) + (@h) =0  for any hel,
and §x°|,<g.

Proof. Suppose that for B eH (4,1.,14) is fulfilled,
Then for heH;,, [h ;=R we have 1ziln i, <¢x$(h,h).
Hence and from the inequality Hh [ >cflnl it follows that
fahi hu<$(n,h). 1.0, (F,m)< [S1H b I<din,n).

Consequently
dn,b) + (&,0)>0, In{, =8 hex, .
.Now for x:,h(:H.l put
o~ o~
$,(x,n) 1= Pix,b) + (&,0) .

Observe that (b.' is linear and bounded (in the norm | |1)
with respect to the second variable (the boundedness follows
from (4.1.,1)). In view of the Riesz theorem we then have

P, (x,h) = (P,(x),h),, x,he¢ H,

where F,(x) 1is an element of HE, (ef. (8.1.9)). Further,
from (¢) and (4.1.3) it follows that F, 1s a potential ope-
rator, i.,e, there exists a functional ¢'1 t Hy — R such
that F, (x) = grad¢1(x), x eH,. _

Using the previous result we obtain -

(?,(),0);>0  if Jhl =R,

Hence it follows that there exists x°¢H,, |x°l,<R, such

\
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that {

P, < &), 99 et
i.e. r1(x°) = 0 (see (5], theorem 9,8). Finally
55(x°,h) + (a,h) = 0, heH,,

which completes the proof.

~

THEOREM 4.1.4, Assume that P satisfies (a) - (d) and

that @ €H. Then there oxists a solution of the .quation

o -
(4.1.15) ¢(x,h) + (&,h) =0  for any heEH, .

Moreover, if G is a potential and P_g_t_;.g_ie} operator,

satisfying (4.1.13), then for any A >0 there exists a uni-
que element X, € E1 such that

(4.1.16) i[&;(xa,h) + @n)]+ Glx,),0), =0

Zor any 1 <R,

-~
and there exists the limit x°:= 1lim X, s ¥hich is a solu-

A—=0
tion of (#.1.15).

Proof, Pirst observe that in view of (4.1.2) the
assumption.(l&.1.14) of Lemma 4,1.3 is valid for any @ eH,
Hence it follows from Lemma 4,1.3 that for any & €H there
exists a solution of the equation (4,1,15).

. For x,h eH1 put

®,(x,n) = Pex,h) + (&,1).

We have ¢1(x,h) 2 (P (x),h); and P, (x) = grad $,(x) (see
the proof of Lemma 4,1.3). Note that ¢, satisfies the con-
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ditions (1°) and (41’) (with ¢ replaced by d>1) ((41°)
follows from (4.1.5)). Further, in view of Lemma 4.1.3, there

exists x°€H

2B such that

<I>,,(x°) < ¢, x), x e, .

Hence it follows from Theorem 3,1 that the function A —X,
A >0 defined by the inequalitys

%QI(XA) + \V(xa)<3id)1(x) + V(x), xeH,,

(i,e. by (4.1.16) with G(x) = grad V(x)) has the limit

""o .
x = 1lim x, and
A—=0

4)1(;6) = inf d(x),
x el,

~

-~
i.e. F;,(xo) = 0. Hence x° 1s a solution of the equation
(4.1.15), which proves the theorem.
4,2, Let .Q.-CRn, nelN, denote an open set, bounded
and simply connected, with the boundary S:= 35, smooth,
2 2 :
Set Hi= 'I'.n' M:= {ueca : u\a = o},

(x,y) := fx( §)y( g)dg, x,y&H ,
- Q i

n
? v
(u,v) 4= Z —i -4k , u,veM,
i=1 351 35 i
where g'ﬂ (§1.oon’§n)e‘go

Observe that M 1s dense in H (in the norm f -f) and
that

(4.2.1) Ix|; >aixl, x€M, o>0

Clhx] 1= Vix,x), [x l4:= V(x,x);). It follows from the
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theory of Friedrichs that there exists H1 (MCH1 CH) = the

completion of M in the norm |'|1 (see [4], N° 124), It is

obvious that the inequality (4.2.1) is valid for any x€H,.
Let &y ¢ R®xQ.~—=®, 4 =1,...,n, be continuous

functions with the continuous partial derivatives of the first

order a; =’ -5%-; 8, 4,k = 1,000,m, B (Eg,0..,t )eR".

We assume that

(“0202) . ‘ik = an' i'k — 1,.-.,13.
2 .
(4.2.3) | Z _unairk‘aén[z silz ri] m >0,
i,k=1 i=1 k=1
(8.2.4) Z 8,88, >0,

(4.2.5) a1<-1....,sn.§>si>&|si|2 - Z‘.&k(@[lskl-[ci(g)\
k=1
for 1 =1,.,..,n and S&Q.

where si,rie‘a, i=1..00n0, 3'(.>O, Pik E_[ill, °1"'[,Q,
1,k=1’¢o'.no s

We consider the following boundary vslue problem:

(4.2.6) Z-'Eg_ai(“g reesslig o ' 8) +E(E) =0, %=,
u(§) = 0 for ges,

where u 3 Q.—+R, u t= Ou y 1i=1,...,n and
Yo 2 . &y 2%
Qf A

For u,heM set

(4.2.7) $ (u,h) = Z agn MR Yo, 4k .
o 1 i=1 81 gn'§ L3 §
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IEMMA 4.2,1, Fhe functional @ defined by (4.2.7) ga=

tisfies the conditionms (a) = (d).

Proof. The inequality (4.1.1) follows from (4,2.7)
with the aid of Holder s inequality. To prove (4.1.2) observe
that by Holder’s inequality and (4.2.5) we have

$(h,h) = | > ni(hg reeed g ,g)h aga
121

> o Z,h2 8 JZ(Z\Fﬁ@)“hgk\)dg .

i=1 k=1

Z\ci(g)ldg >&fnlf-vnl, -

i=1

[ 202 1pytslr? )Zr ff‘: (%)at
where b:= d g Ca= c

;,[1:1 = E;“ 5 = A1t

o [
. o - = b

(ct. S Henge %)mlhﬂ1 b TS —= 400 1
lh|1 — 400,

The condition (c) and the existence of ¢ follow from
the continuity of a; and 84y i,k =1,...,n. Moreover,

N‘(u h f)ﬂ a (u ese gl )h f d. »
u,h,fe M

(cf. [3]). Hence it follows from (4.2.2) that (4.1.3) holds.
The incqualities (4,1.4) and (4,1.5) follow because of (4.2.3)
and (4.2,4) respectively (see [3], p. 138). This completes the
proof of the lemma,
It follows from lemma 4,2.,1 that we can apply 4.1 to the
~

functional 35 (defined by (4.2.7)). Therefore, O can be
extended to all of E1XH1 in a unique way so that the exten-
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sion (which we shall denote also by $ ) satisfies (a) - (4)
(with M replaced by H;) and there exists F : Hy —rH,
such that ®(u,h) = (P(u),h);, u,heH,. Noreover, F(u) =
e grad $(u), ueH,, where oX Hy—- R satisfies (19
and (11°) (with X = H,).

DEFINIPION 4.2.1. We say that a function u®cH, is a
generalized solution of the problem (4,2.6) if

$ (u°.h) 1= $(u°,h) + (@8,h) =0 for any he
1 ; B

REMABK 4.2.2. Note that if u®c M 1s a solution of
(4.2.6), then' u® 4is a generalized solution and vice versa,
it noeczn‘ is a generalized solution of (4#.2.6), then u°
18 a solution of this problem (see (2], Théoreme 4.3.1).

In view of Theorem 4.1.4 wWe have

THEOREM 4.2.3. Let the assumptions (4.2.2) - (4.2.5) be

fulfilled. Then there exists a generalized solution of the

- —————

problem (8.2.6).

Moreover, 1f G 1is & potential and bounded gperator, sa-
tisfying (4.1.13), then for any A >0 there exists a unique
element 11 & H1 such that / .

%Cbl(xa oh) + (G(xl).h),‘ = 0, . heq,

aLd- Ghage ‘exiets the Jimlf lim x, mhich is a genoralized
solution of the problem (4.2.6).
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STRESZCZENIE

Pierwsza cz¢$é pracy poswigcona jest problemowi osiggania
kresu dolnego przez rzeczywisty funkcjonat <, okreslony na
rzeczywistej przestrzeni Banacha X 1 spelniajgcy zaloZenia
(1°) oraz (141°). Udowodniono twierdzenia o minimum warunkowym
i bezwarunkowym oraz skonstruowano pewien clgg zbieiny do
punktu, w ktérym ¢ osigga swéj kres dolny. Opierajgc sig
o uzyskane wyniki, w drugiej czesci pracy wykazano twierdzenis
o istnieniu rozwigzania uogdlnionego pewnego réwnania régni-

czkowego czastrowego gquasi-liniowego.
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Pe3oue

[lepBafg 4acTs paGoTH MOCBAWEHA Mpoliewme noérnxuuocru
BMEHell Tpaud BemecTBeHHOro dyHkuuoHana ¢ , ompenenenHoro Ha
BemEeCTBEHHOM (3HAXOBOM NPOCTPaHCTBE X ¥ YJIOBIETBOPAKNEIO yCIO=
susu /i'/ »n /ii'/. loka3aHy TEOpeMH 06 YCIOBHOM M G83YCIOBHOM
MAHMMYM@ U MOCTPOEHAa HEKOTOpaf MOCNEeZOBATENBHOCTH CXOZAALBACHA
k Touke, B koropot § mocTuraer cBoell HuxHeM rpaHu. OCHOBHBA-
fiCh H8 MONYUEHHHX peaynbTaTax, BO BTOPOH# YacTW paGoTH yCTaHOB-
JEHO TEOPeMy O Cymee@TBOBaHWKX OGOCWEHBHOTO pemeHUA HEKOTOPOTO

KB83U-NUHENAEOI0 YP3aBHEHNA C YAaCTHHMU NMPOWU3BONHHMU.




