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Invariant Connections of Higher Order on Homogeneous Spaces 

Koneksje niezmiennicze wyższych rzędów na przestrzeniach jednorodnych

Инвариантные связности высших порядков на однородных многообразиях

The paper contains a construction of higher order conne

ctions on a given principal fibre bundle over a homogeneous 

differentiable manifold. We work with an Ehresmann groupoid 

which is associated with this bundle. We consider its r-th 

prolongation and we construct a certain connection of order q. 

We prove that the obtained connection is invariant with respect 

to the group action convenably prolonged. For properties of 

this connection cf. [7].

I. PRELIMINARIES AND NOTATIONS

Let (H,B,G,9C) be a principal fibre bundle over a mani

fold B. Denote by the groupoid which is associated with
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(H,B,G,x). Thus elements of are G-isoraorphisms of

fibres over B. Thus <t> is a smooth manifold which is pro

vided with the two projections, a and b, viz. if 0€<f> 

sends a fibre through X ~ (m) to X (m ) then we set 

a 0 = m and b 0 = m'. It is easy to see that if we are 

given any two points h and k then there exists exactly one 

element k6 such ^ik sends fibre through h
to the fibre through k, in such a way that for each g e G 

it holds 0hg The element which is reciprocal

to a given 0e<|> will be denoted by cQ . Evidently we 

have <3@h k = 0^ and &gQ = b0 . We define a mapping 

\|/t <t>*H —»-H by y(0,h) = 0(h). If xeB then we de
note the identity mapping of 3C-1(x) by x.

If we fix any motB then 19e<$)| a0 = mQ} is a fibre 

bundle which is isomorphic with (H,B,G, or). Analogously

b0 = mQ} is some bundle which is called a co-bundle 

of (H,B,G, X).

Thus {0 ( a0 = b0 = m0} is a group and it is iso

morphic to G.

We shall use standard notations of jet calculus [1 - 5], 

but if necessary we introduce and explain some hew ones. Thus

a and jd denote, respectively, the source and the target 

projections.

Jr(B,<J>) denotes the set of non-holonomic jets of order 

r from the manifold B to the manifold 4> . Thus Jr(B,<J>)/X/
has a natural structure of a groupoid over Jr(B,B), [2]. ar 
and br are the prolonged mappings a and, respectively, b. 
It maps Jr(B, (J)) onto Jr(B,B). If we fix some m then 
{X t J*(B,<|> )| oc(ar(X)) = mJ is a principal fibre bundle over
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B. [9]. x being any point of B, ^>x denotes the mapping

which sends all points of B to x and we put j= o .

Then we introduce the space Qr(x) to be J (B,<$>) restricted 

to

Jx|a(x) = x, p<x) = x, ar(X) a br(X) a

Qr(x) is a fibre over x of a certain bundle Qr over B 

cf. (.1], [4]. Qr admits global crossections, [1], £4], becau

se its standard fibre is homeomorphic with a Cartesian space 

of a convenable dimension. A cross-section B —*-Qr is a con

nection of order r on the principal bundle H and an element 

X of this cross-section over a point xtB will be called an 

element of the connection of order r. Let us consider such 

a cross-section S and a point xeB and put X = z£(x).

We are going to define a connection form for . To begin 
—1 —1with we have to know what is X ? X is a non-holonomic

_ I*
jet X, where G is a non-holonomic prolongation of the 

mapping G . Denote by y a prolongation up to order r 

of the natural action of the groupold <$> on the bundle H. 
Thus is an action of J^H, 4>) on Jr(H,H). We consi

der some z (H and we put X(z) a x. Thus € Jr(H,B).

Then we denote

X“1V#H »= Yr((x"1)(TrjJiH), jJiH)
* 4The result is an element of Jr(H, w"'(x)), [1],£41. Then we 

define TrH as a dual space to Jr(H,R)0, i.e. a
a (Jr(H,R)0)*. The element gives rise to a unique

linear mapping <X“1 V of the vector space

J (C(x),R) into J (H,R)q and v unique linear mapping
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(X”1 v jr1TT)* of TrH into Tr(%~1(x)). Given any ztH wc 

define by [z] an identification of the fibre through z with 

the group G such that e corresponds to z. Analogously we 

prolong [ zl to mapping

: § 3C~1(x) ——»-T^G .

Then the connection from co of order r of zi is 

defined by

(1) oXv) = (tzlr-X"1v jJlH)/v)

for V€T?H. The basic references for this section are [1], z
[4].

II. BASIC CONSTRUCTIONS

Prom now we assume that there is given a Lie group and 

a transitive regular left action

T : KxB —»-B / (g,m) »—*- ‘ZXg,!!)

q being a positive integer we define as a q-lift

of T , which acts on the manifold of non-holonomic frames 

Hq over B. Then we proceed by induction. Let X be a non- 
-holonomic q-frame on B, i.e. a regular element of J^GE?, B) 

where c{ = dim B. We put X^ = j^X, where "j^ denotes a 

projection of jets of order q into jets of order 1. Thus 

X>j is a frame of order 1 and there exists a regular local 
mapping f s Ed —»- B such that 3x|0f^x^ = X1 * Then we put

:= j1|0 T(g,f(x))
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Let us assume that is defined.. Then X = j^ § ♦

being some cross7section in (E , B). We put

Tq<g,X) : = (6, $<*»

PROPOSITION 1. '?t<1 defines an associative left action,

i.e.

T*(k, Tq(l,-)) = TQ(kl,-)

By definition, a non-holonomic q-coframo on B is a re

gular q-jet whichs source is in M and its target is at 0 
in E^ . Let Hq be the bundle of q-coframes on B. Then 

K acts on H* by the following manner:
If KH*, a«K, we put Y1 = so that X = j^f.

Then we put

T (a,Y^) := j T(a,m)^^ ^a»”^

Then we pass to higher order by a standard inductive procee

ding.

PROPOSITION 2. There holds the following formula for 

the Just described action of K on H*

rQ(b, T-q(a,Y)) = <rq(ab,X)

< aThus is an associative right action.

Let XQ be a fixed q-frame at some point mQ€B. We

lead into considerations the following set of q-frames on B 

Wq = I rq(k,X0)|k€K|

We define on Wq a projection 7Tq onto B by the following 

formula
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3Tq( ^q(k,X0)) = -r(k,m0)

zx* J
We denote by L^ the structure of Lie group on a set 

restricted to regular jets and we denote by

:= £g€Kl T(g,m) = m

the stability group of T .

PROPOSITION 3. For any msB a mapping

■ S —/ k ■—

• is a homomorphism of Lie groups.

/-
Proof. Given any q-frame X then there exists a 

unique q-coframe X which may be viewed as follows» we 

consider = Xq which is a regular 1-jet, i.e. X^ » j°f 

jf(O)^ the (q-1)-coframes being defined weso that X’1
<£take a cross-section such that X = jęij , jfc s IR

and we put X"1 »= 3x|f(0)(

In order to prove that 

we use Proposition 1 and we have

’q-1

is in fact a homeomorphism

/x (ki) = x;1-(^q(ki,x0)) = x<c-rq(k,xox;1 rq(i,x0)) » 

• x;1-< f’a.vx? ?’u,v = /x/w/x/i’

We introduce the following notations»

Gq(X) reap. G^CT), is the image of by resP»

X and X being any' two elements: cf the bundle W^ at 
m and at p respectively.

/
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PROPOSITION 4. There exists an isomorphism GqCX) - 

G^(X) such that following diagram is commutative •

|
------------------- s

I
Gq(X) -------------- -  Gq(X)

Proof. Let g e K be any element which sends X to

T. Thus Kp and are Adjg - related. Let us define a
mapping

;e ■ Vx) —s,«>
(2) -

X"1 rq(k,X) ♦—* Tq(g“1,X~1) rq(gkg”1, ^(g.X))

Keeping in mind that T'q(g,X) = T we obtain

/T(gkg”1) = I“1 ?q(gkg“1,X) a

a £q(g-',,X“1)rq<gkg’1, T*(g,X)) «

Since we may view to be mapping which sends any Jf^(k)

to ^(Adj k) then there holds

$B- ztx- Jr’“!« .
Evidently is an isomorphism.

The above results imply the following

THEOREM 5» Given any fixed frame Xfl € Hq then there 

exists a unique frame bundle Wq over B with the structure 

££9“? Gq» image 52 /x of the Isotropy group K^.
T^is the projection.

4 I
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III. ELEMENTS OP INVARIANT CONNECTIONS

Let us fix any point m€B. Denote by K and respecti

vely, by the Lie algebras of K and of 1^. Let Dffi be

any complementary space with respect to K.m in IK. We choose 

a linear basis [e1,...,ed) In Da> In some neighbourhood U 
of 0 in E^ there is defined a mapping

. .. d
[t1,...,td] •—*-exp( JE,****) ■« 6<t) 

ot=1

Let us consider the mapping

(3) t *---- *-TIg(t),m)

This mapping is a diffeomorphism of U to some neighbourhood 

V of m.

Let

w t V—

be reciprocal to the mapping (3)• We have w(m) = 0.
*

X being a frame in the fibre (m) we consider the
mapping 0 defined by

0(t,m,X) := £q(g(t),X)

Thus 0(t,m,-) maps the fibre X"1(m) to the fibre 

X (T(g(t),m). We remark that if t a w(p) for some peV, 
then we have

0(t,m,-) : Or“1(m) —*-X“1(p)
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THEOREM 6. @(t,m,-) is a fibre morphism of 3T“\m)

to 3T71( r(g(t),m)).

with the cononical action of Gq, that means, the following

Proof. We have to show that 0(t,m,-) commutes 

the cononical acti< 

diagram is commutative:

%-1(m) 9(t,m,-) »^<p>

l.<Ad36(t)h)

-1,for any Km and by any choice of Z (m). We see that

—“IThen the group acts on the fibre (m) by the follo-

Ad3g^tjh and W€9r“1(p) is a map of Z by T'4(g(t),-)

Then the £ 

wing rule

T » Gq X 3Ç1 (m) -3T"1(m)

( Jz(h),X) «—-rQ(kh, Tq(k ,X))

Here kcK is such that X = Tq(k,Z). Thus T defines a

rigjit action. Consider the mapping (m)

by

—<4
OCq (p) given

X »---- *"0(t,m,T( ^z(h),X))

we have

(4) 0(t,m, ^(kh.Z)) = Tq(g(t), Tq(kh,Z)) = TQ(g(t)kh,Z)

On the other hand we have

0(t,m,X) = 0(t,m, Tq(k,Z)) = ^q(g(t), TQ(k,Z))
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In view of formula (2) we have

£w(h) = £q((g<t))“1,Z-1) Tq(g(t)h(g.(t))“1, Tq(g(t),Z)))

By consequence

T(^w(h), 0(t,m,X)) =

= Tq(g(t),?q(k,Z))rq(g(t),Z"1)-Tq(g(t)h(g(t))’1f Tq(g(t),Z)) =
I

= ^q(g(t)kh(g(t))“1, T-q(g(t),Z)) = z-q(g(t)khtZ)

If we compare this result with (4) then we finish the proof.

Let us denote by the groupoid associated with Wq.

Thus each 0(t,m,-) is an element of <£>q. Then we define 

an action of the group K on these elements of We put

k* 0(t,m,-) := 0(t, T(k,m),-)

If XtX‘\ T(k,m)) then we have k* ®(t,m,X) =

= G(t, T(k,m),X) = ^q(g(t),X)fe 3T”1(T(g(t)k,m)).

PROPOSITION 7. If T(k,m) = T<l,m) then we have

k * 0(t,m,-) = 1* 6>(t,m,-)

IV. BUNDLES OP INVARIANT ELEMENTS OP THE CONNECTION

Let us define a cross-section

C t B —*-Jp(B,4>q)

by Cp » = jgjpk* @(w( T(k"1,s)),m,-) where k is such that
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T(k,m) = p. In view of Proposition 7, Cp does not depend 

on the choice of k. Then we see that C is a cross-section 

in the bundle of elements of the connection, that means:

1° oC(C ) = p
P A

2° p(Cp) = p

5° ar(Cp) = fJ

4° br(Cp) = jJiB ' z

Remark that

Cm = 3g|m 0<w(s),n,-)

Then we put by definition

’= *^t|mk *

and

Cm^-1 ’= Jtlrk<m)

The following identities follow easily by definitions

c T(k,m) “ Tkcm^k-1

and

(5) ,-1
' T(k,m) Tk°,X-1

Let us turn to the constructions in the preceedtng chapter.

The construction of the mapping w does depend on a choice 

of the complementary space Dn but it does not depend on a 

choice of the linear basis in Dm. Thus Cm and, by conse

quence, the cross-section p j-—»-Cp depends only on the choi

ce of D_. We have seen that each C is the element of them p
connection in the sense indicated in our preliminaries. Let us



152 Witold Mozgawa, Andrzej Szybiak

recollect the notations.

If Z fe Wq then [ Z ] is a diffeomorphism of the fibre 

through Z to the group and [Z](Z) = e (neutral element

in the group G^). Then we prolong [Z] to a mapping [z]* 
of T^Wq a (J^(W<ltE)0)* onto TqG^. ' Then we have to prolong

Y» <foxW_ —to Yr which acts on Jr(W, <f>Q) x 

J^(Wq,Wq) and maps it to J (Wq,Wq). Then the value of

the form of our connection co£ on the element y € T1^ at 

the point Z is, by definition

(6) coj(y) = Kzf-^C^j^Xq, 3g«w >},<?>, TQ(Z) = m

The compositions inside the parentheses are to be understood 

as a non-holonomio jet composition. The group K acts on 

TrWq by means of a non-holonomic lifting of TT . This lift 

will be denoted by Tr.

A connection is invariant under the action of K iff its 

form satisfies

CO^(Tr(k,y)) a OJq(y)

for each k <e K and each y € T W^.

THEOREM 8. The connection defined above bj C ia inva

riant under K.

Proof. In view of (6) we have

<»q(^r(kty)) a

=F(^>]ryr<c&;.>d’

We make use of (5). Thus we have

3? * I*
r’tk.Z) “’’’f Tr(k,y))
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(7) cû£( ^r(k,y)) = 

ur

First we notice that

Tr_Æa " = <dzxo);?r-i
k 1 ^q(k,Z) q z q k 1

and

d^n " 1® = <dz1w 
rq(k,Z) Wq Z Wq k 1

Consider the mapping ([Z]r-rr „)» which is a linear mapping

from T W„ into TtG_. We have evident equality
T~q(k,Z) q e q

([Z]*«?*.,,),, » [T<k,Z>]

We substitute these above equalities to (?) and we obtain

£Or( 'Tr(k,y))

= Kz]r^-1 ÿr(^kCm1(dz )T* Tr(k,y)) =

ltzr^.1^ I, T J), (,))
'q k'

= Kz]rYr(c;1jJxq, j£iff )}*<y) = ooj(y>

is Tr(k,-) for abbreviation of notations.

The first of authors of this paper has proved in [7] the follo

wing theorem.

THEOREM 9. If q = r = 1 then above invariant conne
ction co; is flat.
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STRESZCZENIE

Rozważamy rozmaitość В o wymiarze d, na której działa 

lewostronnie grupa Liego K. Działanie to przedłużamy (na 

ogół nie holonomieznie) do działania grupy К na rozmaitości 
żetów Jg(R^,B). Z przedłużeniem tym wiąże się konstrukcja 

pewnej wiązki reperów q-tego rzędu nad B, niezmienniczej 

względem K. W tej wiązce konstruujemy niezmienniczą koneksję 

r-tego rzędu oraz formę tej koneksji.

Резюме

В данной работе рассматривается многообразие В размернос

ти с/,на котором действует с лева группа Ли К. Это действие 

продолжаем неголономически к действию группы на многообразии 

струи Jo ^инвариантного относительно к действию группы К. 

Строится инвариантная связность порядка ç и форма этой связ

ности в раслоённом пространстве реперов порядка ç над В, явля

ющемся определенной редукцией пучка всехq-реперов. Построено 

также форму такой связности. Дальнейшие ее свойства изучаются 

в последующей работе И
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