ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXIII, 14

SECTIO A

1979

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

Witold MOZGAWA and Andrzej SZYBIAK

Invariant Connections of Higher Order on Homogeneous Spaces Koneksje niezmiennicze wyższych rzędów na przestrzeniach jednorodnych Инвариантные связности высших порядков на однородных многообразиях

The paper contains a construction of higher order connections on a given principal fibre bundle over a homogeneous differentiable manifold. We work with an Ehresmann groupoid which is associated with this bundle. We consider its r-th prolongation and we construct a certain connection of order q. We prove that the obtained connection is invariant with respect to the group action convenably prolonged. For properties of this connection cf. [7].

I. PRELIMINARIES AND NOTATIONS

Let (H,B,G,π) be a principal fibre bundle over a manifold B. Denote by Φ the groupoid which is associated with

Witold Mozgawa, Andrzej Szybiak

(H,B,G, π). Thus elements of Φ are G-isomorphisms of fibres over B. Thus Φ is a smooth manifold which is provided with the two projections, a and b, viz. if $\Theta \in \Phi$ sends a fibre through $\pi^{-1}(m)$ to $\pi^{-1}(m')$ then we set $a \Theta = m$ and $b \Theta = m'$. It is easy to see that if we are given any two points h and k then there exists exactly one element $\Theta_{h,k} \in \Phi$ such that Θ_{hk} sends the fibre through h to the fibre through k, in such a way that for each $g \in G$ it holds $\theta_{hg,kg} = \Theta_{h,k}$. The element which is reciprocal to a given $\Theta \in \Phi$ will be denoted by $\sigma \Theta$. Evidently we have $\sigma \Theta_{h,k} = \Theta_{kh}$ and $a\sigma \Theta = b\Theta$. We define a mapping $\psi: \Phi^{\times}H \longrightarrow H$ by $\psi(\Theta,h) = \Theta(h)$. If $x \in B$ then we denote the identity mapping of $\pi^{-1}(x)$ by \tilde{x} .

If we fix any $m_0 \in B$ then $\{\Theta \in \Phi \mid a\Theta = m_0\}$ is a fibre bundle which is isomorphic with (H,B,G, π). Analogously $\{\Theta \in \Phi \mid b\Theta = m_0\}$ is some bundle which is called a co-bundle of (H,B,G, π).

Thus $\{\Theta \in \varphi \mid a\Theta = b\Theta = m_0\}$ is a group and it is isomorphic to G.

We shall use standard notations of jet calculus [1 - 5], but if necessary we introduce and explain some new ones. Thus α and β denote, respectively, the source and the target projections.

 $J^{\mathbf{r}}(\mathbf{B}, \boldsymbol{\varphi})$ denotes the set of non-holonomic jets of order r from the manifold B to the manifold $\boldsymbol{\varphi}$. Thus $J^{\mathbf{r}}(\mathbf{B}, \boldsymbol{\varphi})$ has a natural structure of a groupoid over $J^{\mathbf{r}}(\mathbf{B}, \mathbf{B})$, [2]. a^r and b^r are the prolonged mappings a and, respectively, b. It maps $J^{\mathbf{r}}(\mathbf{B}, \boldsymbol{\varphi})$ onto $J^{\mathbf{r}}(\mathbf{B}, \mathbf{B})$. If we fix some m then $\{\mathbf{X} \in J^{\mathbf{r}}(\mathbf{B}, \boldsymbol{\varphi}) \mid \alpha(\mathbf{a}^{\mathbf{r}}(\mathbf{X})) = \mathbf{m}\}$ is a principal fibre bundle over

B. [9]. x being any point of B, ρ_x denotes the mapping which sends all points of B to x and we put $\rho_x^r := j_x^r \rho_x$. Then we introduce the space $\widetilde{Q}^r(x)$ to be $\widetilde{J}^r(B, \Phi)$ restricted to

 $\left\{ \mathbf{x} \mid \alpha(\mathbf{x}) = \mathbf{x}, \quad \beta(\mathbf{x}) = \widetilde{\mathbf{x}}, \quad \mathbf{a}^{\mathbf{r}}(\mathbf{x}) = \boldsymbol{\rho}_{\mathbf{x}}^{\mathbf{r}}, \quad \mathbf{b}^{\mathbf{r}}(\mathbf{X}) = \mathbf{j}_{\mathbf{x}}^{\mathbf{r}} \mathbf{1}_{\mathbf{B}} \right\}.$ $\widetilde{Q^{r}}(x)$ is a fibre over x of a certain bundle $\widetilde{Q^{r}}$ over B cf. [1]. [4]. Qr admits global crossections. [1]. [4]. because its standard fibre is homeomorphic with a Cartesian space of a convenable dimension. A cross-section $B \longrightarrow Q^{T}$ is a connection of order r on the principal bundle H and an element X of this cross-section over a point $x \in B$ will be called an element of the connection of order r. Let us consider such a cross-section Ξ and a point $x \in B$ and put $X = \Xi(x)$. We are going to define a connection form for . To begin with we have to know what is X^{-1} ? X^{-1} is a non-holonomic jet $\tilde{\mathbf{x}}$, where $\tilde{\boldsymbol{\sigma}}^{\mathbf{r}}$ is a non-holonomic prolongation of the mapping 6. Denote by $\widetilde{\psi}^{\mathbf{r}}$ a prolongation up to order r of the natural action of the groupoid ϕ on the bundle H. Thus $\tilde{\psi}^r$ is an action of $\tilde{J}^r(H, \phi)$ on $\tilde{J}^r(H, H)$. We consider some $z \in H$ and we put $\pi(z) = x$. Thus $\pi^r j_{\pi}^r 1_H \in J^r(H,B)$. Then we denote

$\mathbf{X}^{-1} \nabla \mathbf{j}_{\mathbf{z}}^{\mathbf{r}} \mathbf{1}_{\mathbf{H}} := \widetilde{\boldsymbol{\Psi}}^{\mathbf{r}} ((\mathbf{X}^{-1}) (\boldsymbol{\pi}^{\mathbf{r}} \mathbf{j}_{\mathbf{z}}^{\mathbf{r}} \mathbf{1}_{\mathbf{H}}), \ \mathbf{j}_{\mathbf{z}}^{\mathbf{r}} \mathbf{1}_{\mathbf{H}})$

The result is an element of $J^{r}(H, \pi^{-1}(x))$, [1],[4]. Then we define $T^{r}H$ as a dual space to $J^{r}(H,R)_{0}$, i.e. $T^{r}H =$ = $(J^{r}(H,R)_{0})^{r}$. The element $X^{-1} \vee j_{z}^{r} 1_{H}$ gives rise to a unique linear mapping $(X^{-1} \vee j_{z}^{r} 1_{H})^{r}$ of the vector space $J^{r}(\pi^{-1}(x),R)_{0}$ into $J^{r}(H,R)_{0}$ and a unique linear mapping

Witold Mozgawa, Andrzej Szybiak

 $(X^{-1} \vee j_z^r 1_{H})_*$ of $T^r H$ into $T^r (\pi^{-1}(x))$. Given any $z \in H$ we define by [z] an identification of the fibre through z with the group G such that e corresponds to z. Analogously we prolong [z] to mapping

$$[z]_{*}^{r}: \widetilde{T}_{z}^{r} \pi^{-1}(x) \longrightarrow \widetilde{T}_{e}^{r}G$$
.

Then the connection from (1) of order r of Z is defined by

(1)
$$\omega(\mathbf{v}) = ([\mathbf{z}]^{\mathbf{r}} \cdot \mathbf{X}^{-1} \mathbf{v} \mathbf{j}_{\mathbf{z}}^{\mathbf{r}} \mathbf{1}_{\mathrm{H}})_{*}(\mathbf{v})$$

for $v \in T_g^r H$. The basic references for this section are [1], [4].

II. BASIC CONSTRUCTIONS

From now we assume that there is given a Lie group and a transitive regular left action

τ : K×B → B / (g,m) → T(g,m)

q being a positive integer we define $\tilde{\tau}^{q}(-,-)$ as a q-lift of τ , which acts on the manifold of non-holonomic frames H_q over B. Then we proceed by induction. Let X be a non--holonomic q-frame on B, i.e. a regular element of $J_0^q(\mathbb{R}^d, B)$ where $d = \dim B$. We put $X_1 = j_1^q X$, where J_1^q denotes a projection of jets of order q into jets of order 1. Thus X_1 is a frame of order 1 and there exists a regular local mapping $f: \mathbb{R}^d \longrightarrow B$ such that $j_{X|0}^1f(x) = X_1$. Then we put

$$\widetilde{\tau}^{1}(g, X_{1}) := j_{x|0}^{1} \tau(g, f(x))$$

Let us assume that $\tilde{\tau}^{q-1}$ is defined. Then $X = j_0^1 \xi$, ξ being some cross, section in $\tilde{J}^{q-1}(\mathbb{R}^d, \mathbb{B})$. We put

$$\widetilde{\tau}^{q}(g,X) := j_{x|0}^{1} \widetilde{\tau}^{q-1}(g, \xi(x))$$

PROPOSITION 1. $\tilde{\tau}^q$ defines an associative left action, i.e.

$$\tilde{\tau}^{q}(k, \tilde{\tau}^{q}(1, -)) = \tilde{\tau}^{q}(k1, -)$$

By definition, a non-holonomic q-coframe on B is a regular q-jet whichs source is in M and its target is at O in \mathbb{R}^d . Let \mathbb{H}_q^{π} be the bundle of q-coframes on B. Then K acts on \mathbb{H}_q^{π} by the following manner:

If $Y \in H_q^*$, $a \in K$, we put $Y_1 = j_1^Q Y$, so that $Y = j_m^1 f$. Then we put

$$\tau^{1}(a, \mathbf{X}_{1}) := j^{1}_{\tau(a, m)} f(\tau(a, -))$$

Then we pass to higher order by a standard inductive proceeding.

PROPOSITION 2. There holds the following formula for the just described action of K on $H_0^{\#}$

$$\tau^{q}(b, \tau^{q}(a, Y)) = \tau^{q}(ab, Y)$$

Thus $\tilde{\tau}^{q}$ is an associative right action.

Let X_0 be a fixed q-frame at some point $m_0 \in B$. We lead into considerations the following set of q-frames on B

$$W_q = \{ \tilde{\tau}^q(k, X_o) | k \in K \}$$

We define on W_q a projection π_q onto B by the following formula

$$\mathfrak{R}_{q}(\tilde{\mathcal{T}}^{q}(k, \mathbb{X}_{0})) = \mathcal{T}(k, \mathbb{M}_{0})$$

We denote by \widetilde{L}_q^d the structure of Lie group on a set $J^q(\mathbb{R}^d, \mathbb{R}^d)$, restricted to regular jets and we denote by

$$\mathbf{K}_{\mathbf{m}} := \left\{ \mathbf{g} \in \mathbf{K} \mid \mathcal{T}(\mathbf{g}, \mathbf{m}) = \mathbf{m} \right\}$$

the stability group of T .

PROPOSITION 3. For any m & B a mapping

$$\chi_{\tilde{x}_0} : K_m \longrightarrow \tilde{L}_q^d / k \longmapsto X_0^{-1} \cdot \tilde{\tau}^q(k, \tilde{x}_0)$$

is a homomorphism of Lie groups.

Proof. Given any q-frame X then there exists a unique q-coframe X^{-1} which may be viewed as follows: we consider $J_1^{q}X = X_1$ which is a regular 1-jet, i.e. $X_1 = j_0^{-1}f$ so that $X_1^{-1} = j_{f(0)}^{-1}f^{-1}$ the (q-1)-coframes being defined we take a cross-section such that $X = j_0^{-1}\xi$, $\xi : \mathbb{R}^d \to W_{q-1}$ and we put $X^{-1} := j_X^{-1}|_{f(0)}(\xi(x))^{-1}$.

In order to prove that χ_{X_0} is in fact a homeomorphism we use Proposition 1 and we have

$$\chi_{X_0}(kl) = X_0^{-1}(\widetilde{\tau}^{q}(kl, X_0)) = X_0^{-1}(\widetilde{\tau}^{q}(k, X_0 X_0^{-1} \widetilde{\tau}^{q}(l, X_0)) =$$
$$= X_0^{-1}(\widetilde{\tau}^{q}(k, X_0) X_0^{-1} \widetilde{\tau}^{q}(l, X_0) = \chi_{X_0}(k) \chi_{X_0}(l)$$

We introduce the following notations: $\widetilde{G}_q(X)$ resp. $\widetilde{G}_q(X)$, is the image of K_m by χ_X , resp. χ_X , X and X being any two elements of the bundle W_q at m and at p respectively.

PROPOSITION 4. There exists an isomorphism $\widetilde{G}_q(\mathbf{X})$ ----- $\widetilde{G}_p(\mathbf{Y})$ such that following diagram is commutative

Proof. Let $g \in K$ be any element which sends X to Y. Thus K_p and K_m are Adj_g - related. Let us define a mapping

$$G_{q}: \widetilde{G}_{q}(\mathbf{I}) \longrightarrow \widetilde{G}_{q}(\mathbf{I})$$

(2)

$$\mathbf{X}^{-1} \widetilde{\tau}^{\mathbf{q}}(\mathbf{k}, \mathbf{X}) \longleftrightarrow \widetilde{\tau}^{\mathbf{q}}(\mathbf{g}^{-1}, \mathbf{X}^{-1}) \widetilde{\tau}^{\mathbf{q}}(\mathbf{g}\mathbf{k}\mathbf{g}^{-1}, \widetilde{\tau}^{\mathbf{q}}(\mathbf{g}, \mathbf{X}))$$

Keeping in mind that $T^{q}(g, X) = X$ we obtain

$$\chi_{Y}(gkg^{-1}) = Y^{-1} \tilde{\tau}^{Q}(gkg^{-1}, I) =$$

= $\tilde{\tau}^{Q}(g^{-1}, X^{-1}) \tilde{\tau}^{Q}(gkg^{-1}, \tilde{\tau}^{Q}(g, I)) = \sum_{g} (\chi_{X}(k))$

Since we may view S_g to be mapping which sends any $\chi_{\chi}(k)$ to $\chi_{\chi}(Adj_k)$ then there holds

$$S_{\rm g} = \chi_{\rm X} = \chi_{\rm Y} \circ {\rm Adj}_{\rm g}$$

Evidently 5g is an isomorphism.

The above results imply the following

THEOREM 5. Given any fixed frame $X_0 \in H_q$ then there exists a unique frame bundle W_q over B with the structure group \tilde{G}_q , the image by χ_{X_0} of the isotropy group K_{H_0} . X_q is the projection.

III. ELEMENTS OF INVARIANT CONNECTIONS

Let us fix any point $m \in B$. Denote by K and respectively, by K_m the Lie algebras of K and of K_m. Let D_m be any complementary space with respect to K_m in K. We choose a linear basis $[\bullet_1, \dots, \bullet_d]$ in D_m . In some neighbourhood U of 0 in R^d there is defined a mapping

$$[t^1,...,t^d] \mapsto \exp(\sum_{\alpha=1}^d t^\alpha \bullet_{\alpha}) =: g(t)$$

Let us consider the mapping

(3)
$$t \mapsto \mathcal{T}(g(t), m)$$

This mapping is a diffeomorphism of U to some neighbourhood V of m.

Let

$$I: V \longrightarrow \mathbb{R}^d$$

be reciprocal to the mapping (3). We have w(m) = 0.

X being a frame in the fibre $\pi_q^{-1}(m)$ we consider the mapping Θ defined by

$$\Theta(t,m,X) := \widetilde{\tau}^{q}(g(t),X)$$

Thus $\theta(t,m,-)$ maps the fibre $\pi_q^{-1}(m)$ to the fibre $\pi^{-1}(\tau(g(t),m))$. We remark that if t = w(p) for some $p \in V$, then we have

$$\Theta(t,m,-)$$
 : $\pi_q^{-1}(m) \longrightarrow \pi_q^{-1}(p)$

THEOREM 6. $\Theta(t,m,-)$ is a fibre morphism of $\pi_q^{-1}(m)$ to $\pi_q^{-1}(\tau(g(t),m))$.

Proof. We have to show that $\Theta(t,m,-)$ commutes with the cononical action of \widetilde{G}_q , that means, the following diagram is commutative:

$$\begin{array}{c|c} \pi_{q}^{-1}(\mathbf{m}) & \underline{\theta(t, \mathbf{m}, -)} & \pi_{q}^{-1}(\mathbf{p}) \\ \chi_{z}(\mathbf{h}) & & & \\ \pi_{q}^{-1}(\mathbf{m}) & \underline{\theta(t, \mathbf{m}, -)} & \pi_{q}^{-1}(\mathbf{p}) \end{array}$$

for any K_m and by any choice of $Z \in \pi_q^{-1}(m)$. We see that Adj_{g(t)}h $\in K_p$ and $W \in \pi_q^{-1}(p)$ is a map of Z by $\tilde{\tau}^q(g(t), -)$. Then the group \tilde{G}_q acts on the fibre $\pi_q^{-1}(m)$ by the following rule

$$T: \widetilde{G}_{q} \times \pi_{q}^{-1}(m) \longrightarrow \pi_{q}^{-1}(m)$$
$$(\chi_{\tau}(h), X) \longrightarrow \widetilde{\tau}^{q}(kh, \widetilde{\tau}^{q}(k^{-1}, X))$$

Here $k \in K$ is such that $X = \tilde{\tau}^{Q}(k,Z)$. Thus T defines a right action. Consider the mapping $\pi_{q}^{-1}(m) \longrightarrow \pi_{q}^{-1}(p)$ given by

we have

(4) $\Theta(t,m,\tilde{\tau}^{q}(kh,Z)) = \tilde{\tau}^{q}(g(t),\tilde{\tau}^{q}(kh,Z)) = \tilde{\tau}^{q}(g(t)kh,Z)$ On the other hand we have

 $\Theta(t,m,X) = \Theta(t,m,\tilde{\tau}^{q}(k,Z)) = \tilde{\tau}^{q}(g(t),\tilde{\tau}^{q}(k,Z))$

In view of formula (2) we have

$$\chi_{W}(h) = \mathcal{F}^{q}((g(t))^{-1}, z^{-1}) \mathcal{F}^{q}(g(t)h(g(t))^{-1}, \mathcal{F}^{q}(g(t), z)))$$

By consequence

 $T(\chi_{W}(h), \Theta(t, m, X)) =$ $= \tilde{\tau}^{Q}(g(t), \tilde{\tau}^{Q}(k, Z)) \tilde{\tau}^{Q}(g(t), Z^{-1}) \tilde{\tau}^{Q}(g(t)h(g(t))^{-1}, \tilde{\tau}^{Q}(g(t), Z)) =$ $= \tilde{\tau}^{Q}(g(t)kh(g(t))^{-1}, \tilde{\tau}^{Q}(g(t), Z)) = \tilde{\tau}^{Q}(g(t)kh, Z)$

If we compare this result with (4) then we finish the proof.

Let us denote by ϕ_q the groupoid associated with W_q . Thus each $\theta(t,m,-)$ is an element of ϕ_q . Then we define an action of the group K on these elements of ϕ_q . We put

 $k \neq \Theta(t,m,-) := \Theta(t, \tau(k,m),-)$

If $X \in \pi_q^{-1}(\tau(k,m))$ then we have $k \neq \Theta(t,m,X) = \Theta(t,\tau(k,m),X) = \tilde{\tau}^q(g(t),X) \in \pi_q^{-1}(\tau(g(t)k,m)).$

PROPOSITION 7. If $\tau(k,m) = \tau(1,m)$ then we have

$$\mathbf{k} \neq \boldsymbol{\theta}(\mathbf{t}, \mathbf{m}, -) = \mathbf{l} \neq \boldsymbol{\theta}(\mathbf{t}, \mathbf{m}, -)$$

IV. BUNDLES OF INVARIANT ELEMENTS OF THE CONNECTION

Let us define a cross-section

$$C : B \longrightarrow J^{\mathbf{r}}(B, \Phi_q)$$

by $C_p := j_{s|p}^r k * \Theta(w(\tau(k^{-1},s)),m,-)$ where k is such that

 $\tau(k,m) = p$. In view of Proposition 7, C_p does not depend on the choice of k. Then we see that C is a cross-section in the bundle of elements of the connection, that means:

1°
$$\alpha(C_p) = p$$

2° $\beta(C_p) = \tilde{p}$
3° $a^r(C_p) = \rho^r_x$
4° $b^r(C_p) = J^r_p I_B$

Remark that

$$C_{m} = j_{s|m}^{r} \Theta(w(s), m, -)$$

Then we put by definition

$$\widetilde{\tau}^{r}C_{m} := j_{t/m}^{r}k * \Theta(w(t), m, -)$$

and

$$C_{m} \widetilde{\tau}_{k-1}^{r} := j_{t|\tau_{k}(m)}^{r} \Theta(w(\tau(k^{-1},t)),m,-)$$

The following identities follow easily by definitions

$$\tau(\mathbf{k},\mathbf{m}) = \widetilde{\tau}_{\mathbf{k}}^{\mathbf{r}} \widetilde{\tau}_{\mathbf{m}} \widetilde{\tau}_{\mathbf{k}}^{\mathbf{r}}$$

and

(5)
$$C_{\tau(k,m)}^{-1} = \widetilde{\tau}_{k}^{r} C_{m}^{-1} \widetilde{\tau}_{k}^{r}$$

Let us turn to the constructions in the preceeding chapter. The construction of the mapping w does depend on a choice of the complementary space D_m but it does not depend on a choice of the linear basis in D_m . Thus C_m and, by consequence, the cross-section $p \mapsto C_p$ depends only on the choice of D_m . We have seen that each C_p is the element of the connection in the sense indicated in our preliminaries. Let us recollect the notations.

If $Z \in W_q$ then [Z] is a diffeomorphism of the fibre through Z to the group G_q and Z = e (neutral element in the group G_q). Then we prolong [Z] to a mapping $[Z]_{*}^r$ of $T_Z^r W_q = (J_Z^r (W_q, R)_q)^*$ onto $T_0^r G_q$. Then we have to prolong $\psi: \Phi \times W_q \longrightarrow W_q$ to $\tilde{\psi}^r$ which acts on $J^r (W_q, \Phi_q) \times J^r (W_q, W_q)$ and maps it to $J^r (W_q, W_q)$. Then the value of the form of our connection ω_q^r on the element $y \in T^r W_q$ at the point Z is, by definition

(6)
$$\omega_{\mathbf{q}}^{\mathbf{r}}(\mathbf{y}) = \left\{ [\mathbf{Z}]^{\mathbf{r}} \cdot \widetilde{\boldsymbol{\psi}}^{\mathbf{r}} (\mathbf{C}_{\mathbf{m}}^{-1} \mathbf{j}_{\mathbf{Z}}^{\mathbf{r}} \boldsymbol{\pi}_{\mathbf{q}}, \mathbf{j}_{\mathbf{Z}}^{\mathbf{r}} \mathbf{j}_{\mathbf{q}}^{\mathbf{r}}) \right\}_{*} (\mathbf{y}), \quad \boldsymbol{\pi}_{\mathbf{q}} (\mathbf{Z}) = \mathbf{m}$$

The compositions inside the parantheses are to be understood as a non-holonomic jet composition. The group K acts on $\widetilde{T}^{T}W_{q}$ by means of a non-holonomic lifting of τ . This lift will be denoted by $\widetilde{\tau}^{T}$.

A connection is invariant under the action of K iff its form satisfies

$$\omega_q^r(\tilde{\tau}^r(k,y)) = \omega_q^r(y)$$

for each keK and each $\mathbf{y} \in \mathbf{T}^{\mathbf{T}} \mathbf{W}_{\mathbf{q}}$.

THEOREM 8. The connection defined above by C is invariant under K.

Proof. In view of (6) we have

 $\omega_{\mathbf{q}}^{\mathbf{r}}(\widetilde{\tau}^{\mathbf{r}}(\mathbf{k},\mathbf{y})) = = \left\{ \left[\widetilde{\tau}^{\mathbf{q}}(\mathbf{k},\mathbf{z}) \right]^{\mathbf{r}} \widetilde{\psi}^{\mathbf{r}}(C_{\mathcal{T}(\mathbf{k},\mathbf{m})}^{-1} \mathbf{j}_{\widetilde{\tau}^{\mathbf{q}}(\mathbf{k},\mathbf{z})}^{\mathbf{r}} \pi_{\mathbf{q}}, \mathbf{j}_{\widetilde{\tau}^{\mathbf{q}}(\mathbf{k},\mathbf{z})}^{\mathbf{r}} \mathbf{1}_{\mathbf{W}_{\mathbf{q}}} \right\}_{\mathbf{x}} (\widetilde{\tau}^{\mathbf{r}}(\mathbf{k},\mathbf{y}))$ We make use of (5). Thus we have

(7)
$$\omega_{0}^{r}(\tilde{\tau}^{r}(k,y)) =$$

 $= \left\{ \left[\tilde{\tau}^{q}(\mathbf{k}, \mathbb{Z}) \right]^{r} \tilde{\psi}^{r} (\tilde{\tau}_{\mathbf{k}}^{r} c_{\mathbf{m}}^{-1} \tilde{\tau}_{\mathbf{k}}^{r} j_{\tilde{\tau}^{q}(\mathbf{k}, \mathbb{Z})}^{r} \pi_{q}, j_{\tilde{\tau}^{q}(\mathbf{k}, \mathbb{Z})}^{r} \eta_{q} \right) \right\}_{*} (\tilde{\tau}^{r}(\mathbf{k}, \mathbf{y}))$ First we notice that

$$\widetilde{\tau}_{k-1}^{\mathbf{r}} \mathbf{j}_{\widetilde{\tau}^{q}(k,Z)}^{\mathbf{r}} \mathbf{\pi}_{q} = (\mathbf{j}_{Z}^{\mathbf{r}} \mathbf{\pi}_{q}) \widetilde{\tau}_{k-1}^{\mathbf{r}}$$

and

$$\mathbf{j}_{\widetilde{\tau}^{q}(\mathbf{k},\mathbf{Z})}^{\mathbf{r}} \mathbf{W}_{q} = (\mathbf{j}_{\mathbf{Z}}^{\mathbf{r}} \mathbf{W}_{q}) \widetilde{\tau}_{\mathbf{k}}^{\mathbf{r}}$$

Consider the mapping $([Z]^{\mathbf{r}} \tilde{\tau}^{\mathbf{r}}_{-1})$, which is a linear mapping from $\tilde{T}^{\mathbf{r}}_{\tilde{\tau}^{\mathbf{q}}(\mathbf{k},Z)} W_{\mathbf{q}}$ into $\tilde{T}^{\mathbf{r}}_{\mathbf{e}} \tilde{G}_{\mathbf{q}}^{\mathbf{k}}$. We have evident equality

$$([Z]^{\mathbf{r}} \widetilde{\tau}_{\mathbf{k}}^{\mathbf{r}})_{*} = [\widetilde{\tau}(\mathbf{k}, Z)]^{\mathbf{r}}_{*}$$

We substitute these above equalities to (7) and we obtain

 $\omega^{r}(\tilde{\tau}^{r}(k,y)) =$

 $= \left\{ \begin{bmatrix} Z \end{bmatrix}^{r} \widetilde{\tau}_{k}^{r} \widetilde{\tau}_{k}^{r} \widetilde{\tau}_{k}^{r} \widetilde{\tau}_{k}^{r} \widetilde{\tau}_{m}^{-1} (j_{Z}^{r} \pi_{q}) \widetilde{\tau}_{k}^{r} \widetilde{\tau}_{k}^{-1} (j_{Z}^{r} \eta_{q}) \widetilde{\tau}_{k}^{r} \widetilde{\tau}_{k}^{-1} \right\}_{*} (\widetilde{\tau}_{k}^{r} (k, y)) =$ $= \left\{ \begin{bmatrix} Z \end{bmatrix}^{r} \widetilde{\tau}_{k}^{r} \widetilde{\tau}_{k}^{r} \widetilde{\psi} (c_{m}^{-1} j_{Z}^{r} \pi_{q}, j_{Z}^{r} \eta_{q}) \right\}_{*} ((\widetilde{\tau}_{k}^{r})_{*} (\widetilde{\tau}_{k}^{r})_{*} (\widetilde{\tau}_{k}^{r})_{*} (y)) =$ $= \left\{ \begin{bmatrix} Z \end{bmatrix}^{r} \widetilde{\psi}^{r} (c_{m}^{-1} j_{Z}^{r} \pi_{q}, j_{Z}^{r} \eta_{q}) \right\}_{*} (y) = \omega_{q}^{r} (y)$

 $\tilde{\tau}_{\mathbf{k}}^{\mathbf{r}}$ is $\tilde{\tau}^{\mathbf{r}}(\mathbf{k},-)$ for abbreviation of notations. The first of authors of this paper has proved in [7] the following theorem.

THEOREM 9. If q = r = 1 then above invariant connection ω_1^1 is flat.

REFERENCES

- [1] Cenkl, B., On the higher order connections, Cahiers de Topologie et Géométrie Différentielle, IX, 1(1967), 11-32.
- [2] Ehresmann, Ch., Les prolongements d'une variété différentiable, I - C. R. Acad. Sci. Paris, 233(1951), 598-600, 777-779, 1081-1083, 234(1952), 1029-1030, 1424-1425.
- [3] ,, Extension du calcul des jets non-holonomes, C.
 R. Acad. Sci. Paris, 239(1954), 1762-1764.
- [4] ,, , Sur les connexions d'ordre supérieur, Atti del
 V^O Congresso del l'Unione Matematica Italiana, (1955),
 Roma Cremonese, (1956), p. 326.
- [5] Libermann, P., Sur la géometrie des prolongements des fibre vectoriel, Ann. Inst. Fourier, Grenoble 14, 1(1964), 145-172.
- [6] Lumiste, U., Connections on homogeneous fibre boundles (Russian), Mat. Sb. 69(1960), 419-454.
- [7] Mozgawa, W., Flat bundles on homogeneous spaces, Demonstratio Math. XII, 4(1979), 947-954.
- [8] Szybiak, A., Constrution of an invariant canonical form of higher order on homogeneous manifolds (Russian). Proceedings of the All Union Scientific Conference on Non-euclidean Geometry, 150th Anniversary of Lobacevskii's Geometry, Kazan 1976. Moscow 1977.
- [9] Virsik, J., A generalized point of view to higher order connections on fibre boundles, Czech. Math. J. 19, 94(1969) 110-142.

STRESZCZENIE

Rozważamy rozmaitość B o wymiarze d, na której działa lewostronnie grupa Liego K. Działanie to przedłużamy (na ogół nie holonomicznie) do działania grupy K na rozmaitości żetów $J_0^{q}(\mathbb{R}^d,\mathbb{B})$. Z przedłużeniem tym wiąże się konstrukcja pewnej wiązki reperów q-tego rzędu nad B, niezmienniczej względem K. W tej wiązce konstruujemy niezmienniczą koneksję r-tego rzędu oraz formę tej koneksji.

Резрие

В данной работе рассматривается многообразие В размерности d, на котором действует с лева группа Ли К. Это действие продолжаем неголономически к действию группы на многообразии струи $J_0^{\alpha}(\mathbb{R}^d, B)$ инвариантного относительно к действию группы К. Строится инвариантная связность порядка q и форма этой связности в раслоённом пространстве реперов порядка q над В, являющемся определенной редукцией пучка всех q-реперов. Построено также форму такой связности. Дальнейшие ее свойства изучаются в последующей работе [8]

