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Invariant Connections of Higher Order on Homogeneous Spaces
Koneksje niezmiennicze wy2szych rzedéw na przestrzeniach jednorodnych

Mmapuan'mue CBAASHOCTH BLICIIMX MNOPAAKOB HA OXHOPOAHBLIX miomodpasmlx

The paper contains a construction of higher order conne-
ctions on a given principal fibre bundle over a homogeneous
differentiable manifold. We work with an Ehresmann groupoid
which is associated with this bundle. We consider its r-th
prolongation and we construct a certain connection of order Q.
We prove that the obtained connection is invariant with respect
to the group action conygnably prolonged. For properties of

this connection cf. [7].
I, PRELIMINARIES AND NOTATIORS

Let (H,B,G, ) be a principal fibre bundle over a mani-
fold B. Denote by ¢ the groupoid which is associated with
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(H,B,G,x ). Thus elements of ¢ are G-isomorphisms of
Pibres over B, Thus ¢ 4is a smooth manifold which is pro-
vided with the two projections, a and b, viz, if Hed
gends a fibre through ox~N(m) to 7=T(n’) then wo set

a® =m and b0 = m’, It is easy to see that if we are
given any two points h and k then there exists exactly one
element eh:ke & such that %k sends the fibre through h
to the fibre through k, in such a way that for each geG
it holds ghg,kg = eh,'k' The el.ement which is reciprocal
to a given ©Oe¢ will be denoted by o6 . Evidently we
have Geh,k = ekh and _-a6'9 = b9 . We define a mapping
Yt OxE —H by y(O,h) = B(h). If xe€B then we de-
note the identity mapping of :['-1 (x) by X.

If we fix any moeB then lGe(b_‘ae = mo} is a fibre
bundle which is isomorphic with (H,B,G, ¥). Analogously
{Qid)l b6 =m } 1s some bundle which is called a co-bundle
of (H,B,G, X). ]

Thus {@‘eq)lag =b@ =m ] 1s a group and it is iso~
morphic to G.

We shall use standard notations of jet calculué [1 -5],
but if necessary we introduce and explain somc new ones. Thus
o and denote, respectively, the source and the target

projectiogs.

;r(B,¢) denotes the set of non-holonomic jets of order
r from the manifold B to the manifold ¢ . Thus It (B,.¢>)
has a natural structure of a groupoid over .;;(B,B), (2]. af
and bT are the prolonged mappings a and, respectively, b,
It maps I'(B ®) onto %(B B). If we fix some m then
1x GJ}(B,Cb)I o(af (X)) = m} is a principal fibre bundle over
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B. [9]. x DbYeing any point of B, Px denotes the mapping
which sends all points of B to x and we put Qx 1= "x Ox*
Then we introduce the space Qr(x) to be EI'(B ®) restricted
to

$x]ax) = x, poo = %, at(X) = F;, vTO0 = 3,

Q¥(x) 1is a fibre over x of a certain bundle ’Q‘i‘
et. (11, [4). QF

se its standard fibre is homeomorphic with a Cartesian space

over B

admits global crossections, [1], [4], becau-

of a convenable dimension. A cross-section B —~Q* 1is a con-
nection of order r on the principal bundle H and an element
X of this cross-section over a point xe¢B will be called an
element of the connection of order r. Let us consider such

a cross-section Z and a point xeB and put X = E(x).

We are going to define a connection form for « To begin
with we have to know what is x'2 ¥ 1s a non<holonomic

Jet "‘x, 'where g * 4a a non-holonomic prolongation of the
mapping 6 . Denote by q}r a prolongation up to order r

of the natural action of the groupoid d on the bundle H.
Thus 'qfr is an action of .Tr(H $) on Jr(H H). We consi-
der some z ¢H and we put m(2) = x, Thus Jt’;]:"‘lne.]’r(ﬂ,B).

Then we denote

A~

vl 1= RN, 3T

E
The result is an element of JT(H, 'Jr't‘_(x)), [1],[4]. Then we
define _TrH as a dual space to ?(H,R)o, i,e. TH=

= (Jr(H,R)o)'. The element ll”"lv;lf‘lE gives rise to a unique

*

linear mapping x v 3218) of the vector space

T, gr=1 x
J°(®™ (x),R), into -Il‘r(lil,R)° and q unique linear mapping
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(X'1VJ:1}I)_$ of T°H into (o=1(x)). Given any zeH we
define by ([z) an identification of the fibrg through 2z with
the group G such that e corresponds to 2z, Analogously we

prolong [z] to mapping

()5 ¢+ = a0 —1%6 .

Then the connection from @) of order .r of = 1is

defined by
) oxXv) = ([215-X1e 351, (1)

i~
for veT:H. The basic xeferences for this section are [1],

18]
II. BASIC CONSTRUCTIONS

From now we assume that there is given a Lie group and

a transitive regular left action
' T 3t EXB —B / (g,m) +—— T(g,m)

qQ being a positive integer we define %q(-.-) as-a qQ-1ift
of 7 , which acts on the manifold of non-holonomic frames
Hq over B. Then we proceed I_Jy induction. Let X be a non-
-holonomic q-frame on B, 1i.e, a reg,ular element of :Ivg(lRJ, B)
where d = dim B. We put X = ?%X, where 3'2 denqtes a
projection of jets of order q 1into jets of order 1. Thus
X1 is_ a frame of order 1 and there exists a regular local

d

mapping £ : B — B such that 31|Of(X) = X,. Then we put

"E"’(g,x.p t= 31,0 T(g,£(x))
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Lot us assume that < 3~' 4s defined. Then X = J &k, §
being some crossysection in Ja-1 (Rd, B). We put

#Ug,0) 1= 3307 36, 500

PROPOSITION 1. T3 defines an associative left action,

i.e.

7Y%, 791,-)) = TUk1,-)

By definition, a non-holonomic q-coframe on B 4is a re-

gular q-jet whichs source is in M and its target is at O

in IRJ‘ . Let H; be the bundle of q-coframes on B. Then
K acts on HY by the following manners

q
If YeH!, acK, weput Y, =733, eo that Y = jif.

Then we put

(O IR LIS [E ICWSD

Then we pass to higher order by a standard inductive procee-

ing.

PROPOSITION 2, There holds the following formula for

the just described action of K on B;

% 7" i
7b, 7%a,¥)) = 7%ab,1)
Thus ,f_q is an associative right action.,

Let Xo be a fixed q-frame at some point moeB. We

lead into considerations the following set of q-frames on B
Wy = { Tk,x )| kK

We define on Wq a projection Ty onto B by the following

formula
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%y FUk,x ) = T(k,m)

~d
LQ
5‘3(&&,84)‘, restricted to regular jets and we denote by

We denote by the structure of Lie group on a set

K, 1= {geK\ ‘Z‘(g:m) = m}
the stabilityl group of T .
PROPOSITION 3.- For any m<B & mapping
Xz, ' % —13 /% r——rI:‘-%"q(k..In)

* 1s a homomorphism of Lie groups.

Proo f. Given any q-frame X then there exists a

unique q-coframe x‘1 which may be viewed as follows: we

consider m = X, which is a regular 1-jet, i.e. X, = ;jlf
so that 17;1 = j;2°)F1 the (q=1)=coframes being defined we
1 d
take a cross-section such that X = Jog z § : R t—"'"q_,l
and we put X1 1= jllf(o)(g(x))"l.
In order to prove that Ix 18 in fact a homeomorphism
o i

we use Proposition 1 and we have
M P1 X)) = XM Bk g =1 54
,z’xo(kl) = Xg " Z(k1,X ) = XTIk, x X7 FULLX ) =

i -1' ~q -1 ~q L |
= X FRXXT A, x,) = py (0 py (1)

We introduce the following notationsg
~ N
Gq(x) resp, Gq(I). is the image of i by sz. Tesp,.

Xy X and Y being any two elementz cf the bundle W, at

m and at p respectively.
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PROPOSITICN 4. There exists an isomorphism é‘;cn e
a;)(Y) such that following diagram is commutative

Ey %
1 1

é’q(x) oy =y ) 208,

Proof, Let geK be any element 'h:l.ch sends X to
Y. Thus % and Km are AdjJ g " related. Let us define a
mapping

3, 1 G ——G (D
(2) : = 8 R
1 #9741 FUexe™, #Ue,10)

Keeping in mind that Tq(g,X) =Y we obtain

Leteke™) = 171 7 Uexe™ ) -

a £, #Ueke™?, e, X)) = [y A

Since we may view 58 to be mapping which sends any Zx(k)
to l!(kdj Ek) then there holds

58 = /rx = /ZIOAdJS !
Bvidently _§ g 18 an isomorphism.
The above results imply the following

THEOREM 5, Given any fixed frame xoenq then there

exists 8 unique frame bundle wq over B with the structure

grouwp Gy, the image by 7y  of the isotropy group K, .
%q1s the projection, '
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IIX. EIEMENTS OF INVARIANT CONNECTIONS

Let us fix any point meB. Denote by K and respecti-
vely, by l‘ the Lie algebras of K and of Km. Let Dm be
any complementary space with respect to le in K. We choose
a linear bdasis [°1"""d] in D.. In some neighbourhood U
of O in éd there is defined a mapping

S a
(Y00 0t?] ——exp( 3 t%e_) =1 g(t)
ot=1
Let us consider the mapping

(_3) PSS t —7(g(t),m)

_This mapping is a diffeomorphism of U to some neighbourhood
V. of m.
Let

w:V—pg?

be reciprocal to the mapping (3). We have w(m) = O.
X bYeing a frame in the fibre '.[;1(111) we consider the
mapping @ defined by s

O(t,m,X) 1= FUgt),X)

Thus ©O(t,m,-) maps the fibre I:‘ (m) to the fibre
1'1( 7T(g(t),m). We remark that if t = w(p) for some pev,

then we have

Ot,m,-) : 91';1(111) -—>I;1(p)
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THEOREM 6. O(t,m,-) 1is a fibre morphism gf X (m)
to ¥7'(T(e(t),m).

Prootf, We have to show that ©O(t,m,-) commutes
with the cononical action of é‘.'q. that means, the following

diagram is commutatives

Xt Fu(Add gy
a1 (m) Oct,m,=) — )
q ey g O

for any K and by any choice of 2 G'x;‘(m). We see that
Adjs(t)h elp anc‘lv We ‘Jr;1(p) is a map of Z by ?q(z(t).-).
Then.the group Gq acts on the fibre 'I;‘I(m) by the follo-

wing rule
& 1 =
Tt Gy XI’& (m) —Xa (m)
¢ fpm, 0 —= T, F907,10)

Here k&K 48 such that X = '?'q(k,Z). Thus T defines a
right action. Consider the mapping !;1 (m) -—-—-—If (p) given
by

X -———-Ie(t.m,rc xz(h),-x))
we have
(4) O(t,m: F(kn,2)) = ‘?q(g(t),‘?q(kh,Z))‘a "iq(g(t)kh;z)
On the other hand we have

Ot,m,X) = Oct,m, FUk,2)) = FYUe(t), TUK,2))
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In view of formula (2) we have
Yam = Feen=,z™ F(g(trnCe(6))™1, FUgt),2)))
By consequence
( ;{w(h) G(t m,X)) =
= Fet), G z))‘!ﬂ(g,(t) 7). FUg(6InCe())~", FUe(t),2)) =
- Z9at)Encet))™", $at) Z) = FUe(t)kh,2)

. If we compare this result with (4) then we finish the proof,

Let us denote by ¢q the groupoid associated with Wq.
Thus each @(t,m,-) is an element of <bq. Then we define

an action of the group K on these elements of ¢q' We put

xx O(t,m,-) 1= OCt, 7(k,m),-)

If Xe 1'31( 7(k,m)) then we have .k * O(t,m,X) =
= 6(t, T(k,m);X) = TUglt),X)e Jr;"(rcg(t)k,m)).

PROPOSITION 7, If <T(k,m) = 7(1,m) then we have

k x Q(t,m,-) =1 G(t'mv-)

IV. BUNDLES OF INVARIANT ELEMENTS OF THE CONNECTION

Let us define a cross-section
l . i~
C1B -——v—Jr(B,(b v

t= 35, ks @(W(T(k'1,s)) m,-) where k is such that

b7 Cp = Jgpp
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Z(k,m) = p. In view of Proposition 7, Cp does not depend
on the choice of k. Then we see that C 1is & cross-section

in the bundle of elemeats of the connection, that means:

0 -

1 oc(Cp) =D

o -
2 P(Cp) =P

) r T
3 a (Cp) = Py
40

r r
bT(C,) = §57p \

Remark that
. -
Cm = Jslm Q(W(S),m,-)
Then we put by definition

and
~ r -] . gL
Cmfz'i_.] = 35 |5 (m) Bw( T(x™',8)),m,=)
The following identities follow easily by definitions

. r. ~r
C zrx,m) = '?kcm"'k-'l
and

41 =T =1 =T
(5) c 7(k,m) = Tyl Tk"'

Let us turn to the constructions in the preceeding chapter.
The construction of the mapping w does depend on & choice

of the complementary space D, but it does not depend on a

choice of the linear basis in Dm' Thus Cm and, by conse=-

quence, the cross-section p r—C depends only on the choi-

P
ce of Dm' /e have seen that each Cp is the element of the

connection in the sense indicated in our preliminaries. Let us
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recollect the notations.

It ZeV, then [2] is a diffeomorphism of the fibre
through 2z to the group 8q and [Z](Z) = e (neutral element
in the group 6;1),_ Then we prolong [Z] to a mapping [2]%
of E':w = (:;;(W ,R)o)'r onto "F:Gq Then we have to prolong

vyt (px' —W, to ¥T which acts on J (Wq,d) ) x
J‘x‘(l ,' ) and maps it to fi‘(wq,w ) Then the value of
the form of our connection wq on the element y € 'I'rw at

the point Z 18, by definition

T T aTea=1,r T.
(6) iy = {[2]%¥cx'sz %y, "z'wq’}*"" T (2) =

The compositions inside the parantheses are to be understood
as a non-holonomio jet composition. The group K acts on
;!."q by means of a non-_holonomic 1lifting of o . This 1ift
will be denoted by 7T,

A connection is invariant under the action of K 1iff its

form satisfies
wy ¢ TT(k,3)) = @g()
for each kX eK and each ' Yy eTqu.

THEOREM 8. The connection defined above by C is inva-

riant under K.
Proof. Inview of (6) we have
a7 ( #7(k,3)) =
{[rqck 2)] r‘t’r(cm‘:"‘)d’l‘q(k - - 1y 0}, CERe,3)

Tqr ’i"q(k z; Wa

We mke use of (5), Thus we have
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(7) wg( £T(k,3)) =
_([#9 71T ST (F =122 T . r oo 3
= {17 %(k,2) (T30 "7 _ad Xord 19 )Y @ (k,3))
{#5a,]"Y e T e lye) 9T x,2) Ve M
First we notice that
e o r N b T
1 X, = (JFDT
T gy T 2T
and
P S R & I ol
TRz s Sg wikd
Consider the mapping ([Z]r?r_,,'), which is a linear mapping
from T%.. - W._ into T%G.. We h ident equali
rom ?q(k,z) q nto eCq e have evident equality

P~ [~ - r
([z] Flade = [T(k,z)]'

We substitute these above equalities to (7) and we obtain

\

Wt TT(k,3)) =

{[z]r%§_1 o ale :l'q)"i"k_1.(;1§1'q)%':_1} LTI =

{[z]rff:_1 7T Y53 '.l'q,:j§1wq) i, ((%:_1)_( T, (7)) =

r>L,a=1,2 r
{zI*yT g’ sz =g 3;‘1%)}-‘ ) = wely)

‘2’{ is ?r(k,-) for abbreviation of notationmns.
The first of authors of this paper has proved in (7] the follo=-

wing theorem.

THEOREM 9, If qQ =r =1 then above invariant conne-

ction ] is flat.
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STRESZCZENIE

Rozwazamy rozmaitosé¢ B o wymiarze d, na ktérej dziala
lewostronnie grupa Liego K. Dzialanie to przedluzamy (na
ogbél nie holgnopicznie) do dziatania grupy K na rozmaitodci
2et 6w EE(Rd,B). Z przedtuzeniem tym iiqu sie¢ konstrukecja
pewneJ wigzki reperéw gq-tego rzedu nad B, niezmiennicze]
wzgledem K. W tej wigzce konstruujemy niezmienniczg koneksje
r-tego rzedu oraz form¢ tej koneksji.

Peanne

B zaHHO!t paGoTe paccMaTpUBaeTCA MHOroodpasue B paaMepHOC-
Tu d ,H3 KOTOpoM ZelicTByeT ¢ neBa rpynna Ju K. STo ZefdAicTBuUe
npononxaeM HEroNOHOMWUECKM K HOACTBMD I'pYNNH HE MHEOrooOpaauu
CTpyH 33 (R",B)uHBApUEHTHOTO OTHOCUTENBHO K AeficTBMD Tpynnu K.
CrpouTcsi WHBBPUBHTHEA CBABHOCTDH MOPAAkA q ‘u dopua 3aro#t cBA3-
HOCTY B pPACHOEHHOM NPOCTPAHCTBE pENepoB MOPRIAKS q Hex B, ABaA-
pmeMcA onpeleneHHO! penykuuell myuka BcCeX  -pemepoB. [locTpoeHo
rakge fopuy Takoit cBABHOCTH. JlanbHeftume ee cBoicTaa uayvsnrcs
B nocnezyome#t pacore [B)
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