ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

SECTIO A

Witold MOZGAWA and Andrzej SZYBIAK

Invariant Connections of Higher Order on Homogeneous Spaces

Koneksje niezmiennicze wytszych rzedów na przestrzeniach jednorodnych Инвариянтные связности высших порядков на однородньгх многоо6разиях

The paper contains a construction of higher order connections on a given principal fibre bundle over a homogeneous differentiable manifold. We work with an Ehresmann groupoid which is associated with this bundle. We consider its r-th prolongation and we construct a certain connection of order q. We prove that the obtained connection is invariant with respect to the group action convenably prolonged. For properties of this connection cf. [7].
I. PRELIMTNARIES AND NOTATIONS

Let (H, B, G, π) be a principal fibre bundle over a manifold B. Denote by ϕ the groupoid which is associated with
(H, B, G, π). Thus elements of ϕ are G-isomorphisms of fibres over B. Thus ϕ is a smooth manifold which is pro∇ dded with the two projections, a and b, $v i z$. if $\theta \in \varnothing$ sends a fibre through $\pi^{-1}(\mathrm{~m})$ to $\pi^{-1}\left(\mathrm{~m}^{\prime}\right)$ then wo set $a \theta=m$ and $b \theta=m^{\prime}$. It is easy to see that if we are given any two points h and k then there exists exactly one element $\Theta_{h, k} \in \Phi$ such that $\Theta_{h k}$ sends the fibre through h to the fibre through k, in such a way that for each $g \in G$ it holds $\theta_{\mathrm{hg}, \mathrm{kg}}=\theta_{\mathrm{h}, \mathrm{k}}$. The element which is reciprocal to a given $\theta \in \phi$ will be denoted by $\sigma \theta$. Evidently we have $\sigma \theta_{h, k}=\theta_{k h}$ and $a \sigma \theta=b \theta$. We define a mapping $\psi: \phi \times H \rightarrow H$ by $\psi(\theta, h)=\theta(h)$. If $x \in B$ then we denote the identity mapping of $\pi^{-1}(x)$ by \tilde{x}.

If we fix any $m_{0} \in B$ then $\left\{\theta \in \Phi \mid a \theta=m_{0}\right\}$ is a fibre bundle which is isomorphic with ($\mathrm{H}, \mathrm{B}, \mathrm{G}, \pi$). Analogously $\left\{\theta \in \Phi \mid b \theta=m_{0}\right\}$ is some bundle which is called a co-bundle of ($B, B, G, X)$.

Thus $\left\{\theta \in \phi \mid a \theta=b \theta=m_{0}\right\}$ is a group and it is iso morphic to G.

We shall use standard notations of jet calculus [1-5], but if necessary we introduce and explain some new ones. Thus α and β denote, respectively, the source and the target projections.
$\tilde{J}^{F}(B, \phi)$ denotes the set of non-holonomic jets of order r from the manifold B to the manifold ϕ. Thus $\tilde{J}^{r}(B, \phi)$ has a natural structure of a groupoid over $\tilde{J^{r}}(B, B),[2]$. a^{r} and b^{r} are the prolonged mappings a and, respectively, b. It maps $\widetilde{J^{Y}}(B, \phi)$ onto $\widetilde{J^{Y}}(B, B)$. If we fix some m then $\left\{X \in \mathcal{J}^{\tilde{Y}}(B, \phi) \mid \alpha\left(\alpha^{F}(X)\right)=m\right\}$ is a principal fibre bundle over
B. [9]. x being any point of B, p_{x} denotes the mapping which sends all points of B to x and we put $\rho_{x}^{r} s=j_{x}^{T} \rho_{x}$. Then we introduce the space $\tilde{Q^{I}}(x)$ to be $\tilde{J^{Y}}(B, \phi)$ restricted to

$$
\left\{x \mid \alpha(x)=x, \quad \beta(x)=\tilde{x}, \quad a^{r}(x)=\rho_{x}^{r}, \quad b^{r}(x)=j_{x}^{x_{1}}\right\} .
$$

$\tilde{Q^{r}}(x)$ is a fibre over x of a certain bundle $\tilde{Q^{r}}$ over B cf. [1], [4]. \tilde{Q}^{Y} admits global crossections, [1], [4], because its standard fibre is homeomorphic with a Cartesian space of a convenable dimension. A cross-section $B \longrightarrow Q^{F}$ is a connection of order r on the principal bundle H and an element I of this cross-section over a point $x \in B$ will be called an element of the connection of order r. Let us consider such a cross-section Ξ and a point $x \in B$ and put $X=E(x)$ 。 We are going to define a connection form for . To begin with we have to know what is X^{-1} ? X^{-1} is a non-holonomic jet ${ }^{I} X$, where $\tilde{\sigma}^{r}$ is a non-holonomic prolongation of the mapping σ. Denote by $\tilde{\psi}^{\mathbf{r}}$ a prolongation up to order r of the natural action of the groupoid Φ on the bundle H. Thus $\tilde{\psi}^{r}$ is an action of $\tilde{J}(H, \phi)$ on $\tilde{J}^{r}(H, H)$. We consider some $z \in H$ and we put $\pi(z)=x_{0}$ Thus $\pi^{r} j_{z}^{r_{1}} \in \tilde{I^{2}}(H, B)$. Then we denote

$$
X^{-1} \nabla J_{2}^{r_{1}} H:=\tilde{\Psi}^{r}\left(\left(X^{-1}\right)\left(\Psi^{r_{j}} \tilde{\Sigma}_{H}\right), J_{2}^{r_{1}}\right)
$$

The result is an element of $\tilde{J}^{5}\left(H, \pi^{-1}(x)\right),[1],[4]$. Then we define $T^{r} H$ as a dual space to $\tilde{J}^{T}(H, R)_{0}$, 1.e. $\tilde{T}^{r} H=$ $=\left(\tilde{J^{T}}(H, R)_{0}\right)^{*}$. The element $X^{-1} \nabla J_{Z}^{N_{1}} H$ gives rise to a unique linear mapping $\left(X^{-1} \nabla j_{Z}^{x_{1}} H\right)^{*}$ of the vector space $\tilde{J}^{r}\left(\mathscr{J}^{-1}(x), R\right)_{0}$ into $\tilde{J}^{5}(H, R)_{0}$ and unique linear mapping
$\left(X^{-1} \nabla j_{Z}^{r} 1_{H}\right)$ of $\tilde{T}^{r} H$ into $\tilde{T}^{r}\left(\pi^{-1}(x)\right)$ ．Given any $z \in H \quad$ wc define by $[z]$ an identification of the fibre through z with the group G such that e corresponds to 2．Analogously we prolong $[z]$ to mapping

$$
[z]_{*}^{x}: \tilde{T}_{z}^{r_{2}} \pi^{-1}(x) \longrightarrow \tilde{T}_{e}^{x} G .
$$

Then the connection from ω of order，of Ξ is defined by

$$
\begin{equation*}
\omega(\nabla)=\left([\bar{z}]^{r} \cdot X^{-1} \nabla J_{Z}^{r} 1_{H}\right)_{*}(\nabla) \tag{1}
\end{equation*}
$$

for $v \in \widetilde{T_{2}^{r}} ⿴ 囗 十$ ．The basic references for this section are［1］， ［4］．

II．BASIC CONSTRUCTIONS

From now we assume that there is given a Lie group and a transitive regular left action

$$
\tau: \mathbb{K} \times B \longrightarrow B /(\mathrm{g}, \mathrm{~m}) \longmapsto \tau(\mathrm{g}, \mathrm{~m})
$$

q being a positive integer we define $\tilde{\tau}^{q}(-,-)$ as a q－lift of τ ，which acts on the manifold of non－bolonomic frames H_{q} over B ．Then we proceed by induction．Let X be a non－ －holonomic q－frame on B ，i．e．a regular element of $\tilde{J}_{0}^{q}\left(\mathbb{R}^{d}, B\right)$ where $d=\operatorname{dim} B$ ．We put $X_{1}=\tilde{\jmath}_{1}^{q} X$ ，where $\tilde{\jmath}_{1}^{q}$ denotes a projection of jets of order q into jets of order 1．Thus X_{1} is a frame of order 1 and there exists a regular local mapping $P: \mathbb{R}^{d} \rightarrow B$ such that $j_{x}^{1} \mid O^{f}(x)=X_{1}$ ．Then we put

$$
\tilde{\tau}^{1}\left(g, x_{1}\right):=j_{x \mid 0}^{1} \tau(g, f(x))
$$

Let us assume that $\tilde{\tau}^{q-1}$ is defined. Then $X=j_{0}^{1} \xi, \xi$ being some crosspsection in $\tilde{J}^{q-1}\left(\mathbb{R}^{d}, B\right)$. We put

$$
\tilde{\tau}^{q}(g, x):=j_{x \mid 0}^{1} \tilde{\tau}^{q-1}(g, \xi(x))
$$

PROPOSITION 1. $\tilde{\tau}^{q}$ defines an associative left action, 1.e.

$$
\tilde{\tau}^{q}\left(k, \tilde{\tau}^{q}(1,-)\right)=\tilde{\tau}^{q}(k 1,-)
$$

By definition, a non-holonomic q-coframe on B is a regular $q-j$ jet which source is in M and its target is at 0 in \mathbb{R}^{d}. Let H_{q}^{*} be the bundle of q-coframes on B. Then x acts on H_{q}^{*} by the following manner:

If $I \in H_{q}^{*}, a \in \mathbb{K}$, we put $Y_{1}=\tilde{J}_{1}^{q} Y$, so that $I=\mathcal{J}_{\mathrm{m}}^{1} P$. Then we put

$$
\dot{*}^{\star 1}\left(a, I_{1}\right):=j_{\tau(a, m)}^{1} f(\tau(a,-))
$$

Then we pass to higher order by a standard inductive processding.

PROPOSITION 2. There holds the following formula for the just described action of K on H_{q}^{*}

$$
{ }_{\tau}^{*} q\left(b,{ }_{\tau}^{*} q(a, Y)\right)={ }^{*} q(a b, Y)
$$

Thus $\dot{\chi}^{q}$ is an associative right action.
Let X_{0} be a fixed q-frame at some point $m_{0} \in B$. We lead into considerations the following set of q-frames on B

$$
W_{q}=\left\{\tilde{\tau}^{q}\left(k, x_{0}\right) \mid k \in \mathbb{E}\right\}
$$

We define on W_{q} a projection π_{q} onto B by the following formula

$$
\pi_{q}\left(\tau^{q}\left(k, x_{0}\right)\right)=\tau\left(k, m_{0}\right)
$$

We denote by $\tilde{\mathcal{L}}_{Q}^{4}$ the structure of Lie group on a set $\widetilde{J}_{0}^{\alpha}\left(\mathbb{R}{ }^{d}, \mathbb{R}^{d}\right)_{0}$ restricted to regular jets and we denote by

$$
K_{m} s=\{g \in \mathbb{K} \mid \tau(g, m)=m\}
$$

the stability group of τ.

PROPOSITION 3. For any $m \in B$ a mapping

$$
\chi_{x_{0}}: K_{n} \longrightarrow \tilde{L}_{q}^{d} / v \longmapsto \tilde{X}_{0}^{-1} \cdot \tilde{z}^{q}\left(k, \dot{x}_{0}\right)
$$

is a homomorphism of Lie groups.

Prop 1 . Given any q-irame X then there exists a unique q-colrame X^{-1} which may be viewed as follows: we consider $\int_{1}^{q} X=X_{1}$ which is a regular $1-j e t$, i.e. $\quad Z_{1}=j_{0}^{1} P$ so that $X_{1}^{-1}=f_{f(0)^{-1}}^{f^{-1}}$ the $(q-1)$-coframes being defined we take a cross-section such that $X=j_{0}^{1} \xi, \quad \xi: \mathbb{R}^{d} \rightarrow \mathbb{F}_{q-1}$ and we put $\left.x^{-1} 8=j_{x \mid}^{1}(0)^{(\xi}(x)\right)^{-1}$.

In order to prove that $X_{X_{0}}$ is in fact a homeomorphism we use Proposition 1 and we have

$$
\begin{aligned}
\chi_{X_{0}}(k l) & =x_{0}^{-1} \cdot\left(\tilde{\tau}^{q}\left(k l, x_{0}\right)\right)=x_{0}^{-1} \cdot\left(\tilde{\tau}^{q}\left(k, X_{0} x_{0}^{-1} \tilde{\tau}^{q}\left(1, X_{0}\right)\right)=\right. \\
& =x_{0}^{-1} \cdot\left(\tilde{\tau}^{q}\left(k, x_{0}\right)\right) x_{0}^{-1} \tilde{\tau}^{q}\left(1, x_{0}\right)=\chi_{X_{0}}^{(k)} \chi_{x_{0}}(1)
\end{aligned}
$$

We introduce the following notations
$\tilde{G}_{q}(X)$ resp. $\tilde{G}_{Q}(Y)$, is the image of $\bar{X}_{\mathbb{I}}$ by X_{X}, resp. χ_{Y}, \dot{X} and I being any two elements of the buridle \mathbb{W}_{q} at m and at p respectively.

PROPOSITION 4. There exists an isomorphism $\tilde{G}_{Q}(X)$ $\widetilde{G}_{p}(Y)$ such that following diagram is commutative

Proof. Let $g \in I$ be any element which sends X to I. Thus K_{p} and X_{n} are $\Delta d j_{g}$ - related. Let us define a mapping

$$
\xi_{g}: \tilde{G}_{q}(X) \longrightarrow \tilde{G}_{q}(I)
$$

(2)

$$
x^{-1} \tilde{\tau}^{q}(x, x) \longmapsto \tilde{\tau}^{*} q\left(g^{-1}, x^{-1}\right) \tilde{\tau}^{q}\left(g k g^{-1}, \tilde{\tau}^{q}(g, x)\right)
$$

Keeping in mind that $\tau^{q}(g, X)=I$ we obtain

$$
\begin{aligned}
X_{Y}\left(\mathrm{gkg}^{-1}\right) & =I^{-1} \tilde{\tau}^{q}\left(\mathrm{gkg}^{-1}, I\right)= \\
& \left.=\tilde{\tau}^{q}\left(\mathrm{~g}^{-1}, X^{-1}\right) \tilde{\tau}^{q}\left(\operatorname{gkg}^{-1}, \tilde{\tau}^{-q}(\bar{g}, X)\right)=\xi_{g}\left(\mathcal{X X}^{(\mathrm{k}}\right)\right)
\end{aligned}
$$

Since we may view ξ_{g} to be mapping which sends any $X_{X}(k)$ to $X_{I}\left(\operatorname{Adj}_{g} \delta\right)$ then there holds

$$
\xi_{B}=\chi_{I}=\chi_{I}{ }^{\circ \Delta d J_{g}}
$$

Bridently $\quad \xi_{g}$ is an isomorphism.
The above results imply the following
THEOREV 5. Given any fixed frame $X_{0} \in H_{q}$ then there exists a unique frame bundle W_{Q} over B with the structure group \widetilde{G}_{Q}, the image by $X X_{0}$ of the isotropy group $X_{a_{0}}{ }^{\circ}$ x_{q} is the projection.
III. BIEMBNTS OF INVARIANT CONNECTIONS

Let us $P i x$ any point $m \in B$. Denote by \mathbb{K} and respectirely, by \mathbb{K}_{m} the Lie algebras of K and of K_{m}. Let D_{m} be an complementary space with respect to \mathbb{K}_{m} in 区. We choose a linear basis $\left[0, \ldots, \theta_{d}\right]$ in D_{m}. In some neighbourhood U $0 f 0$ in i^{d} there is defined a mapping

$$
\left[t^{1} \ldots, t^{d}\right] \longmapsto \exp \left(\sum_{\alpha=1}^{d} t^{\alpha} e_{\alpha}\right)=8 g(t)
$$

Lot us consider the mapping

$$
\begin{equation*}
t \longmapsto G(g(t), m) \tag{3}
\end{equation*}
$$

This mapping is a diffeomorphism of U to some neighbourhood ∇ of m .

Let

$$
\nabla: \nabla \rightarrow \mathbb{R}^{d}
$$

be reciprocal to the mapping (3). We have $w(m)=0$.
X being a frame in the fibre $\pi_{q}^{-1}(m)$ we consider the mapping θ defined by

$$
\theta(t, m, X):=\tilde{\tau}^{q}(g(t), X)
$$

Thus $\theta(t, m,-)$ maps the fibre $\pi_{q}^{-1}(m)$ to the fibre $x^{-1}(\tau(g(t), m)$. We remark that if $t=W(p)$ for some $p \in V$, then we have

$$
\theta(t, m,-): \pi_{q}^{-1}(m) \longrightarrow \pi_{q}^{-1}(p)
$$

THEOREM 6. $O(t, m,-)$ is a fibre morphism of $\pi_{q}^{-1}(m)$ to $\pi_{q}^{-1}(\tau(g(t), m))$.

Proof . We have to show that $\theta(t, m,-)$ commutes with the canonical action of $\tilde{G}_{q^{\prime}}$, that means, the following diagram is commutative

$$
\left.\chi_{z}(h)\right|_{q} ^{\pi_{q}^{-1}(m)} \begin{array}{ll}
\theta\left(t, m_{2}-\right) & \pi_{q}^{-1}(p) \\
\pi_{q}^{-1}(m) & \left.\right|_{q}\left(A_{g}(t)^{h}\right) \\
\theta(t, m,-) & \pi_{q}^{-1}(p)
\end{array}
$$

for any K_{m} and by any choice of $Z \in \pi_{q}^{-1}(m)$. We see that $A d f_{g}(t)^{h} \in K_{p}$ and $W \in \pi_{q}^{-1}(p)$ is a map of z by $\tilde{\tau}^{q}(g(t),-)$. Then the group \tilde{G}_{q} acts on the fibre $\pi_{q}^{-1}(m)$ by the polowing rule

$$
\begin{aligned}
& T: \tilde{G}_{q} \times{\pi_{q}^{-1}(m) \longrightarrow \pi_{q}^{-1}(m)}^{\left(\chi_{Z}^{(h), X)} \longmapsto \tilde{\tau}^{q}\left(k h, \tilde{\tau}^{q}\left(k^{-1}, X\right)\right)\right.}
\end{aligned}
$$

Here $k \in K$ is such that $X=\tilde{\tau}^{q}(k, z)$. Thus T defines a right action. Consider the mapping $\pi_{q}^{-1}(m) \longrightarrow \pi_{q}^{-1}(p)$ given by

$$
X \longmapsto O\left(t, m, T\left(X_{Z}(h), X\right)\right)
$$

we have
(4) $\quad \theta\left(t, m, \tilde{\tau}^{q}(k h, z)\right)=\tilde{\tau}^{q}\left(g(t), \tilde{\tau}^{q}(k h, z)\right)=\tilde{\tau}^{q}(g(t) \mathrm{kh}, z)$

On the other hand we have

$$
\theta(t, m, x)=\theta\left(t, m, \tilde{\tau}^{q}(k, z)\right)=\tilde{\tau}^{q}\left(g(t), \tilde{\tau}^{q}(k, z)\right)
$$

In view of formula (2) we have

$$
\left.X_{W}(h)=\tau^{q}\left((g(t))^{-1}, z^{-1}\right) \tilde{\tau}^{q}\left(g(t) h(g(t))^{-1}, \tilde{\tau}^{q}(g(t), z)\right)\right)
$$

By consequence
$T\left(X_{W}(h), \theta(t, m, X)\right)=$
$=\tilde{\tau}^{q}\left(g(t), \tilde{\tau}^{q}(k, z)\right) \tau^{\frac{\pi}{q}}\left(g(t), z^{-1}\right) \cdot \tilde{\tau}^{q}\left(g(t) h(g(t))^{-1}, \tilde{\tau}^{q}(g(t), z)\right)=$
$=\tilde{\tau}^{q}\left(g(t) \mathrm{kh}(g(t))^{-1}, \tilde{\tau}^{q}(g(t), Z)\right)=\tilde{\tau}^{q}(g(t) \mathrm{kh}, Z)$

If we compare this result with (4) then we finish the proof.
Let us denote by ϕ_{q} the groupoid associated with W_{Q}. Thus each $\theta(t, m,-)$ is an element of ϕ_{q}. Then we define an action of the group K on these elements of ϕ_{q}. We put

$$
k * \theta(t, m,-):=\theta(t, \tau(k, m),-)
$$

If $X \in \pi_{q}^{-1}(\tau(k, m))$ then we have $k * \theta(t, m, X)=$
$=\theta(t, \tau(k, m) ; X)=\tilde{\tau}^{q}(g(t), X) \in \pi_{q}^{-1}(\tau(g(t) k, m))$.

$$
\begin{aligned}
& \text { PROPOSITION 7. If } \tau(k, m)=\tau(1, m) \text { then we have } \\
& k * \theta(t, m,-)=1 * \theta(t, m,-)
\end{aligned}
$$

IV. BUNDLES OF INVARIANT ELEMENTS OF THE CONNECTION

Let us define a cross-section

$$
C: B \longrightarrow \tilde{J^{T}}\left(B, \phi_{Q} j\right.
$$

by $c_{p} s=f_{s \mid p}^{x} k * \theta\left(w\left(\tau\left(k^{-1}, s\right)\right), m,-\right)$ where k is such that
$\tau(k, m)=p$. In view of Proposition $7, C_{p}$ does not depend on the choice of k. Then we see that C is a crossasection in the bundle of elements of the connection, that means:

$$
\begin{array}{ll}
1^{0} & \alpha\left(C_{p}\right)=p \\
2^{0} & \beta\left(C_{p}\right)=\tilde{p} \\
3^{0} & a^{r}\left(C_{p}\right)=p^{r} \\
4^{0} & b^{r}\left(C_{p}\right)=j_{p}^{r} 1_{B}
\end{array}
$$

Remark that

$$
c_{m}=j_{s \mid m}^{r} \theta(w(s), m,-)
$$

Then we put by definition

$$
\widetilde{\tau}^{r_{C}} C_{m}: j_{t \mid m^{\prime}}^{r} * \theta(w(t), m,-)
$$

and

$$
c_{m} \tilde{\tau}_{k^{-1}}^{r}:=j_{t \mid \tau_{k}(m)}^{r} \theta\left(w\left(\tau\left(k^{-1}, t\right)\right), m,-\right)
$$

The following identities follow easily by definitions

$$
C_{\tau(k, m)}=\tilde{\tau}_{k}^{r_{m}} \tilde{\tau}_{k^{-1}}^{r}
$$

and

$$
\begin{equation*}
c^{-1} \tau(k, m)=\tilde{\tau}_{k}^{r} C_{m}^{-1} \tilde{\tau}_{k^{-1}}^{r} \tag{5}
\end{equation*}
$$

Let us turn to the constructions in the preceeding chapter. The construction of the mapping w does depend on a choice of the complementary space D_{m} but it does not depend on a choice of the in near basis in D_{m}. Thus C_{m} and, by consedquince, the cross-section $p \longmapsto C_{p}$ depends only on the cholice of D_{m}. We have seen that each C_{p} is the element of the connection in the sense indicated in our preliminaries. Let us
recollect the notations.
If $Z \in W_{q}$ then $[Z]$ is a diffeomorphism of the fibre through Z to the group \widetilde{G}_{q} and $[z](Z)=0$ (neutral element in the group (\hat{G}_{q}^{\prime}). Then we prolong $[z]$ to a mapping $[z]^{r}$
 $\boldsymbol{\psi}_{8} \phi \times W_{q} \rightarrow W_{q}$ to $\tilde{\psi}^{r}$ which acts on $\tilde{J}^{T}\left(W_{q}, \Phi_{q}\right) \times$ $\widetilde{J^{2}}\left(\Pi_{q}, \Pi_{q}\right)$ and maps it to $\tilde{J^{2}}\left(W_{q}, W_{q}\right)$. Then the value of the form of our connection ω_{q}^{r} on the element $y \in \widetilde{T}_{W_{q}}$ at the point 2 is, by definition
 The compositions inside the parentheses are to be understood as a non-holonomio jet composition. The group I acts on $\tilde{T}^{w_{q}}$ by means of a non-holonomic lifting of τ. This lift will be denoted by $\tilde{\tau}^{\mathrm{r}}$.
Δ connection is invariant under the action of K ff its form satisfies

$$
w_{q}^{r}\left(\tilde{\tau}^{r}(x, y)\right)=\omega_{q}^{r}(y)
$$

for each $k \in K$ and each $y \in \tilde{T}^{T^{W}} W_{q}$.
THISOREM 8. The connection defined above by C is invariant under K.

$$
\begin{aligned}
& \text { Proof. In view of (6) we have } \\
& \omega_{-}^{r}\left(\tilde{\tau}^{T}(k, y)\right)= \\
& =\left\{\left[\tilde{\tau}^{q}(\dot{k}, z)\right]^{r} \tilde{\psi}^{r}\left(c_{\tau}^{-1}(k, m)^{j} \tilde{\tau}^{q}(k, z) \pi_{q}, j_{\tilde{\tau}}^{q}(k, z)^{T} \mathcal{W}_{q}\right)\right\}_{*}\left(\tilde{\tau}^{r}(k, y)\right)
\end{aligned}
$$

Wo make use of (5). Thus we have

$$
\begin{equation*}
\omega_{Q}^{I}\left(\tilde{\tau}^{r}(k, y)\right)= \tag{7}
\end{equation*}
$$

$=\left\{\left[\tilde{\tau}^{q}(k, z)\right]^{r} \tilde{\psi}^{r}\left(\tilde{\tau}_{k}^{r} C_{m}^{-1} \tilde{\tau}_{k^{-1}}^{r} \tilde{\tau}^{r} \tilde{q}_{(k, z)} \pi_{q}, j_{\tilde{\tau} q}^{r}(k, z){ }^{1} W_{q}\right)\right\}_{*}\left(\tilde{\tau}^{r}(k, y)\right)$
First we notice that

$$
\tilde{\tau}_{k^{-1}} J^{I} \tau_{(k, z)} \pi_{q}=\left(j_{Z}^{r} \pi_{q}\right) \tilde{\tau}_{k^{-1}}^{I}
$$

and

$$
j_{\tilde{\tau} q}^{x}{ }_{(k, z)} 1_{W_{q}}=\left(f_{Z}^{\eta_{W_{Q}}}\right) \tilde{\tau}_{k-1}^{r}
$$

Consider the mapping $\left([z]^{\Gamma} \tilde{\tau}^{\mathbf{r}}\right)^{-1}$. which is a linear mapping from $\tilde{T}^{r} \tilde{\tau}_{(k, Z)} W_{q}$ into $\tilde{T}_{e}^{r} \tilde{G}_{q}{ }^{k}$. We have evident equality

$$
\left([z]^{r} \tilde{\tau}_{k^{-1}}^{r}\right)^{r}=[\tilde{\tau}(k, z)]^{r}
$$

We substitute these above equalities to (7) and we obtain

$$
\begin{aligned}
& \omega^{r}\left(\tilde{\tau}^{r}(k, y)\right)= \\
= & \left\{[z]^{r} \tilde{\tau}_{k}^{r}-1 \tilde{\psi}^{r}\left(\tilde{\tau}_{k}^{r} C_{m}^{-1}\left(j_{Z}^{r} \pi_{q}\right) \tilde{\tau}_{k^{-1}}^{r},\left(j_{Z}^{r} 1_{W_{q}}\right) \tilde{\tau}_{k^{-1}}^{r}\right\}_{*}\left(\tilde{\tau}^{r}(k, y)\right)=\right. \\
= & \left\{[z]^{r} \tilde{\tau}_{k}^{r}-1 \tilde{\tau}_{k}^{r} \tilde{\psi}_{k}\left(C_{m}^{-1} j_{Z}^{r} \pi_{q}, j_{Z}^{r} 1_{W_{q}}\right)\right\}_{F}\left(\left(\tilde{\tau}_{k^{-1}}^{r}\right)_{*}\left(\tilde{\tau}_{k}^{r}\right) *(y)\right)= \\
= & \left\{[z]^{r} \tilde{\psi}^{r}\left(C_{m}^{-1} j_{Z}^{r} \pi_{q}, j_{Z}^{r} \gamma_{W_{q}}\right)\right\}(y)=\omega_{q}^{r}(y)
\end{aligned}
$$

$\tilde{\tau}_{k}^{r}$ is $\tilde{\tau}^{r}(k,-)$ for abbreviation of notations.
The first of authors of this paper has proved in [7] the follwing theorem.

THEOREM 9. If $q=r=1$ then above invariant conection ω_{1}^{1} is plat.

REFERENCES
[1] Cenkl, B., On the higher order connections, Cahiers de Topologie et Géométrie Différentielle, IX, 1(1967), 11-32.
[2] Khresmann, Ch., Les prolongements d'une variété différentiable, I - C. R. Acad. Sci. Paris, 233(1951), 598-600, 777-779, 1081-1083, 234(1952), 1029-1030, 1424-1425.
[3] ., Extension du calcul des jets non-holonomes, C. R. Acad. Sci. Paris, 239(1954), 1762-1764.
[4] .. Sur les connexions d'ordre supérieur, Atti del ∇^{0} Congresso del I'Unione Matematica Italiana, (1955), Roma Cremonese, (1956), p. 326.
[5] Libermann, P., Sur la géometrie des prolongements des fibré vectoriel, Ann. Inst. Fourier, Grenoble 14, 1(1964), 145-172.
[6] Lumiste, V., Connections on homogeneous Pibre boundles $^{\text {L }}$ (Russian), Mat. Sb. 69(1960), 419-454.
[7] Mozgawa, W., Flat bundles on homogeneous spaces, Demonstratio Math. XII, 4(1979), 947-954.
[8] Szybiak, A., Constrution of an invariant canonical form of higher order on homogeneous manifolds (Russian). Proceedings of the All Union Scientific Conference on Non-euclidean Geometry, 150th Anilversary of Lobacevsisi1's Geometry, Kazan 1976. Moscow 1977.
[9] Virsik, J., A generalized point of view to bicher order connections on Pibre boundles, Czech. Math. J. 19, 94(1969) 110-142.

STRESZCZEAIE

Rozważam rozmaitość B O wymiarze d, na ktorej dziaza lewostronnie grupa Liego K. Dzialanie to przedzuzam (na og6 nie holonomicznie) do dziazania grupy K na rozmaitosci zetóm $\tilde{J}_{0}^{q}\left(R^{d}, B\right)$. z przedzuzeniem tym wiaze sie konstrukoja pewnej wiazki reperów g-tego rzędu nad B, niezmienniczej waględem K. W tej wiące konstruujem niezmienniceq koneksje r-tego rzędu oraz formę tej koneksji.

Peanme

В даннои работе рассматривается многообразие В размерности d, на котором действует с лева группа Ли К. Это деиствие продолжаем неголономически к дөйствию группы на многообразии струи $\tilde{J}_{0}\left(R^{d}, B\right)$ инвариантного относительно к деиствио группы К. Строится инвариантная связность порядка q и фориа этой связности в раслоённом пространстве реперов порядкя q над B, являвцемся определенной рөдукцией пучка всех q-репөров. Построено также Форму такои связности. Дальнейие ее своиства изучартся в последуюмей работе [8]

