UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

SECTIO A

Witold MOZGAWA

On the Non-existence of Parabolical Podkovyrin Quasi-connections
O nieistnieniu parabolicznych quasi-koneksji Podkowyrina О несуществовании параболичестих кваэи-связности Подповырина
A.S. Podkovyin in $[4,3,6$] and other authors (e.g. [7]) have investigated structures on $2 n$-dimensional manifold provided with tensors a, B, B where a is a covector, g is a symmetrical nondegenerate $(0,2)$ tensor, and B is $(1,1)$ tensor in the form

$$
F=\left[\begin{array}{c:c}
0 & 0 \tag{1}\\
\hdashline \varepsilon \theta & 0
\end{array}\right]
$$

det $e \neq 0$
and such that $E \cdot E=\varepsilon I$, where ε is oither 1 (hyperbolical case), or -1 @lliptical case), or 0 (parabolical caso).

A connection ∇ is said to be Podkoryrin connection if for arbitrary vector fields ∇, u, w the following conditions
hold
(2)

$$
\nabla E=0
$$

$$
\begin{equation*}
\nabla_{\nabla} g(u, w)=a(v) \cdot g(u, E(w)) . \tag{3}
\end{equation*}
$$

Our task is to consider the parabolic case i.e. $\quad \varepsilon=0$. The structure determined by the tensor E such that $E^{2}=0$, rank $E=n$, is usually called an almost tangent structure [1]. Now on that occasion we shall also investigate all quasi--connections determined by (2) on its almost tangent structure. The pair $\left(C_{j}^{i}, \phi_{j k}^{i}\right)$ where C_{j}^{i} is a $(1,1)$ tensor and $\Phi_{j k}^{i}$ is a set of functions for which the transformation rule is as follows

$$
\begin{equation*}
\phi_{j k^{2}}^{a} A_{a}^{1^{\prime}}=C_{j}^{a} \Lambda_{a k}^{1^{\prime}}+\Lambda_{j}^{a^{0}} A_{k}^{b^{\prime}} \phi_{a}^{1^{\prime} b^{\prime}} \tag{4}
\end{equation*}
$$

is said to be quasi-connection on the manifold u. A covariant derivation ∇ with respect to the pair $\left(c_{j}^{i}, \phi_{j k}^{i}\right)$ is in the form

$$
\begin{aligned}
& \nabla_{t} v^{1}=c_{t}^{a} \partial_{a} v^{1}+\nabla^{a} \phi_{t a}^{1} \\
& \nabla_{t} \varpi_{i}=c_{t}^{a} \partial_{a} \varpi_{i}-\phi_{t i}^{a} \varpi_{a}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \nabla_{z} z_{j}^{1}=c_{t}^{a} \partial_{a} z_{j}^{1}+z_{j}^{a} \phi_{t a}^{1}-\phi_{t j}^{a} z_{a}^{i} \\
& \nabla_{t} g_{i j}=c_{t}^{a} \partial_{a} E_{i j}-\phi_{i t}^{a} B_{a j}-\phi_{j t}^{a} E_{i a}
\end{aligned}
$$

Y.-C. Wong in [9] has given reasons for the investigation of quasi-connection as well as another definition and general theory of this one. If C_{j}^{i} is nondegenerate tensor then $\Gamma_{j k}^{1}:=c_{j}^{-1} \phi_{t k}^{i}$ are classical coefficients of a connection,
is one can stralghtforward check.
Tor our purpose is necessary to recollect certain theorem oonceming generalized inverse of matrices and some its genera11zation. Theory of generalized inverse of matrices was developed in atatistics mostly in the theory of inear models.

To begin with we remind the following theorems

THEOREM 1 (C.R. RaO, S.K. Mitra [7]). If A is an arbitrary $n \times n$ matrix and A^{-}is any matrix satisfying the relation $A A^{-} A=A$, then a necessary and sufficiont condition for the existence of the solution of equation

$$
\begin{equation*}
\Delta x=y \tag{6}
\end{equation*}
$$

Is that $A A^{\prime \prime} J=7$. If this holds then all solutions have the form

$$
\begin{equation*}
x=A^{-} y+\left(I-A^{-} \mathbb{A}\right) w \tag{7}
\end{equation*}
$$

where w is an arbitracy vector.

COROLIARI 2 (theorem of M. Obata [2],[3],[8]). If A is projection operator $1 . \theta, A \circ A=A$ then $A^{*} s=I-A$ is such that $A^{*} \circ A^{*}=A^{*}$ and $A^{*} \circ A=A^{\circ} A^{*}=0$. It is easy to seo that in this case we choose $A^{-}=I$ and that the condition $A A D=\Sigma$ reduces to $A^{*} J=0$. All solutions of the equation (6) have the form

$$
\begin{equation*}
x=y+A^{*} w \tag{8}
\end{equation*}
$$

where w is arbitrary.
He are going to show slight generalization of the above Theorem 1.

THEOREM 3. If A and B are arbitrary $n \times n$ matrices and A^{-}, B^{-}are such that $M A^{-} A=A$ and $B B^{-} B=B$ then neosay and sufficient conditions for the existence of solutions of system of equations
(9)

$$
\begin{aligned}
& A x=y \\
& B x=z
\end{aligned}
$$

are

$$
A A^{-} J=y, \quad B B^{-} Z=\Sigma, \quad A B^{-} B A^{-} A=A B^{-} B
$$

(10)

$$
A B^{-} B A^{-} y=A B^{-} Z .
$$

At that time all solutions have the form.

$$
\begin{equation*}
x=A^{-} y+B^{-} z-B^{-} B A^{-} y+\left(I-B^{-} B\right)\left(I-A^{-} A\right) w \tag{11}
\end{equation*}
$$

Where w is an arbitrary vector.
COROLLARY 4 (Lemma of Cz. Tokarczyk [8]). If A and B are projection operators then $A^{-}=B^{-}=I$ and conditions for the existence of the solution are

$$
\begin{equation*}
A^{*} y=0, \quad B^{*} Z=0 \tag{12}
\end{equation*}
$$

$$
A \circ B \circ A=A \circ B, \quad A \circ B y=A z
$$

and all solutions are given in the form

$$
\begin{equation*}
x=y+z-B y+B^{*} O A^{*} W . \tag{13}
\end{equation*}
$$

Proof of theorem. We are going to apply the Theorem 1 to the following equation
(14)

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right] x=\left[\begin{array}{l}
y \\
z
\end{array}\right]
$$

$\Leftarrow)$ if (10) holds then the matrix $\left[\left(I-B^{-} B\right) A^{-}, B^{-}\right]$is a generalized inverse of $\left[\begin{array}{l}A \\ B\end{array}\right]$.

In fact, we have
(15)

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\left(I-B^{-} B\right) A^{-}, B^{-}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
A \\
B
\end{array}\right]
$$

and
(16)

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\left(I-B^{-} B\right) A^{-}, B^{-}\right]\left[\begin{array}{l}
Z \\
Z
\end{array}\right]=\left[\begin{array}{l}
Z \\
Z
\end{array}\right]
$$

In view of the Theorem 1 the solution exists and it may be written in the following form
(17)

$$
x=\left[\left(I-B^{-} B\right) A^{-}, B^{-}\right]\left[\begin{array}{l}
y \\
Z
\end{array}\right]+\left(I-\left[\left(I-B^{-} B\right) A^{-}, B^{-}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]\right) w
$$

or

$$
\begin{equation*}
X=A^{-} y+B^{-} Z-B^{-} B A^{-} y+\left(I-B^{-} B\right)\left(I-A^{-} A\right) w \tag{18}
\end{equation*}
$$

\Rightarrow) one can easy check by substituting (18) into equations (9).

Now, we can turn back to our problem. Let's consider the equation (2) only. In local form

$$
\begin{equation*}
\left(\delta_{s}^{k_{E_{p}^{r}}^{r}}-E_{s}^{k} \delta_{p}^{r}\right) \phi_{k q}^{p}=E_{q}^{k} \partial_{k} F_{s}^{r} \tag{19}
\end{equation*}
$$

Let us also consider $\phi_{Q}:=\left\{\phi_{\mathrm{kq}}^{\mathrm{p}}\right\}(\overline{p, k})$ as $4 \mathrm{n}^{2}$ - tuple ordered in a lexicographic manner. In this moment we can write (19) 28
(20)

$$
\left(E \otimes I-I \otimes E^{t}\right) \phi_{q}=T_{q}
$$

$$
F \cdot \phi_{q}=T_{q}
$$

where T_{q} is $\left\{E_{q}^{k} \partial_{L_{B}} E_{s}^{v}\right\}_{(r, s)}$ ordered in similar was as ϕ_{q} and F^{t} denotes a transposition of E . Let us write the matrix F in a box form
(21)

$$
P=\left[\begin{array}{c:c}
-I_{n} \otimes \mathbb{I}^{t} & \otimes \otimes I_{2 n} \\
\hdashline 0 & -I_{n} \oplus \mathbb{E}^{t}
\end{array}\right]
$$

where I_{k} denotes the identity $k \times k$ matrix.

LEMM 5. If F is above mentioned matrix, then matrix

 \mathbf{F}^{-}(22)

$$
F^{-}=\left[\begin{array}{c:c}
0 & I_{2 n^{2}} \\
\hdashline e^{-1} \otimes I_{2 n} & -e^{-1} \otimes E^{t}
\end{array}\right]
$$

is such that $P P^{-} F=F$ and $P F^{-} T_{k}=T_{k}$.
Proof.
$F F^{-}=\left[\begin{array}{c:c}-I_{n} \otimes E^{t} & \theta \otimes I_{2 n} \\ \hdashline 0 & -I_{n} \otimes E^{t}\end{array}\right] \cdot\left[\begin{array}{c:c}0 & I_{2 n^{2}} \\ \hdashline 03 & \\ \hdashline \theta^{-1} \otimes I_{2 n} & -\theta^{-1} \otimes E^{r}\end{array}\right]$
(23)

$$
=\left|\begin{array}{c:c}
I_{2 n^{2}} & -2 I_{n} \otimes E^{t} \\
\hdashline-e^{-1} \otimes E^{t} & 1
\end{array}\right|
$$

$P F^{-} F=\left(\begin{array}{c:c}I_{2 n^{2}} & 2 I_{n} \otimes E^{t} \\ \hdashline-\theta^{-1} \otimes E^{t} & 0\end{array}\right)\left(\begin{array}{c:c}-I_{n} \otimes E^{t} & \theta \otimes I_{2 n} \\ \hdashline-0 & -I_{n} \otimes E^{t}\end{array}\right]$
(23)

$$
=\left[\begin{array}{c:c}
-I_{n} \otimes E^{t} & \Theta \otimes I_{2 n} \\
\hdashline-- & ---I_{n}^{t}
\end{array}\right]=F
$$

It is not difficult to see that from the form of $E=\left[\begin{array}{c:c}0 & \frac{\theta}{0} \\ \hdashline 0\end{array}\right]$ we can write T_{k} in the shape
(24)

$$
\begin{aligned}
T_{k} & =\left[\begin{array}{ll}
n^{0}, & \left.\varepsilon_{k 1, n} 0, \varepsilon_{k 2, n} 0, \ldots,{ }_{n} 0, \varepsilon_{k n, n} 0, \ldots,{ }_{n} 0\right]=: \\
& =\left[T_{k, 2 n^{2}}{ }^{0}\right]
\end{array}\right.
\end{aligned}
$$

where n^{0} is n-dimensional zero, $\varepsilon_{k i}$ consists of n adoquate elements. The term T_{k}^{1} consists of $2 n^{2}$ elements. On account of the form of FF^{-}it is sufficient to show that

$$
\begin{equation*}
-\left(e^{-1} \otimes E^{t}\right) T_{k}^{1}=0 \tag{25}
\end{equation*}
$$

The left-hand member of (25) has the form
(26)

(O_{n} denotes the zero $n \times n$ matrix) it is evident thai this product is equal to zero.

By virtue of above lemma and of the Theorem 1 wo can state the following

COROLIARY 6. Tho coefficients $\phi_{j k}^{i}$ of all structure quasi-connections ($E_{j}^{1}, \phi_{j k}^{1}$) of an almost tangent structure E of $2 n$-dimensional manifold are
(27)

$$
\phi_{k}=F^{-} T_{k}+\left(I-F^{-} F\right) W
$$

(cf. [1]).
Let us consider equation (3) in local form
(28) $\quad\left(\delta_{r}^{k} p_{p s}+g_{r p} \delta_{s}^{k}\right) \phi_{k q}^{p}=E_{q}^{t} \partial_{t} g_{r s}-a_{q} b_{w r}^{b} E_{s}^{w}$
or after a contraction with $g^{g Z}$
(29)

$$
\frac{1}{2}\left(\delta_{r}^{k} \delta_{p}^{z}+E_{r p} E^{k z}\right) \phi_{k q}^{p}=\frac{1}{2}\left(E_{q}^{t} g^{s z} \partial_{t} g_{r s}-a_{q} E_{w r} E_{s}^{w} g^{s z}\right)
$$

or as a matrix equation

$$
\frac{1}{2}\left(I \otimes I+g \otimes g^{-1}\right) \phi_{q}=\mathbb{Z}_{q}
$$

(30)

$$
\Omega \cdot \phi_{q}=K_{q}
$$

where

$$
\Omega=\frac{1}{2}\left(I \otimes I+E \otimes g^{-1}\right)
$$

(31)

$$
\begin{aligned}
& \phi_{q}=\left\{\phi_{\mathrm{kq}}^{\mathrm{p}}\right\}(\mathrm{p}, \mathrm{k}) \\
& K_{q}=\left\{\frac{1}{2}\left(E^{s z_{E_{q}}^{t}} \partial_{t} E_{r s}-a_{q} E_{v r} E_{S}^{I T} E^{s z}\right)\right\}_{(z, r)}
\end{aligned}
$$

are ordered like in (19).

It is easy to check that $\Omega \circ \Omega=\Omega$ hence Ω is a well--know Obata operator. J.t is also clear that $\Omega^{-}=I$. Because $(0,2)$ tensor g jas symmetrical and non-degenerate we can represent g in the box form

$$
g=\left(\begin{array}{ccc}
g_{1} & g_{2} \tag{32}\\
-\varepsilon_{2}^{t} & g_{3}
\end{array}\right]
$$

as well

$$
\Omega=\left[\begin{array}{c:c}
I g^{2}+g_{1} \otimes g^{-1} & g_{2} \otimes g^{-1} \tag{33}\\
\hdashline 2 n^{-1} & ---- \\
\hdashline g_{2}^{t} \otimes g^{-1} & I n^{2}+g_{3} \otimes g^{-1}
\end{array}\right]
$$

THECREN 7. There are no quasi connections ∇ such that both (2), (3) hold simultaneously.

Proof. We shall show that condition $F \Omega F^{-} F=F \Omega$ (cf. Theorem 3) holds ff the tensor g has the form

$$
g=\left(\begin{array}{c:c}
\varepsilon_{1} & 0 \tag{34}\\
\hdashline 0 & e^{-1} \varepsilon_{1} \theta
\end{array}\right)
$$

Then it will be a contradiction because the right-hand member of (3) with the tensor (34) cannot be symmetrical but the left--hand member of (3) is symmetrical by the definition.

Let us consider
(35)

$$
E \Omega=\left(\begin{array}{c:c}
-I_{n} \otimes E^{t} & \otimes \otimes I_{2 n} \\
-- & --- \\
0 & -I_{n} \otimes E^{t}
\end{array}\right]\left(\begin{array}{c:c}
I_{2 n^{2}}+g_{1} \otimes g^{-1} & g_{2} \otimes g^{-1} \\
\hdashline \hdashline- & g_{2}^{t} \otimes g^{-1} \\
I_{2 n^{2}}+\delta_{3} \otimes g^{-1}
\end{array}\right]
$$

(36) $\quad \mathrm{FT}=\left[\begin{array}{c:c}0 & -\mathrm{I}_{\mathrm{n}} \otimes \mathrm{E}^{t} \\ \hdashline-0 & \mathrm{e}^{-1} \otimes \mathrm{E}^{\mathrm{t}} \\ \hline & \mathrm{I}_{2 \mathrm{n}^{2}}\end{array}\right)$

Taking into considerations (35) and (36) we have
(37) $\quad \mathrm{F} \Omega \mathrm{F}^{\top} \mathrm{P}=$

And this matrix should be equal to (35), so we have the following identies
(38) $-g_{1} \otimes E^{t} E^{-1}+e E_{2}^{t} \otimes G^{-1}=g_{2} e^{-1} \otimes E^{t} g^{-1} E^{t}-\theta g_{3} \theta^{-1} \otimes g^{-1} E^{t}$

$$
\begin{equation*}
\mathrm{E}_{3} \theta^{-1} \otimes \mathbb{E}^{t} \mathbb{E}^{-1} \mathbb{E}^{t}=-\mathrm{E}_{2}^{t} \otimes \mathbb{E}^{-1} \mathbb{E}^{t} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
g_{1} \otimes E^{t} E^{-1} E^{t}=e g_{2}^{t} \otimes E^{-1} E^{t} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{B}_{2}^{t} \otimes \mathbb{E}_{G^{t}}-1 E^{t}=0 \tag{41}
\end{equation*}
$$

Because of (41) we have three possibilities
(I)

$$
\mathbb{E}_{2}^{t}=0 \text { and } E^{t} G^{-1} E^{t} \neq 0 \text {. }
$$

From (39) we have $\mathrm{E}_{3} \mathrm{e}^{-1} \otimes \mathrm{E}^{t} \mathrm{E}^{-1} \mathrm{E}^{t}=0$ hence $\mathrm{g}_{3}=0$. And from (38) we have $\mathrm{E}_{1} \otimes \mathrm{E}^{\mathrm{t}} \mathrm{E}^{-1}=0$ as well from (40) we obtain $B_{1} \otimes E^{t} \mathbb{E}^{-1} E^{t}=0$ hence $E_{1}=0$. It is a contradiction because of $B \neq 0$.

$$
\begin{equation*}
g_{2}^{t} \neq 0 \tag{II}
\end{equation*}
$$

and

$$
E^{t} g^{-1} E^{t}=0
$$

From (40) we have $\mathrm{eg}_{2}^{t} \otimes \mathrm{~g}^{-1} \mathrm{E}^{t}=0$ and hence $\mathrm{g}^{-1} \mathrm{E}^{t}=0$ as well from (39) we obtain $E_{2}^{t} \otimes E_{E}^{t} G^{-1}=0$ and hence $E_{G}^{t} G^{-1}=0$. From (38) we see that $\theta \mathrm{g}_{2}^{t} \otimes \mathrm{~g}^{-1}=0$ and hence $\mathrm{g}_{2}^{t}=0$. It is a contradiction.
(III)

$$
g_{2}^{t}=0
$$

and

$$
E^{t} E^{-1} E^{t}=0
$$

From (38) we have

$$
\begin{equation*}
g_{1} \otimes E^{t} E^{-1}=\theta g_{3} e^{-1} \otimes E^{-1} E^{t} \tag{42}
\end{equation*}
$$

It is easy to chock that (42) holds ff
(43)

$$
g=\left(\left.\begin{array}{c:cc}
B_{1} & 0 \\
\hdashline 0 & \theta^{-1} \varepsilon_{1} \theta
\end{array} \right\rvert\,\right.
$$

and e is orthogonal matrix. This fact finishes the proof.
The author is much indebted to Mr. A. Szybiak for many interesting and stimulating discussions during the development of this work.

REFERENCES
[1] Gadoa, P.M., Rosendo, J.L., On almost tangent structures of order k. An. Ştiinţ. Univ. "Al. I. Cuza", Iaşi Sect. Ia Mat., 22(1)(1976), 211-220.
[2] Obata, Me, Hernitian menifolds with cuatiernio: s strusture, Tôhoku Math. J., 10(1958), 11~18.
[3] ., Affine connections on manifolds with almost complex, quaternion or Hermitien structure, Japanese J. of Kath., 26(1956), 43-77.
[4] Podkovyrin, A.S., Hypersurfaces in unitary space, I, II, (Russian), Izv. Vysצ̌. Učebn. Zaved. Matematika, 8, 9, (1967), 42-52, 75-85.
[5] ., , A certain characteristic property of a singular surface X_{4} in the biaffine space (MB) 6 , (Russian), Trudy Geom. Sem. Kazan. Univ., 4, 5, (1970).
[6] ., A certain generalization of Weyl connection, (Russian), Trudy Geom. Sem. Kazan. Univ., 6(1971).
[7] Rao, C.R., Mitra, S.K., Generalized Inverses of Matrices and its applications, J. Wiley, Inc., New York-Sydney--London-Toronto 1971.
[8] Tokarczyk, Cz., General Fodkovyrin connections, (Russian), Izv. Vysצ̌. UČebn. Zaved. Matematika, 5(192)(1978), 143-151.
[9] Hong, Y.C., Linear connections and quasi-connections on a difforentiable manifold, Tôhoku Math. J., 14(1962), 48-63.

STRESZCZENIE

Ti pracy badano istnienie parabolicznej quasi-koneksji Podkowyrina tj. spêniajacej parunki (2), (3) ovaz $\overline{\mathrm{j}} \mathrm{OE}=0$ 。
 quasi-koneksja nie istnicie.

О несуществовании параболических квязи-связности

Резгоме

В работе исследуется существовяние параболической квязи-связности Подковыриня, то еств такоћ, которая выполняет условия $/ 2 /, / 3 /$, а также E о $\mathrm{E}=0$.

С помощью обобщения теоремы Рао-дитры доказывается несуцествование тякой квязи-связности.

