ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN—POLONIA
VOL. XXXIII, 11 SECTIO A 1979

Filia Politechniki Lédzkiej, 43-300 Bielsko-Biala

Janusz MATKOWSKI and Wanda OGINSKA

Note on Iterations of Some Entire Functions
Uwaga o iteracjach pewnych funkeji catkowitych
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Let £ bYe entire or rational function. Consider the

sequence of iterations
fo(Z) = Z, fn+1(2) = Z(fn(z))' n = 0,1,.0' .

In the iteration theory an important part is played by the set
P(f) of those points of the complex plane { where {fn} is
not normal in the sense of Montel. It is well known that the
set P(f) has the following properties (cf. [2], [4], [5],
(7

1) F(£) 1is nonempty and perfect.

2) F(£)) = P(£) for n>1.

3) P(£) 41s completely invariant with respect to £,
i.e., for every P y pERD) & r(P)eF(f)nf'1({F})CF(f).

A point ot 1s said to be a fixed point of order n 1iff
£.(0) =0 and £,(0) # o for k= 1,2,...,n-1.
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The derivative f;(cx) is called a multiplier of fixrq
point o, A fixed point of order n 1is called attractive,

indifferent or repulsive according as
|tateed| <1, |gace0)| =1,  |£ice)|>1,

respectively.

4) Every repulsive fixed point belongs to F(f) and
every attracfive fixed point does not belong to F(£).

It is also known that if £ is rational and F(f) has

a nonempty interior then F(f) = §. In 1918 Latte constructed

a rational function for which this case really occurs (cf.
also [3]). : |

I.N. Baker [1] proved that there is a k>e2 such that
F(kze?) = ¢. However, the question if F(e?) = ¢ is still
open.

The aim of this paper is to prove the following

THEOREM., F(2kxie®) =¢, k=*1, *2,... .
Let ? be entire, let S denote the set of all finite
singular points of the function 1 ana put

00
E(£) = U £,(5).
n=0

In the sequel D 4is a domain cortained in ¢ \F(2).
~ We shall use the following results proved by I.N. Baker

[11.

THEOREM 1, If lim. £ (2) =ol, ,2€D, o €(, bthen

¥k — 0O

gL k
ol €eL(£) := E(f) U {oo},




Note on Iterations of Some Entire Punctions 113
THEOREM 2, If int L = @ and ¢\L 4is comnected then

for every convergent subsequence {t } of iterates

lim 2 (z) = ofz), 2 €D =>o(z) = const,
k—»o k

for zeD.
Proof of the Theorem. Put f£(z) = 2kxie® and note
that for the inverse function f£~' the point 3 = 0 4s the
unique singularity which is transcendental. Hence the set
= L(£) has the form

L={0, 2kxi, oo }.

Since int L =@ and §\L 4is connected, by Theorems 1 and
2, every limit function of any convergent subsequence of {tn}
in D 1is constant and equals to O, 2kXi or oo.

Now we shall show thats

00 is not a limit of any subsequence {fn } i D.

For an indirect proof suppose that there is a subsequence

{f, } and a domain D such that 1im 2 (8) =00 for zeD.
'y k—»o D
Let us note that this implies
"lim L. (z) = 0o for seD.
D —»00

Indeed, in the opposite case one can find another subsequence
{f-“-‘k } which converges to one of the remaining points of the
S8et I for zeD. Hence for every compact set KCD there
@re an a>2kx and infinitely many n such that

fn(x)C{z 1 z(<a}.
Because |f(a)[< [£([£Ca))|, we bave

£.(B)C{z 1 5] >[eC e |JF L, 4.
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for infinitely many n. Evidently, for such an n,

B¢ oF S LTRS¢

Therefore, for infinitely many n we have
fn_1 (E)NB # 9,

where B 1= {z 1 [£(a)] < |z{<[£CI£Ca)])]}.
Consequently, one can find a subsequence of {fn‘ which con-
verges to a point of the set B, Since BNL = @ this is

a contradiction. Thus we have proved that

1im £ (z) = o0 , z €D,
n—»00 - )

The function £(z) = 2kWie” 1s bounded in the left half
plane ) = {z 1 Rez€0}. Therefore

fn(K) NnNw=¢@ .
for sufficiently large n. In'particular, for those n,

£ (E)NR_ = £ (E)NL” (R)) = ¢

-

where R_I = (-»,0). One can easily verify, that ¢ (R_)
consists of the straight lines y = §+ 2nT, n = 0,: 1', :2...
The complement of the set £~1 (R_) does not contain a disc of
diameter greater than 2% . On the other hand we have

£[2,(0)] = £, 4(2)
and consequently

lin f'[f (z2)] = 0
n d

n —=oo

uniformly in the compact sets K<CD. Take a compact set KCD
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with int K # @ and z,€ int K. Hence

n-1
Un £2(z) = Un [T £7[g5¢z)] = oo
n—Cco n —Co
§=0
and there 1s an r>0 such that U, ={z : |z - z |<r]ck.
0
The functions
W Wi 1,2,000s
Sn z 3= 5 9 ns= 1Sgnnny
£,(2,)

are holomorphic in the disc U' « By Bloch’s theorem ([6], p.
o

386) there exists a disc Un(b) of positive radius b such
that

£ (0) -
B 0 ns= 1,2,..: .

U (b)Csn(U ) =
n z »
0 fn(zo)

lees, 2£(z)U (b)C2 (U, )L (K), B =1,2,... . The diameter
]
of the set £,(z )0 (b) is equal to 2[f (z )|b end is

€reater than 2%t for n>n,. This implies that
fn(K)n £~1(R) £ 9 for npn,

%hich is impossible. This contradiction proves that oo can-
Not be a limit of any subsequence of {fn}.
s ]
In the sequel we shall need the following

IEMMA., If L = L(f) 1is closed and consists of isolated

Sy

Polnts then every repulsive fixed point o of the function

r

is pot & limit of any subsequence of {fp}.

e e

Proof of the Lemma. By assumption A4 := [£°(c¢)|>1,

Take an £ >0 such that A - &€ >1. There is a &>0 such
‘that
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(A =-g)lz-a|<|tz) | <+ E)|z -]
for
le - 1<+ £)28
and
(A + £)28<int {|o- pl o peL, P;écc}.

Suppose that

lim £ (z) = ¢, z ¢ D.
k-0 "k

Hence, for compact KCD we have
£ (K)C{z 1 |z -] <A - £)8}
for infinitely many n. Since
[£€2) = |>(A = &)z =t > |2 -]
for [z - o <(A + 8)28: we have

£ A Bffa [z-al<a-e)3}

and
|2,,4(2) —a| <+ E)]2 (2) ~ct| <A+ 2D - )<
<+ e)?8

for the same n. Putting
B={z: (A_-&)3<]z-cx‘|$(A+£)28$

we see that ann(K) # @ for infinitely many n. Consequent-
1y, there exists a subsequence of {fn} which has a 1limit in

BR. By Theorem 1 and 2 this is a contradiction, because

L]
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BA{L\ {«}} = @. This completes the proof of the Lemma,
It is easily seen that 2z = 2kJti 1is a repulsive fixed
Pbint of f, By Lemma, 2k X1 cannot be a limit of any sub-
sequence of {£,}.

Supposing that 1im f
k—o Tk

lim £ (z) = £(0) = 2k xd.
k—*oo nk+1

This contradicts the previous part of proof, and completes the

(z) =0 for zeD, we see that

proof of the Theorem.
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STRESZCZENIE

¥ teorii iteracji funkcjil catkowitych £ podstawowg role
odgrywa zbiér F(f) tych punktéw plaszczyzny w ktérych ciagg
iteracji fn funkcji £ nie jest rodzing normalng w sensie
Montela,

W tej pracy dowodzi sig, se P(2kmie®), k=*t41,*2,,,,

Jest calg plaszczyznag.

Pe3anue

B Teopuu urepauuu ueaux dyukuuidl f OCHOBHYD ponb Urpaer
MHOKECTBO F (f) 3TuX TOYEK, B KOTODHX NOCNENOBETENBHOCTH UTE-
pauuv QyHxuumu fn byﬂxuuu f He ABIAETCA HODMBIBHHM ceMeicTBOM
B cMHCNe MoHTenfi. B aTo#t paGoTe ZmOkB3HBaETCA, YTO F(2kTie%)

k=% 1,% 2, . .cocTaBimeT UENAYD .NIOCKOCTH.




