1979

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

Janusz GODULA

On Univalence of a Certain Integral

O jednolistności pewnej całki

Об однолистности некоторого интеграла

INTRODUCTION

Suppose that α , β are fixed complex numbers, $f(z) = z + \dots$ and $g(z) = z + \dots$ are functions analytic in the unit disk Δ and $f'(z) \frac{g(z)}{z} \neq 0$ for z in Δ . We shall be concerned here with a function h(z) defined by the formula:

(1.1)
$$h(z) = \int_{0}^{z} \left[f'(t) \right]^{\alpha} \left[\frac{g(t)}{t} \right]^{\beta} dt$$

Our aim is to establish some sufficient conditions for univalence of h(z). To do this we need some results which we quote below.

L. Ahlfors showed [1] that if c is a complex number and $|c| \le k < 1$ for a given k, then any function b(z) analytic

in A which satisfies the condition

(1.2)
$$\left| (1 - |z|^2) \frac{zb''(z)}{b'(z)} + c|z|^2 \right| \leq k = \frac{K-1}{K+1} \quad z \in \Delta$$

is univalent in \triangle and it has a K-quasiconformal extension to the whole plane.

Following Ch. Pommerenke [5] we denote by ord(f),

(1.3)
$$\operatorname{ord}(f) = \sup_{\xi \in \Delta} \left| -\frac{\xi}{\xi} + \frac{1 - |\xi|^2}{2} \frac{f''(\xi)}{f'(\xi)} \right|,$$

the order of the linearly invariant family generated by a locally univalent function f(z).

It is known that $ord(f) \ge 1$ with equality to hold if and only if f(z) is univalent and it maps \triangle onto a convex domain [5]. Moreover, $ord(f) \le 2$ for a univalent f.

MAIN RESULTS

We start with the following

THEOREM 1. Suppose that: (i) f(z) is analytic and locally univalent in \triangle such that $ord(f) = A < \infty$, (ii) g(z) is analytic and univalent in \triangle , (iii) ∞ , β are complex numbers subject to the conditions

$$|\alpha|<\frac{1}{2}$$
, $2|\alpha|\Lambda+4|\beta|\leq 1$.

Then h(z) defined by (1.1) is univalent in Δ . Moreover, if $2|\alpha|A + 4|\beta| < 1$, then h(z) has a quasiconformal extention to the whole plane. Proof. We are going to make use of the condition (1.2). It will follow from the method of proof that best choice for c is $c = -2\alpha$.

We have

(*)
$$\left| (1 - |z|^2) \frac{zh''(z)}{h'(z)} + c|z|^2 \right| \le 2 \left| \alpha \right| \left| |z| \left| \frac{1 - |z|^2}{2} \frac{f''(z)}{f'(z)} - \frac{1}{2} \right| + \left| \beta \right| \left| (1 - |z|^2) \left| \frac{zg'(z)}{g(z)} - 1 \right|$$

for $z \in \Delta$.

Since |c| < 1 we have $|\alpha| < \frac{1}{2}$. Univalence of g(z) implies $(1 - |z|^2) \left| \frac{zg'(z)}{g(z)} - 1 \right| < 4$, (|z| < 1) which we combine with (*) to obtain

$$|(1 - |z|^2) \frac{zh''(z)}{h'(z)} - 2 \propto |z|^2 |< 2 |\propto |A + 4 |\beta|$$

By the result of Ahlfors the function h(z) is univalent in \triangle if the following conditions are fulfilled

$$2 |\alpha| A + 4 |\beta| < 1$$
 and $|\alpha| < \frac{1}{2}$.

If $2 |\alpha| A + 4 |\beta| = 1$, then by applying (1.2) to the function $h_r(z) = h(rz)$, $z \in \Delta$, $r \in (0,1)$ one gets

$$\left| (1 - |z|^2) \frac{z h_r'(z)}{h_r(z)} - 2 \propto |z|^2 \right| \le 2 |\alpha| A(r|z| - 1) + 1 < 1$$

for z in A.

This shows univalence of $h_r(z)$ in Δ which implies univalence of h(z) in Δ .

Note that if $2|\alpha|A + 4|\beta| = 1$, then h(z) ay not have a quasiconformal extension to the whole plane.

COROLLARY 1. If f(z) and g(z) are both analytic and univalent in Δ , if $|\alpha| + |\beta| \leqslant \frac{1}{4}$, then h(z) is univalent in Δ .

Proof. This follows from Th. 1. in view of the well--known inequality $ord(f) \le 2$ for univalent functions.

COROLLARY 2. If $\beta = 0$ our result reduces to a theorem of J. Pfaltzgraff [4].

If $\alpha = 0$ we obtain a generalization of a result due to W.M. Causey [2]. He showed that $\int_0^z \left[\frac{g(z)}{t}\right]^{\beta}$ at is univalent for complex β , $|\beta| \leq \frac{\sqrt{2}-1}{4} \approx 0,102...$ Our Corollary extends this results to complex β : $|\beta| \leq \frac{1}{4} = 0,25$.

THEOREM 2. If f(z), g(z) are functions close - to - convex in Δ and $0 < \alpha + \beta \le 1$, $\alpha, \beta > 0$ - real, then h(z) is also close - to - convex in Δ .

Proof. It is well - known, that if g(z), f(z) are close - to - convex, then

(2.1)
$$f'(z) = \varphi'(z) p(z)$$

(2.2)
$$\frac{g(z)}{z} = G'(z)$$

where $\varphi(z)$ is univalent and convex in Δ , G(z) is close- to - convex while p(z) is analytic and such that Re p(z)>0.

Moreover, for some convex function φ and P(z) of positive real part

$$G'(z) = \varphi'(z) P(z).$$

Thus we have

$$h'(z) = f'^{\alpha}(z) \left(\frac{g(z)}{z}\right)^{\beta} = (\varphi'^{\alpha}(z) \varphi'^{\beta}(z)) (p^{\alpha}(z)P^{\beta}(z)) =$$

$$= w'(z) D(z)$$

where

$$w'(z) = \varphi'^{\alpha}(z) \varphi'^{\beta}(z), D(z) = p^{\alpha}(z) P^{\beta}(z).$$

It is easy to see that w(z) is a function univalent and convex provided α , β are real and such that $\alpha + \beta \leq 1$, and that Re $D(z) \geq 0$ provided $|\alpha| + |\beta| \leq 1$. Ultimately h(z) is a close - to - convex function if α , β are real and subject to the condition $0 < \alpha + \beta \leq 1$.

The previous considerations gave us a set of values of α , β for which the integral (1.1) is a univalent function in Δ .

We now want to find a set of values of α , β for which that integral is not univalent. To do this we give some examples. First we recall a result due to W. Royster which we state as.

LEMMA [6]. The function $F(z) = \exp[v \log(1 - z)]$ is univalent in Δ if and only if v satisfies one of the conditions

(2.4)
$$|y+1| \leq 1$$
, $|y-1| \leq 1$.

Me nom broke

THEOREM 3. Let the functions f(z), g(z) defined by the formulas

$$f(z) = \exp[\mu \log(1 - z)]$$

$$g(z) = z \cdot \exp[(i - 1)\log(1 - z)]$$

be univalent in Δ .

If complex numbers &, B satisfy the conditions

(1)
$$|\alpha| > 1 - |\beta| \sqrt{2}$$
 and $\beta \neq 1 + 1$

or

(11)
$$|\alpha| > 1 - |2\alpha + \beta(1 - 1)|$$
 and $\alpha \neq 1 - \beta(\frac{1}{2} - \frac{1}{2})$

or

(111)
$$|\beta| \ge \frac{1}{\sqrt{2}}$$
 or $|2 \propto + \beta(1-1)| \ge 1$,

then h(z) given by

$$h(z) = \int_{0}^{z} f'^{\alpha}(t) \left(\frac{g(t)}{t}\right)^{\beta} dt$$

does not belong to S.

Proof. If f(z), g(z) are as stated, then

$$h(z) = A_1 \exp \{ [\alpha(\mu - 1) + \beta(i - 1) + 1] \log(1 - z) \} + A_2$$

In view of the Lemma h(z) is univalent if and only if the point $y = \alpha(\mu - 1) + \beta(1 - 1) + 1$ lies in one of the disks (2.4).

Hence, h(z) is not univalent if and only if μ satisfies (2.4) and ν belongs to the set N.

$$N = \{ v : |v + 1| > 1 \} \cap \{ v : |v - 1| > 1 \}$$

Since $\mu = 1 + \frac{y-1+\beta(1-i)}{\alpha}$ the conditions (2.4) are equivalent to

$$|v-1+\beta(1-1)| \le |\infty|$$

 $|v-1+2\alpha+\beta(1-1)| \le |\infty|$

Our statement will be proved if we find such relationships between α , β that the intersection of N and at least one of the disks (2.4) is non - empty.

This leads to (i), (ii), (iii).

COROLLARY 3. [6]. If $\beta = 0$, then $\int_0^z (f'(t))^{\alpha} dt$ is not univalent for any complex α such that $|\alpha| > \frac{1}{3}$ and $\alpha \ne 1$.

COROLLARY 4. If $\alpha = 0$, then $\int_0^z \left[\frac{g(t)}{t}\right]^{\beta} dt$ is not univalent for any complex β such that $|\beta| > \frac{1}{\sqrt{2}} \approx 0,709$.

REMARK. W.M. Causey [3] showed that $\int_0^z \left[\frac{E(t)}{t}\right]^{\beta} dt$ is not univalent for real β , $\beta > 0.5$.

Corollary 4 partly extends this result for complex β , $|\beta| > \frac{1}{\sqrt{2}}$.

REFERENCES

- [1] Ahlfors, L.V., Sufficient conditions for quasi-conformal extension, Discontinous groups and Riemann surfaces, Ann. of Math., 79(1974), 23-29.
- [2] Causey, W.M., The univalence of an integral, Proc. Amer. Math. Soc., 3(1971), 500-502.
- [3] ,, The close to convexity and univalence of an integral, Math. Z., 99(1967), 207-212.

- [4] Pfaltzgraff, J.A., Univalence of the integral of f'(z), Bull. London Math. Soc., 7(1975), 254-256.
- [5] Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen I, Math. Ann., 155(1964), 108-154.
- [6] Royster, W.C.; On the univalence of a certain integral, Michigan Math. J., 12(4)(1965), 385-387.

STRESZCZENTE

Niech f, g oznaczają funkcje analityczne w kole jednostkowym D i takie, że $f'(z)g(z)z^{-1} \neq 0$. Celem pracy jest ustalenie warunków koniecznych lub dostatecznych na stałe ∞ , β oraz funkcje f, g przy których funkcja h określona wzorem (1.1) jest jednolistna w D.

Резрие

Пусть f,g обозначают аналитические функции в круге D, и такие что $f'(z)g(z)z^{-1}\neq 0$. Цель этой работы — это определение необходимых или достаточных условий на α,β и на f,g, при которых функция дана формулой (1,1) однолистная в D.