Instytut Matematyki Uniwersytet Marii Curie - Skłodowskiej

Janusz GODULA

Some Remarks on Bazilevič Functions

Pewne uwagi o funkcjach Bazylewicza

Некоторые заметки об классе Базилевича

Let S be the class of functions $f(z) = z + a_2 z^2 + ...$ analytic and univalent in the unit disc $D = \{z : |z| < 1\}$. By S* we denote the sub-class of S whose elements are starlike. Denote by P the class of functions p that are analytic in D and satisfy there the conditions p(0) = 1 and Re p(z) > 0. I. E. Bazilevič [1] has introduced the class of functions which may be written in the form:

$$f(z) = [(a+bi) \int_{0}^{z} h(t)t^{bi-1} (g(t))^{a} dt]^{1/(a+bi)}$$
 (1)

where $h \in P$, $g \in S^*$, a > 0, and b is an arbitrary real number. The class of such functions is denoted by B(a, b). In [2] T. Sheil-Small proved the following theorem:

Theorem S. The function $f(z) = z + a_2 z^2 + ...$ analytic in D belongs to the class B(a, b) if and only if

(i) $f'(z) \neq 0, z \in D$,

(ii) $z^{-1} f(z) \neq 0, z \in D$,

(iii) $T_r(\theta_2) - T_r(\theta_1) > -\pi$ for all $\theta_2 > \theta_1$ and $r \in (0, 1)$,

where
$$T_r(\theta) = \arg \frac{f'(z)z^{1-bi}}{f^{1-a-bi}(z)}$$
, $z = re^{i\theta}$ is a continuous function of variable $\theta, -\infty <$

 $<\theta<+\infty$.

In this paper we prove the following theorem:

Theorem. Let $f \in B(a_1, b_1)$, $p \in P$. For α , β satisfying one of the system of inequalities:

$$\begin{cases} a - a_1 \alpha \ge 0 \\ \alpha + \beta \le 1 \end{cases}$$

$$\begin{cases} a - a_1 \alpha \le 0 \\ \alpha + \beta \le 1 \end{cases}$$

$$\begin{cases} \beta - \alpha(2a_1 + 1) \le 1 \\ \alpha - \beta \le 1 \end{cases}$$

$$\begin{cases} \alpha - a_1 \alpha \le 0 \\ \alpha + \beta - 2(a - a_1 \alpha) \le 1 \end{cases}$$

$$\begin{cases} \alpha - \alpha(2a_1 + 1) - 2(a - a_1 \alpha) \le 1 \\ \alpha - \beta - 2(a - a_1 \alpha) \le 1 \end{cases}$$

$$\begin{cases} \alpha - \alpha(2a_1 + 1) \ge -1 \end{cases}$$

the function Fas defined by formula

$$F_{\alpha\beta}(z) = [(a+bi) \int_{0}^{z} t^{a+bi-1} \left(\frac{f'(t)t^{1-a_1-b_1i}}{f^{1-a_1-b_1i}(t)} \right)^{\alpha} p^{\beta}(t) dt]^{1/(a+bi)}$$
(2)

belongs to the class B(a, b).

This theorem is sharp in the sense that if α , β are such that neither (*) nor (**) holds there exist functions $f \in B(a_1, b_1)$ and $p \in P$ such that $F_{\alpha\beta} \in B(a, b)$.

Proof. We will show that the function $F_{\alpha\beta}$ is analytic in D for α , β satisfying our assumptions. Let us assume that $F_{\alpha\beta}$ is not analytic in D. Then z^{-a-bi} $F_{\alpha\beta}^{a+bi}(z)$ is analytic in D and equals zero at a point $z_0 \in D$, $z_0 \neq 0$. We may admit that z_0 is the point of the smallest modulus with this property. Let us observe that the considered function is not identically zero. Therefore $F_{\alpha\beta}$ is analytic in $D_\rho = \int z$: $|z| < \rho l$, where $\rho = |z_0|$. Hence the function $F_{\alpha\beta,\rho}(z) = (1/\rho)F_{\alpha\beta}(\rho z)$ is analytic in D and $z^{-1}F_{\alpha\beta,\rho}(z) \neq 0$. Moreover,

$$\frac{F'_{\alpha\beta}(z) z^{1-a-bi}}{F^{1}_{\alpha\beta}^{-a-bi}(z)} = (h(z) \left(\frac{g(z)}{z}\right)^{a_1})^{\alpha} (p(z))^{\beta},$$

where h, g are functions which appear in the representation (1). We have got that $F'_{\alpha\beta,\,\rho}(z)\neq 0$ in D. Now, we will show that the function $F_{\alpha\beta}$ satisfies the condition (iii) given in the theorem S. The theorem S may be also applied to the function $F_{\alpha\beta,\,\rho}$. Then $F_{\alpha\beta,\,\rho}\in B(a,\,b)$. Since $B(a,\,b)\subset S$, the function $F_{\alpha\beta,\,\rho}$ is univalent and $F_{\alpha\beta,\,\rho}(0)=0$. On the basis of previous considerations $F_{\alpha\beta,\,\rho}(z)\to 0$ when $z\to (1/\rho)\,z_0$. It contradicts the univalence of the function $F_{\alpha\beta,\,\rho}$. Hence the assumption about the existence of the point z_0 is false, therefore $\rho=1$, i.e. $F_{\alpha\beta}\in B(a,\,b)$. For the function $F_{\alpha\beta}$ defined by (2) the function $T_r(\theta)$ has the following form:

$$T_{r}(\theta) = \arg \left(z^{a-a_{1}\alpha} h^{\alpha}(z) g^{a_{1}\alpha}(z) p^{\beta}(z)\right).$$

Therefore

$$T_r(\theta_2) - T_r(\theta_1) = (a - a_1 \alpha) (\theta_2 - \theta_1) + \alpha \left[\arg h(z_2) - \arg h(z_1) + a_1 (\arg g(z_2) - \arg g(z_1)) \right] + \beta \left[\arg p(z_2) - \arg p(z_1) \right]. \tag{3}$$

In the proof it is enough to assume that $0 < \theta_2 - \theta_1 \le 2\pi$.

Let us examine two cases: I $a - a_1 \alpha > 0$. Now, let us consider four cases:

1.
$$\alpha \ge 0, \beta \ge 0$$
. Then $T_r(\theta_2) - T_r(\theta_1) \ge -\pi(\alpha + \beta) \ge -\pi$.

2.
$$\alpha < 0, \beta \ge 0$$
. Then $T_r(\theta_2) - T_r(\theta_1) > -\pi(\beta - \alpha(1 + 2a_1)) \ge -\pi$.

3.
$$\alpha \ge 0, \beta < 0$$
. Then $T_r(\theta_2) - T_r(\theta_1) \ge -\pi(\alpha - \beta) \ge -\pi$.

4.
$$\alpha < 0, \beta < 0$$
. Then $T_r(\theta_2) - T_r(\theta_1) > -\pi(-\beta - \alpha(1 + 2a_1)) > -\pi$.

If $a - a_1 \alpha \le 0$. In this case we have three possibilities because for $\alpha < 0$, $\beta < 0$ the inequality (iii) from theorem S does not hold.

1.
$$\alpha \ge 0, \beta \ge 0$$
. Then $T_r(\theta_2) - T_r(\theta_1) > -\pi(\alpha + \beta - 2(a - a_1\alpha)) \ge -\pi$.

2.
$$\alpha < 0, \beta \ge 0$$
. Then $T_r(\theta_2) - T_r(\theta_1) > -\pi(\beta - \alpha(1 + 2a_1) - 2(a - a_1\alpha)) \ge -\pi$.

3.
$$\alpha \ge 0, \beta < 0$$
. Then $T_r(\theta_2) - T_r(\theta_1) > -\pi(\alpha - \beta - 2(a - a_1\alpha)) \ge -\pi$.

We have proved that for α , β satisfying one system of inequalities given in the theorem, the function $F_{\alpha\beta}$ belongs to the class B(a,b). We will show that our result is sharp. Let us consider two cases: $I = -a_1 \alpha \ge 0$. Let $\alpha + \beta \ge 1$. Let us take h(z) = p(z) = (1+z)/(1-z), $g(z) = z/(1-z)^2$, $\theta_1 = \pi - \epsilon$, $\theta_2 = \pi + \epsilon$, $\epsilon \ge 0$. Then for $z_1 = re^{i\theta_1}$, $z_2 = re^{i\theta_2}$, $r \to 1$, we obtain $T_r(\theta_2) - T_r(\theta_1) \to 2\epsilon(a - a_1\alpha) - \alpha\pi - \beta\pi < -\pi$ for ϵ sufficiently small. This means that exist θ_1 , θ_2 , $\theta_1 < \theta_2$ and r < 1 such that $T_r(\theta_2) - T_r(\theta_1) < -\pi$. Therefore the condition (iii) in theorem S is not satisfied i.e. $F_{\alpha\beta} \in B(a,b)$.

Now, let $\beta - \alpha(1+2a_1) > 1$. Let us take h(z) = (1-z)/(1+z), $g(z) = z/(1+z)^2$, p(z) = (1+z)/(1-z), θ_1 , θ_2 like previously. By (3) we obtain, for $r \to 1$ and for $\epsilon > 0$ sufficiently small: $T_r(\theta_2) - T_r(\theta_1) \to 2\epsilon(a - a_1\alpha) - \pi(\beta - \alpha(1+2a_1)) < -\pi$. Consequently, suitable function $F_{\alpha\beta} \in B(a, b)$.

If $\alpha - \beta > 1$, one has to put h(z) = (1 + z)/(1 - z), $g(z) = z/(1 - z)^2$, p(z) = (1 - z)/(1 + z) and θ_1 , θ_2 like pre-viously. For $r \to 1$ and $\epsilon > 0$ sufficiently small we have:

$$T_r(\theta_2) - T_r(\theta_1) \rightarrow 2\epsilon(a - a_1\alpha) - \pi(\alpha - \beta) < -\pi$$
.

Also in this case suitable function $F_{\alpha\beta} \equiv B(a, b)$.

If $\beta + \alpha(1 + 2a_1) < -1$, we define h(z) = p(z) = (1 - z)/(1 + z), $g(z) = z/(1 + z)^2$ and θ_1 , θ_2 like previously. For $r \to 1$ and $\epsilon > 0$ sufficiently small we obtain:

$$T_r(\theta_2) - T_r(\theta_1) \rightarrow 2\epsilon(a - a_1\alpha) + \pi(\beta + \alpha(1 + 2a_1)) < -\pi$$
.

i.e. $F_{\alpha\beta} \in B(a, b)$.

If $a-a_1\alpha \le 0$. In this case we choose $\theta_1=\epsilon>0$, $\theta_2=2\pi-\epsilon$, $z_1=re^{i\theta_1}$, $z_2=re^{i\theta_2}$. We replace each inequality in the system (**), except for the first one, by an opposite inequality. We can find in each case functions h, g, p similarly as it was done in the discussions of (*) so that the resulting function $F_{\alpha\beta}$ does not belong to the class B(a,b). This ends the proof.

REFERENCES

- [1] Bazilevič, J. E., Über einen Fall der Integrierbarkeit der Lowner-Kufarevschen Gleichungen durch Quadraturen, Mat. Sb. 37, (1955), 471-476.
- [2] Sheil-Small, T., On Bazilevic functions, Quart. J. Math. 1972, vol. 23, N. 90, 135-142.

STRESZCZENIE

W pracy tej podane są warunki wystarczające na to, aby funkcja F_{03} określona za pomocą wzoru (2) należała do klasy Bazylewicza.

PE310ME

В этой работе мы дали достаточные условия на то, чтобы функция $F_{\alpha\beta}$ определена формулой (2) принадлежала к классу Базилевича.