Instytut Matematyki
Uniwersytet Marii Curie-Skłodowskiej

Waldemar CIEŚLAK, Andrzej KIERES

On a Complemented Group of the Isotropy Group

Pewna grupa dopełniająca grupy izotropii

Некоторая дополнительная группа группы изотропии

Let B denote a real Banach space of infinite or finite dimension ≥ 2 . We denote by $\operatorname{GL}(B)$ the group of all continuous and linear automorphisms of B. Let $v \in B$ be a non-zero fixed vector and $H_{\nu}(B) = \{A \in \operatorname{GL}(B) : A\nu = \nu\}$. The group $H_{\nu}(B)$ will be called the isotropy group of the vector ν .

In this paper we consider a certain complemented group to $H_{\nu}(B)$. We obtain a decomposition similar to the Gauss decomposition of GL(n).

Let ω be a fixed non-zero linear function defined on B. Consider the linear mapping $A_p: B \to B$, $p \in B$, defined by the formula

$$A_p x = x + \omega(x) p. (1)$$

We note that A_p is invertible iff $1 + \omega(p) \neq 0$. Moreover, since

$$A_p \circ A_q = A_{p+q+\omega(q)p} \tag{2}$$

SO

$$L_{\omega}(B) = \left\{ A_p : p \in B, \ 1 + \omega(p) \neq 0 \right\} \tag{3}$$

forms a subgroup of GL(B). In this paper, we will consider the group GL(B) with the topology given by the norm $||A|| = \sup\{||Ax|| : ||x|| = 1\}$. We prove the following propositions: (a) $L_{\omega}(B)$ is a closed subgroup of GL(B). Consider a sequence $\{A_{p_n}\}$ in $L_{\omega}(B)$ converging to some A in GL(B). We have $A_{p_n}x = x + \omega(x)p_n$. Hence we obtain $Ax = x + \omega(x)p$. Since $A \in GL(B)$, so A is an invertible transformation. Thus

 $1 + \omega(p) \neq 0$ and $A = A_p$. (b) For $\omega(v) \neq 0$ we have $L_{\omega}(B) \cap H_{\nu}(B) = \{I\}$. Suppose that $A_p \in L_{\omega}(B) \cap H_{\nu}(B)$. It means

$$A_p v = v + \omega(v) p$$
 and $A_p v = v$.

Hence we have p = 0. This implies that $A_p = I$. $L_{\omega}(B)$ and

$$B(\omega) = \left\{ x \in B : 1 + \omega(x) \neq 0 \right\} \tag{4}$$

with multiplication given by the rule

$$xy = x + y + \omega(y)x \tag{5}$$

are isomorphic groups. It follows from (2) that the mapping $A_x \to x$ is an isomorphism. It is easy to see that the identity element of $B(\omega)$ equals to $0 \in B$ and the inverse element to $x \in B(\omega)$ is of the form

$$x^{-1} = \frac{-x}{1 + \omega(x)} \tag{6}$$

We show the following

Theorem 1. $B(\omega)$ is a Banach-Lie group.

Proof. Obviously, $B(\omega)$ is an open subset of B.

The Fréchet derivatives of a mapping $F: B(\omega) \times B(\omega) \rightarrow B(\omega)$ given by the formula (5) are equal respectively

$$\begin{split} dF(x_1,x_2,h_1,h_2) &= h_1 + h_2 + \omega(x_2)h_1 + \omega(h_2)x_1 \,, \\ d^2F(x_1,x_2,h_1^1,h_2^1,h_2^1,h_2^2) &= \omega(h_2^2)h_1^1 + \omega(h_2^1)h_1^2 \,, \\ d^nF(x_1,x_2,h_1^1,h_2^1,...,h_1^n,h_2^n) &= 0 \quad \text{for } n > 2 \,. \end{split}$$

We'll show that the *n*-th Fréchet derivative of a mapping $G: B(\omega) \to B(\omega)$ given by the formula (6) is equal

$$d^{n}G(x, h_{1}, ..., h_{n}) = \frac{(-1)^{n}}{a^{n-1}} (aS_{n} - n! \Omega_{n}x)$$
 (7)

where

$$a = 1 + \omega(x)$$

$$\Omega_n = \omega(h_1) \dots \omega(h_n)$$

$$S_n = \sum_{\sigma} \omega(h_{\sigma(1)}) \dots \omega(h_{\sigma(n-1)}) h_{\sigma(n)}$$

From the equality

$$S_{n+1} = nS_n \omega(h_{n+1}) + n! \Omega_n h_{n+1}$$

we obtain

$$A(h) = \| d^{n}G(x+h, y_{1}, ..., y_{n}) - d^{n}G(x, y_{1}, ..., y_{n}) - d^{n+1}G(x, y_{1}, ..., y_{n}, h) \| =$$

$$= \| \frac{(a + \omega(h))S_{n} - n! \Omega_{n}x - n! \Omega_{n}h}{a^{n+1} + (n+1)a^{n}\omega(h) + r(h^{2})} - \frac{aS_{n} - n! \Omega_{n}x}{a^{n+1}} +$$

$$+ \frac{a(nS_{n}\omega(h) + n! \Omega_{n}h) - (n+1)! \Omega_{n}\omega(h)x}{a^{n+2}} \| =$$

$$= \frac{1}{\| a^{n+2}(a + \omega(h))^{n+1} \|} \| a^{n+1}n(n+1)S_{n}\omega(h)^{2} +$$

$$+ a^{n+1}(n+1)! \Omega_{n}\omega(h)h - (n+1)! (n+1)a^{n}\Omega_{n}\omega(h)^{2}x +$$

$$+ r(h^{2}) [-a^{2}S_{n} + an! \Omega_{n}x + anS_{n}\omega(h) + an! \Omega_{n}h - (n+1)! \Omega_{n}\omega(h)x] \|,$$

it implies at once

$$\frac{A(h)}{\|h\|} \to 0 \quad \text{for } \|h\| \to 0.$$

Let

$$B_0(\omega) = \left\{ x \in B : \omega(x) = 0 \right\}. \tag{8}$$

It is easy to see that $B_0(\omega)$ is a closed, abelain subgroup of the Banach-Lie group $B(\omega)$. We show that $B_0(\omega)$ is a normal subgroup of $B(\omega)$ -

In fact, for $a \in B(\omega)$ and $b \in B_0(\omega)$ we have $\omega(b) = 0$ and

$$\omega(aba^{-1}) = \omega(a+b+\omega(b)a+a^{-1}+\omega(a^{-1})[a+b+\omega(b)a]) =$$

$$= \omega(a+a^{-1}+\omega(a^{-1})a) = \omega(aa^{-1}) = \omega(0) = 0.$$

Thus $aba^{-1} \in B_0(\omega)$.

Since $B_0(\omega)$ is an abelian normal subgroup of $B(\omega)$, so $B(\omega)$ is a solvable group. It is known [2] that 1-parameter subgroup $t \to x(t)$ of B-L group satisfies the following differential equation

$$\dot{x} = (R_x)_* u$$
 with the initial condition $u = \dot{x}(0)$, (9)

where R denotes a right translation.

In our case equation (9) is of the form

$$\dot{x} = (1 + \omega(x))u$$
 with the initial condition $u = \dot{x}(0)$. (10)

The solutions of (10) are given by

$$x(t) = \exp(tu) = \begin{cases} \frac{e^{t\omega(u)} - 1}{\omega(u)} & u & \text{for } \omega(u) \neq 0 \\ tu & \text{for } \omega(u) = 0 \end{cases}$$
 (11)

We denote by $B(\omega)$ the B-L algebra of $B(\omega)$.

Theorem 2. The Banach-Lie algebra $B(\omega)$ is the Banach space B with a commutator.

$$[x, y] = \omega(y)x - \omega(x)y \tag{12}$$

Proof. We put

$$F_t = \exp(tx) \exp(ty), \quad G_t = \exp(-tx) \exp(-ty)$$

where exp is given by (11). Using (11) we obtain

$$\frac{d}{dt}\Big|_{0} F_{t} = x + y$$

$$\frac{d^{2}}{dt^{2}}\Big|_{0} F_{t} = \omega(x)x + \omega(y)y + 2\omega(y)x$$

$$\frac{d^{2}}{dt^{2}}\Big|_{0} G_{t} = -\omega(x)x - \omega(y)y + 2\omega(y)x$$

$$\frac{d}{dt}\Big|_{0} \omega(G_{t}) = -\omega(x) - \omega(y).$$

Since $F_0 = G_0 = 0$, so

$$2[x, y] = \frac{d^2}{dt^2} |_{0} (F_t G_t) = \frac{d^2}{dt^2} |_{0} (F_t + G_t + \omega(G_t) F_t) =$$

$$= \frac{d^2}{dt^2} |_{0} F_t + \frac{d^2}{dt^2} |_{0} G_t + 2 \frac{d}{dt} |_{0} \omega(G_t) \frac{d}{dt} |_{0} F_t$$

From the above equalities we obtain (12).

Moreover, we have

$$||[x,y]|| \le 2||\omega|||x|||y||,$$

which finishes the proof.

Now, we will give a characterization of derivations in the algebra $B(\omega)$. Theorem 3. A linear mapping $T: B \to B$ is a derivation in the algebra $B(\omega)$ iff

$$\omega \circ T = 0. \tag{14}$$

Proof. For arbitrary linear mapping $T: B \to B$ and $x, y \in B$ we have

$$T[x, y] = \omega(y)Tx - \omega(x)Ty$$

$$[Tx, y] + [x, Ty] = \omega(y)Tx - \omega(Tx)y + \omega(Ty)x - \omega(x)Ty$$
(*)

Let T be a derivation of $B(\omega)$. From the equalities (*), (12) and

$$T[x, y] = [Tx, y] + [x, Ty]$$
 (15)

we obtain

$$\omega(Tx)y = \omega(Ty)x \quad \text{for all } x, y \in B$$
 (16)

Suppose that $\omega(Ta) \neq 0$ for some $a \in B$. Then from (16) we have

$$x = \frac{\omega(Tx)}{\omega(Ta)} a \quad \text{for all } x \in B,$$

which denotes that dim B=1. This contradiction proves (14). Now, let $\omega \circ T=0$. Using (*) we obtain

$$[Tx, y] + [x, Ty] = \omega(y) Tx - \omega(x) Ty = T[x, y]$$

so (15) is satisfied.

Suppose that $\omega(\nu) \neq 0$ and put

$$G_{\omega} = \left\{ F \in \mathrm{GL}(B) : \omega(Fv) \neq 0 \right\} \tag{17}$$

$$LH = \left\{ A_p \circ F : A_p \in L_{\omega}(B) , \quad F \in H_{\nu}(B) \right\}. \tag{18}$$

Theorem 4. For $C \in G_{\omega}$ there exist mappings $A_p \in L_{\omega}(B)$ and $F \in H_{\nu}(B)$ such that

$$C = A_p \circ F . \tag{19}$$

This decomposition is unique.

Proof. Let $C \in G_{\omega}$ and

$$p = \frac{Cv - v}{\omega(v)} \tag{20}$$

We have $1 + \omega(p) = \frac{\omega(C\nu)}{\omega(\nu)} \neq 0$. Hence $p \in B(\omega)$. Let us take $F = A_{p^{-1}} \circ C$. Then

due to (6) and (20) we obtain

$$Fv = (A_{p^{-1}} \circ C)v = Cv + \omega(Cv)p^{-1} = Cv - \omega(Cv)\frac{Cv - v}{\omega(v)} - \frac{\omega(v)}{\omega(Cv)} = v,$$

so $F \in H_{\nu}(B)$. It implies $C = A_{D} \circ F$.

Now we have to show uniqueness. Let $C = A_p \circ F = A_q \circ G$ for some $A_p, A_q \in L_{\omega}(B)$ and $F, G \in H_{\nu}(B)$. Then it follows from the above equality that $A_{q^{-1}} \circ A_p = G \circ F^{-1}$. Because $A_{q^{-1}} \circ A_p \in L_{\omega}(B)$, $G \circ F^{-1} \in H_{\nu}(B)$ and $L_{\omega}(B) \cap H_{\nu}(B) = \{I\}$ we obtain $A_p = A_q, F = G$. This ends the proof. From the Theorem 4 we see that $G_{\omega} \in LH$. We show the converse inclusion. For $A_p \in L_{\omega}(B)$, $F \in H_{\nu}(B)$ we have

$$\omega(A_p \circ Fv) = \omega(A_pv) = \omega(v + \omega(v)p) = \omega(v)(1 + \omega(p)) \neq 0.$$

This means $LH \subset G_{\omega}$ and we proved the equality

$$G_{\omega} = LH. \tag{21}$$

Consider the Hilbert space l^2 . Let $e_i = \{\delta_i^j\}$, i, j = 1, 2,... be the standard basis in l^2 . We'll identify [1] an operation $A \in GL(l^2)$ with a matrix of infinite order $[a_1 a_2...]$ where $a_i = Ae_i$.

We put $\omega(x) = \langle v, x \rangle$ for some fixed $v \neq 0$. Let $A_p \in L_{\omega}(l^2)$. Since $A_p x = x + \langle v, x \rangle p$ for $x \in l^2$, so

$$a_k = A_p e_k = e_k + \langle v, e_k \rangle_p = e_k + v^k p$$

and A_D is identified with the matrix

$$[e_1 + v^1 p e_2 + v^2 p...] (22)$$

where $1 + \langle v, p \rangle \neq 0$.

Let $M(l^2)$ denote the set of operations $I + A \in GL(l^2)$ such that

$$\Sigma \langle a_k, a_k \rangle < + \infty \tag{23}$$

Let $(I + A)^{-1} = I + C$. Since operations which satisfy the condition (23) form an ideal [3] in the ring of all automorphisms of the l^2 so C satisfy (23) also. This means that $M(l^2)$ is a group.

For $A_p \in L_{\omega}(l^2)$ using (22) we obtain

$$\Sigma \langle a_k, a_k \rangle = 1 + 2 \langle v, p \rangle + \langle v, v \rangle \langle p, p \rangle$$
.

Thus

$$L_{\omega}(l^2) \subset M(l^2)$$
. (24)

Let

$$K(l^2) = H_{\nu}(l^2) \cap M(l^2)$$
.

and let M, L, K denote B-L algebras of the groups $M(l^2)$, $L_{\omega}(l^2)$ and $K(l^2)$ respectively. In the space M we introduce a scalar product [3]

$$(A,B) = \Sigma \langle a_k, b_k \rangle \tag{25}$$

Theorem 5. L and K are orthogonal subspaces of M and

$$\mathbf{M} = \mathbf{H} \oplus \mathbf{L} \tag{26}$$

Proof. Let us consider the linear map $\phi: M \to l^2$ given by the formula $\phi A = A\nu$. We note that $H = \text{Ker } \phi$. We will show that $L = \overline{\text{Im } \phi^*}$, where $\phi^*: l^2 \to M$ is the conjugate map to ϕ . Since

$$(A, \phi^*x) = \langle \phi A, x \rangle = \langle Av, x \rangle = \langle \Sigma v^k a_k, x \rangle = \Sigma \langle a_k, v^k x \rangle$$

so we have

$$\phi^* x = [v^1 x \quad v^2 x...]. \tag{27}$$

It follows from (22) and (27) that $L = \overline{\text{Im}\phi^{\bullet}}$. The orthogonal decomposition $M = \text{Ker}\phi \oplus \overline{\text{Im}\phi^{\bullet}}$ gives (26), [1].

Let $B = \mathbb{R}^n$, $0 \neq \nu \in \mathbb{R}^n$, \langle , \rangle — the euclidean scalar product and $\omega = \langle \nu, \rangle$. With respect to (22) a matrix $A_p \in L_{\omega}(\mathbb{R}^n)$ has the following form

$$[e_1 + v^1 p \dots e_n + v^n p]$$

where $1 + \langle v, p \rangle \neq 0$. Evidently $\omega(v) \neq 0$, so $L_{\omega}(\mathbb{R}^n) \cap H_{v}(\mathbb{R}^n) = \{I\}$.

For Lie' algebras GL(n), L, H of the groups GL(n), $L_{\omega}(\mathbb{R}^n)$, $H_{\nu}(\mathbb{R}^n)$, similar to Theorem 5, we obtain an orthogonal decomposition

$$GL(n) = H \oplus L$$
.

REFERENCES

[1] Alexiewicz A., Analiza funkcjonalna, PWN, Warszawa 1969.

[2] Maissen B., Lie-Gruppen mit Banachraume als Parameterraume. Acta Math, 108 (1962), 229-270

[3] Schatten R., Norm Ideals of Completely Continuous Operators, Springer-Verlag Berlin, Heidelberg, New York 1970.

STRESZCZENIE

Niech B oznacza rzeczywistą przestrzeń Banacha nieskończonego lub skończonego wymiaru ≥ 2 . Ponadto, niech GL(B) oraz $H_{\nu}(B)$ oznaczają odpowiednio grupę wszystkich ciągłych liniowych automorfizmów przestrzeni B, grupę izotropii niezerowego wektora $\nu \in B$. W pracy tej rozpatrujemy pewną grupę Banacha-Lie'go dopełniającą do $H_{\nu}(B)$. Otrzymujemy rozkład analogiczny do rozkładów Gaussa i biegunowego grupy GL(n). Ponadto znajdujemy algebrę Banacha-Lie'go grupy dopełniającej i podajemy jej własności.

PE310ME

Пусть B обозначает действительное пространство Банаха бесконечной или конечной размерности ≥ 2 . Пусть еще $\mathrm{GL}(B)$ и $H_{\nu}(B)$ обозначают группу всех непрерывных линейных автоморфизмов пространства B, группу и группу изотропии ненулевого вектора $\nu \in B$. В этой работе рассматривается некоторая группа Банаха-Ли, дополнительную к $H_{\nu}(B)$. Получаем разложение аналогическое к полярному разложению и разложению Гаусса группы $\mathrm{GL}(n)$. Находим алгебри Банаха-Ли допольнительной группы и ее свойства.