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L Introduction. The incomplete bloc design was introduced by Yates [27]. The designs
aroused interest because of their usefulness in practice. The properties of known designs
were investigated and the possibility of existence of new designs was considered by many
authors such as Cochran and Cox [7], Federer [9], Kempthore [12], Chakrabarti [6],
Finney [10].

Many statisticians are interested in the construction of new experimental designs and
their properties.

The contruction of some useful designs, their analysis and application is given by Ca-
lirfski [3]. The designs with unequal number of experimental units in blocks are based on
the known BIB designs.

Other designs which are called diagonal ones are presented by Nawrocki {14]. He consi-
ders incomplete block designs in which one special treatment appears the same number of
times in each block. The analysis made by the projection operators method of those
designs is simple and not dependent on the dividing of the treatments among the blocks.
Moreover. the number of replication is not dependent on the number of treatments.

The general theory of the incomplete block designs for a fixted and mixed model is
given by C.R. Rao [20] and for a fixed model by W. Oktaba [17].

Some of particular cases of the incomplete block designs are the inter and intra-group
balanced incomplete block designs. They are given by L. C. A. Corsten [8].

Another approach to the general theory of the incomplete block designs is presented
by Tocher [26]. The properties of the designs are investigated by means of the coveriance
matrix of the adjusted treatment means. This approach is continued by Rees [22], Calinski
[3), Calinski and Ceranka (4], Ceranka [5].

The general theory of orthogonality and connectednes in presented in this paper.
Moreover the problem of balancing in the incomplete block designs is considered here.
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2. Notation and general model of the incomplete block designs. We shall consider the
matrix of the form

23] =X +e
( ) %;l npgl nl

where y is the n X 1 random observation vector, X is the n X p design matrix of the rank
r < p and B is the p X 1 vector of fixted parameter. The n X 1 vector e of random errors
is distributed with e(e) = 0 and e(ee) = 0?1, (I, denotes a n X n unit matrix).

The p X 1 vector of parameters is partitioned such that

2.2 B =B B2 ... :Bs)
where 8; (i = 1, 2, ..., s) is the b; X 1 subvector of parameters of the i-th group and

S
Zb,=p. According to (2.2) the matrix X is partitioned such that the (2.1) is
iny

(2.3 Y= X6+tXab t . X e

The least square estimators of every group of parameters are given by solution of the
normal equation

(2.4) X'Xp=X'y
which according to (2.2) and (2.3) are:

xNx, xix,..xx| [&] [y

(2.5)

XX GX . XX | |5 (X

where the p X p matrix of X'X is of non full rank.
Hence the unique estimators of the unknown parameters can be obtained under restric-
tions in the form of:

(2.6) HE=0

whereas the ununique estimators which we can obtain using (X’ X)~ a generalized inverse
of matrix X' X such that (X' X) (X' Xy (X' X)=X'X as

(2.7) B=(X'Xy X'y

The incomnlete block desings constitute a special group of the experimental desings.



Some Aspects of the Theory of Experimental Designs 137

These are the desings in which the number of different treatments v is greater than a num-
ber of k experimental units per block (k <v).

Let us consider the general model of the incomplete block designs where v is a number
of treatments, b is a number of blocks, X; is a number of experimental units in the j’th
block (j=1, 2, ..., b), ry is a number of the replication for the i’th treatment (i = 1, 2, ...,
v). The arrangement of the treatments is such that every pair of treatments (i, i’) occurs
together in exactly Ny blocks for eachi, i’ = 1,2, ...,v. If i=i’, then \jp =7;.

If the n;; denotes a number of occurence of the i’th tieatment in the j’th block (i = 1,
..., V;i =1,...,b) then the following relations are true

(2.8) ki=% ny and =2 ny
i=1 =1
The number of the all experimental units is equal to
R T RN
(2.9) n- i§1 j§1 nj = i§1 rn= /‘-‘):1 k/

Definition 2.1. The v X b matrix

(2.10) N=N =[ny]
vb
is called the incidence matrix of design.
It should be noted that
2.11 E N =[ky,kq,...,kp]=E K
_( : Al L e
and
2.12 NEY=E'N =[r,r,.... ,]=ER
( ) (vb bl) 1b by Ir1. 72 2 1v vy
where £ is a p X ¢ matrix of ones, and
pPq
(2.13) K = diag (ky, k3, ..., kp), R =diag(ry,rs,..., 1)
bb 17

If yip, is the h observation for the i’th treatment in the j’th block, then

B=3% 3
£.is i=1 h=1 T
foreachj =1, 2,...,b is a sum of the results for in the j’th block,

> "
Gi=%Z X
i it hq)’i/h
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foreachi=1, 2, ...,v is a sum of the results for the i"th treatment and

v b M
Y=Z Z Z yip is a grand total.
j=1 j=1 h=1

The vectors of the block totals and the treatment totals will be used respectively

(2.1%9) 119;=[Bl,B,,...,Bb] and {'=[T‘,T,,...,T,],
»
such that
2.15 Y=E B =ET and Y=F , B =X, , T =X,
(2.15) 1661 i O A e T

In this notation, the general linear model of observations (2.3) of the incomplete block
experiment has a form

(2.16) y=[E:X, X;] [u:d:7]) +e

where y is the n x 1 observation vector, X = [E : X, : X, ]is the n X (1 + b + v) design
matrix, partitioned into the n X 1 vector £ of unit elements, the n X b matrix X,, the
n X v matrix X,, where u is the general means, a is the b X 1 vector of block parameters,
7 is the v X | vector of treatment parameters, and where the n X 1 vector e of random er-
rors is distributed with e(e) = 0 and e(ee) = a%/,.

Thene(y) =X, f=Ep+ X,a + X;7and Z), = a?l,, where Iy denotes a covariance
matrix of y. '

Using (2.15) we get the normal equation:

nl, EK ER]| [& Y'|
15 1»
(2.17) Kfl K N a|=|B
RE N R 7l |T
+1

It is easy to obtan from (2.17) (see Chakrabarti [6]) the equation for treatment para-
meters

(2.18) 0=C7
where
(2.19) g"='[Ql.Qz..-..Qv]=(T—NK"B)'

is the vector of the adjusted treatment such that
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(2.20) €(Q)=Cr, EQ =Co? and E Q =0,
< 1y vl

and the ¥ X v matrix C is

(.21 C=R - NK'N'

By this means the reduced normal equations for the block parameters may be obtained
too

(2.22) P=Da
where the b X 1 vector P of the adjusted block totals is equal to
(2.23) P'=[P,P,y,..,Py)=(B=NR'TY

The following conditions are true

(2.24) €e(P)=Da, Zp=D¢* and E P =0,
15 b1 .

where

(2.25) D =K -NR'N

is the b X b matrix.
The solutions of equations (2.18) and (2.22) are respectively

(2.26) F=CQ and &=DP

where C” and D" are the generalized inverses of matrix C and of D.

Using the condition

(2.27) E Ka=E R71=0
15 1v

we may obtain unique solutions of normal equations (2.18) and (2.22).

3. Connected experimental designs. Estimability of parametric functions. The defini-
tion of connected experimental design was given by B. V. Shah. The problem of connec-
tedness is associated with an estimability of parametric functions. The definition and &
necessary and sufficient condition for an estimability of the parametric function was pre-
sented by Zyskind [28], Chakrabarti [6], and Graybill [11].

In this part of the paper a necessary and sufficient condition for an estimability of a
linear function of the treatment effects for the incomplete block designs is given.

The following theorem will be used in a further consideration.
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Theorem 3.1. A necessary and sufficient condition of a linear estimability of a para-
metric function L' B assuming model (2.1) is

(3.1) L' =L"(X' Xy (X' X)
Definition 3.1. The linear parametric function L’ g in the model (2.1) for which

(G2) EL =0
1p pl

is called a contrast.

In the incomplete block designs, the block function L; a and the treatment function
L3 T may be considered separately.
Then:

Definition 3.2. The linear parametric function L7 is called a treatment contrast if
E L2 = 0.
1y »l

The block contrast can be defined similarly.

Thus, we shall prove the following theorem.

Theorem 3.2. A necessary and sufficient condition for a treatment parametric function
L3 7 to be linearly estimable is that

(3.3) Li=BlCi.C

Proof! An L' may be written in the form L’ = [0:0:L3]. In order to obtain a gene-
ralized inverses matrix (X' X) of known matrix from from thr normal equation (2.17)
we shall use a formula (see Bhimasankaram [2])

A4 B} la+imr' —im
(34) -

B' D| -ML M
where M =D —B' A" B, L = A” B and the all generalized inverse of matrices satisfy a con-

. dition
(3.5) AA"A=A4
Let now A~ from (3.4) will be equal
0 0

A =
0 K
L
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Then it is easy to veryfy that M = C, then M~ =C and

> ro: 0 :
LM'=‘—L,—- L AHLML =|— -
K'N'C 0:K!' +K'N'CNK™

Hence
0 0 Ay
(3.6) (X'Xy=| 0:K'+K'N'CNK* . -K'N'C
0: -CNK? N on

Substituting the maztix (X' X) from (2.17) and (3.6) into (3.1), we obtain
[0:0:L3]=[0:0:L3CC]
or
LY =E.C~C
and the theorem is proved.

The theorem 3.2 is valid for treatment contrasts, i.e. when the additional condition
lli' L, =0 is satysfied.
1 4

The estimability condition concerning a linear function of block effects may be stated
similarly.

In the experimental design with the matrix X of non full rank, the number of linearly
independent estimable parametric functions L'B is equal to the rank of the matrix X.

We may also consider the linearly independent parametric functions, which are estim-
able, and in particular the nonestimable parametric contrasts.

The latter one for the treatment parameters can be obtained from

" g
(3.7 [E] Ly=0

1v

because vectors L, of the unestimable functions belong to the orthocomplement of the
subspace generated by the columns of C, while all vectors L, of the estimable functions
are the linear combinations of the column vectors of C, i.e. the vector L, belongs to the
space generated by the columns of C (see formula (3.3)).

The number of nonestimable contrast or linearly independent vectors L, satisfying the
relation (3.7) is equal to a number of solutions of linear homogeneous equations (3.7).
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That is:
- E
(3.8) QPV-’l'E‘I.
1y
where
C . :
(3.9) r={:-E-]=r(CC y+1=r(C)+1
Therefore
(3.10) q=v-r(C)-1

We now note, that if 7(C) = v — 1, then all contrast will be estimable, because g = 0
and if r(C) =v — m, we have

(3.11) q=m -1

unestimable contrasts.

The estimability of the block contrasts may be considered in the same way.
The above consideration leads to the following theorems.

Theorem 3.3. If r(C)=v — 1, then a necessary and sufficient condition for every treat-
ment parameter function L 7 to be estimable is to be a contrast.

However, with respect to (see Chakrabarti [6]) that
(3.12) r(X)=r(X'X)=b+r(C)=v +r(D)

if r(C) =v — 1,thenr(D)=>b — 1,and r(X' X) =v + b — 1, thus, we have the following
theorem:

Theorem 3.5. A necessary and sufficient condition for every block contrast and 1rcai-
ment contrast to be estimable is that r(C) =v — 1.

The general definition we use is as follows.
Definition 3.3. The design with every block contrasts and treatment contrasts beign
estimable is connected.

So the design is connected, if /(C) =v — 1.

For example BIB design may be given. It iseasy to verify that this is a connected design.
The rank of v X v matrix C
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(3.13) C=N/k(y,—1pE)
v,y
is equal to v-1, because the matrix (I, — 1/v E ),l, and 1/v E are idempotent.
v,y v,y

It may be easy to show also, that the design with the complete confounding of ABC
interaction in threefactor experiments is not connected. Let m be the number of blocks
in the complete replication. Then, the rank of the matrix C of the treatment normal equa-
tion form '

3.14 C =diag(rly —r/kE ,...,rlx - r/kE
(3.19) o iag (rlx /k'k k /k'k)

is equal to »-m, where v =mk and b = mr.

4. Balanced design. The term balance (with respect to treatment effects) is widely used
in the literature and its meaning in relation to the usual block treatment experiment is the
following (see B. V. Shah [25]).

Definition 4.1. The design all the treatment contrasts of which (7; - ;) are estimated
with the same variance is said to be balanced. i

They are the designs, whete a comparison of every pair of treatments is accomplished
with the same precision.

The conditions of balance in the general incomplete block design and some conclu-
sions were given by V. R. Rao [21].

Theorem 4.1. A necessary and sufficient condition for a design to be balanced is that
matrix C of the adjusted normal equations for estimates of treatment effects has v-1 equal
larent roots other zero.

Corollaries:

1) If the design is balanced, then the matrix C has the form
(4.1) C=afl, - 1VE ],

v,y

where a is v-1 — multiple eigenvalue of C and then

(4.2) Fe1/aQ

2) In a balanced design with equal block sizes k, the replicate mimbers must be equal.

3) If all the treatments are replicated the same number of times and the blocks are of
the same size the only balanced design is Balance Incomplete Block Design, if such a
design exists.
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From this if appears that it is a necessary and sufficient condition for the design to be
balanced that all diagonal elements of matrix C are equal and the remaining elements also
are equal. :

In the balanced incomplete block design the latter condition is that every two treat-
ments occur together in X blocks. The elements matrix of C,

(4.3 C=rl, —1/k NN'
are
b b
(4.9) ci=r—1/k jE ny and cj=-1/k ‘E ni ny

b b
Since nj; is equal O or 1, we have Z n,’; =r and ¢ will be constant when’E njj ny'y = const,
=1 =]

that is when for every i, = 1,2, ...,v (i #1') treatments 7; and 7; occur together in the
same number of blocks, denoted by A.

We notice that balanced lattices, lattice squarcs and Youden squares belong to the in-
complete blocks which are balanced.

The corollary 1 was generalized by B. V. Shah for factorial experiments in the in-
complete block design.

S. Orthogonal design. The ‘orthogonality’ of designs is closely associated with the sim-
plicity and effectiveness of the statistical methods. We know, that sums of squares for in-
dividual hipothesis are independent in the orthogonal designs.

It is frequently (see Oktaba [15], Ahrens [1]) accepted that the orthogonal design is
a design with equal or proportional number of the observations in all the subclasses of the
suitable cross classification, or the same number of subclasses and equal number of obser-
vations in the hierachical classification.

Graybill [11] gas given the following definition of the design orthogonality.

Definition S.1. If X; X, = 0 in the full rank model of the experimental design y =
= X, B, + X; B, + e, then a vector of the parameter §, will be said to be orthogonal
to f,.

This definition was generalized by Kempthorne [12] and Oktaba [16] in a model with
an optional number group of parameters. Consider the model (2.3).

The estimator of 8 parameter are obtained from the normal equation (2.5) where the
matrix § = X’ X is of full rank, then
(5.1 B=85"x'y

and the covariance matrix of fis equal

(5:2) Iy=5" o
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Consequently, X}X;,= 0 for every i,j =1, 2, ...,s and i # means, that the estimators
of the individual parameters groups are uncorrelated, because the S ™! matrix is

' 0 ...0
(5.3) st=10 S§? .0

The above condition is especially valid in the analysis of variance and in the verifica-
tion of hypotheses, since it permits to divide the total sum of square for the regression
into a sum of squares for the individual source of variance corresponding to the separate
groups of parameters. Then the following condition is performed. When the hypothesis
Hy : i =0(@ =1, 2, ...,5) is true, the sum of squares nS; = y'A;y is distributed as
X?,,0% with the digrees of freedom v; = r(4;). -

In a non full rank model this problem is more complicated. The matrices X?X, for i#j
are not in general zero-matrix. The unique solution of normal equation (2.4), where
r(S) = r < p may be obtained after putting the restriction in the separate group of para-
meters. That is why the above definition has to be changed and the following one is
formed.

Definition 5.2. In the non full rank model (2.3) vectors of each group parameter are
orthogonal if in the matrix of normal equation U’ U under the parameter restriction, the
submatrices U; Uj are zero-matrix for every i,j = 1,2,..., s, that is UjU; = 0.

On the other hand, the following definition of orthogonality is given by B. V. Shah [24].

Definition 5.3. The experimental design with s parameter groups (the parameters may
not be linearly independent with each group), is called orthogonal, if

(5.9) TH5=0 (#iij=12,...,9)

From above definition follows, that if E,- and E, are normaly distributed, then these esti-
mators are stochastic independent.

The orthogonality of design is closely associated with an imposing restriction, since the
form of the matrix U’ U and estimators of all groups of parameter depend on it.

Let us partition the vector § as in (2.2). The experimental design is an orthogonal one
accerding to the definition 5.3, when the ¥ fis:

331
0
(5.5) Iz= 231
0
)
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Using a well known formula given by Plackett [18], the design will be orthogonal if

under the restriction [llp fvl = 0 and the assumption &, = azl,,. the covariance matrix f

(5.6) 5= X'X+HI' X' X(X'X+H' )™ o?
is a block-diagonal as in (5.5).

Theorem S.1. If an experimental design with the model (2.3) under the restriction
Hp = 0 is orthogonal according to definition 5.2, then it is also orthogonal according to
definition 5.3 and the other way round.

Proving theorem 5.1 we will use the following theorem (see C. R. Rao [19]).

Theorem 5.2. Let the rank of the p X m matrix B be m, the rank of the n X q matrix C
be n and the matrix A be of order m X n. Then BAC =0ifand only if A = 0.

Proof of the theorem 5.1. Let the vector § and the corresponding matrix X be divided
as in (2.3). The 8, is a general mean and the vectors §; fori =1,2,..., s are of order b; X 1
(then b, = 1). The restriction A = O are imposed on the s — 1 groups of parameters and
allow for the finding of one or a few parameters from each group, as a linear combination
of independent parameters in the same group. After such a reparametrization, the model
2.1)is ]

(5.7) y=Up*+e,

where matrix U is of order n X ¢, §* is £ X 1 vector and t is the number of independent
paiameiers in all the groups together. And further on:

(5.8) U=[U; :Uy:....U] and ¥ =[Br:BY ... 18]

and eachB,"' isofg;X 1 vector(i=1,2,...,5s), thent = _i qiand g; = 1.
The normal equations now are =

59 UURP=Uy

and with respect to (5.8)

VU, Uy U, ... UyUs Uy
(5.10) U'U=|UyU, UyU,.... UyUs| and U'y = |Uyy
Us U U;Uz .. Usly Usy

In definition 5 ?2 is stated that the design with the model (2.1) is orthogonal one, if
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(5.11) U“Uf=0 forevery i,j=1,2,...,s and i#j
The matrix U’ U is of full rank, therefore
(5.12) F=UVUy
and by (5.11) we obtain
(5.13) B =(UU)T Ujy forevery i=1,2,....5
Let nowP'. be a matrix of ordera; X q;, wherea; =b; — g; (i=1, 2, ... ,s) such that
(5.14) B =P.6
and B7* isaa; X 1 vector of dependent parameters from i’th group. Then

AL
o R

and from (5.13) we obtain

UiUp Uy, i=1,2,...,s

: 3 l qj
5.16 =|—
(5.16) Bi i
- ‘ -
Hence, the covariance matrix is equal to
_,q/.
P

I¥ - ==
5.5

1
i uviup v
( fi ]') ,')‘

P_](U;Up L Uly,
i

lq
i o Y pry - 2
~ ?i( U U lllqj.-P,,-] o’

Using theorem 5.2, we get Eat 7 0 since U;. U, = 0, that means the condition of
-B; J

orthogonality in the definition 5.3 is satisfied.

Now. we assume the condition (5.4). It is well known, that the normal equation (5.9)
from the mode! (5.7) under the restriction £/ = 0, has the solution (5.12).

Let the matrix (U'U) ™" =Z, then
(5.17) . g'=2zU'y

and according to (5.8) the solution of the normal equation (5.9) is
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g
(5-18) E; = 1231 Z2; ... Zy |- |Us |y

Further we denote
Zi=[Z;,2;,..., 2] fori=1,2,...,s
Foreveryi=1,2,...,s estimators E;’ are then given by
(5.19) Be=2Z;U'y

Substituting (5.19) into (5.15) we have

(5.20) g=

Using (5.20) in condition (5.4) we obtain

L
g P Y
(5.21) zﬁﬁg-[PE]ziu‘uzj[ij.P,]a =0
where
5.22 zvvzi=lE %z, v vz
(5.22) 1U /—kgl 2 2 Ur | UxZjx

According to the theorem 5.2, covariance matrix E,-, ’5/ is equal to zero if and only if
Z;U'UZj=0or )

(5.23)

¢ & z,-,u;} UZjx =0

k=1 rm=1

Since the matrix Z an inverse of matrix U’ U, the following relation is true

- Il whenk =
(5.24) [ g Ui] Ug =
r

= Owhenk #i

From (5.24) and (5.23) it is easy to see that Zj; for k = i must be equal to zero for
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every fixed i, j =1, 2,...,s and i ¥ . Because matrix Z is symetrical, Zy = 0 also. Hence,
the matrix Z = (U'U)™" is a block-diagonal one and the Z™ = U'U is a block-diagonal
one too. Therefore, U;U/ =0,(,7=1,2,...,5i+#j)and the proof is concluded.

6. Orthogonality condition of some experimental designs. From the definition 5.2 we
can clearly see, that the orthogonality of experimental designs depend on the form of re-
striction, which are imposed on parameters. Hence, it easy to give the orthogonality con-
dition for various designs. We will consider some of them.

A. One way classification. The mathematical model is

6.1 =J +X;a te ,
&l i TR R

where y is a random vector of observations with the expected value e(y) = X =J,u +

+ X,a and ), =1I,0? is an orthogonal design if the used restrictions ] ﬁ M !31 o 0 are

(6.2) [0:JnX,]" [§]= 0

Then the covariance matrix of E is
1z o] [tne? 0 I
(6.3) E‘E= = '
0 E; 0 [(Xlxl)-l _l/nE ]02
- - a.a

and estimator vectors of both groups of parameters are uncorrelated.
One way classification with the equal number of observations in sub-classes is a parti-
cular case of general model in one way classification. i

B. Two stage nested classification is also the orthogonal design under the weighted re-
striction. Now the model is

(6.4) y =J qutXja +X;y() +e

nl nl na al ns sl nl

a
where s = X b; is a number all class of classificstion B within a class of classification A,
I=1
and b; is a number class of classification B within i’-class of A. Furiher, if y is a random
vector with () =J, u + X; e+ X, y(a) and I, = 6%I, then the orthogonality condi-
tion is that the weighted restriction /= 0 will be

. 0 JLX, 0 vl
(6.5) H = and ' =[u:a 1 y(a)]
a*1P 10 0 X X,
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andp=sl+a+t g b;. The covariance matrix of fis then a block-diagonal one, so that
i=1 .

(6.6) I;=1/nd’, ;=X X)) —1nE }o*,
a.a

G = [ X0)™ — (X5 X)X X, (X1 X,) 7 X X (X3 X,) ™ ) o2,
and vectors of estimators of undividual groups of parameters are uncorrelated.

In a particular case, the weighted restriction may be replaced by the unweighted one
when the design of the two stage nested classification have equal number class of classifi-
cation B within each of class classification A, and equal number of observations in all sub-
classes.

The above consideration may be generalized for the optional nested classification.

C. Two way cross-classification. When the design in the two stage nested classification
is the orthogonal one always under the suitable weighted restriction, the design in two
way cross classification will be orthogonal, if in all subclasses there are equal or proportio-
nal numbers of observations.

The orthogonality conditions in a proportional case are given by Mikos [13].

The incomplete block designs are a particular case of two way cross classification.

From definition 5.3 it follows that the incomplete block design with the model (2.16)
is orthogonal if

(6.7) I:5=0

Hence, and from (2.26) is

(6.8) 2:5=3c-9p-p=C Zp p0@) =0
and then the orthogonality condition is

(6.9) EQ' p=0

that is the vectors of adjusted treatment sums and adjusted block sums are uncorrelated.
From (6.9), (2.19) and (2.23) it follows, that

(6.10) NK'D=CR'N=0

(see Oktaba [17]).

As an example, a design with complete confounding of ABC interaction in three-fac-
tors experiments may be given, where v = 8 combinations — treatments, b = 6 blocks, k =
= 4 experimental units in each block, r = 3 replications of every treatment and m = 2
blocks composed of a fuil replication is considered.
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It is easy to verify, that the relations given below are truev=mk,b=mrand n=v-r=
= bk = 24.
Because the matrix NV is

Il
—_
O O O O =t st =
———— 0 O OO
O O O O r wut st =
—— e O OO O
C O O O = et bty

——— O O OO

from the formula (3.14) matrix C may be obtained and the number of block matrices
(rly —r/k f k) is exact M.

Consequently, matrix C here is

gl ogesl3em3 -0 -0 00

-3 9 -3 -3 0 0 0 O

-3 -3 9 -3 0 O 0 O

|3 gt fgui 9 10, Oui-0~ 0
€14 0 0o o o 9 -3 -3 -3
b Ot ¥ <¥g e, 9. 3 Y 97 —3i0 3
0™ 4@=0.F 0 —3 —3- 9 ,=3

0 0 0 0 -3 -3 -3 9_

Matrix R is equal R = rlg. Hence, CR "' N = 0 and the design is an orthogonal one.
Let us see, that if the incomplete block design is a connected one, then the orthogona-
lity condition (6.10) is reduced to

n,}‘ .

(6.11) — =const, foreveryi=1,2,...,v
ri

and
n,y a

(6.12) —k—=const, foreveryj=1,2,...,b,

)

that is the number of determined appearance of treatments in blocks may be proportional
to the replication and proportional to a number of experimental units in blocks also.
Hence, an 2;; must be different from zero.

Therefore, the incomplete block design may be an orthogonal one, when it is a con-
nected design.
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But if an incomplete block design is a balanced one then it satisfies the condition (4.1),
and it is an orthogonal one when

(6.13) a[R'N-1pE R'N]=0
v,r
or
nyj 1 » ny
(6.14) -—= Y —foreveryj=1,2,...,bandk=1,2,...,v.

rg v—1 i=1 r;
iwk a
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STRESZCZENIE

W pracy rozwagane sq zagadnienia ortogonalnosci, zwartosci i zréwnowazenia ukta-
déw eksperymentalnych ze szczeg6lnym uwzglednieniem uktadéw o blokach niekom-
pletnych. Wykazano réwnowazno$¢ dwdch definicji ortogalnoéci i podano wynikajgce
z nich warunki ortogalnosci dla pewnych uktadéw eksperymentalnych. Podano réwniez
warunki estymowalnosci funkcji parametrycznych dla obiektéw oraz okreslono liczbe
nieestymowalnych kontrastéw obiektowych.

PE3IOME

B nacTosuiesi paboTe 3aTparuBaloTCA BONPOCH OPTOTOHANBLHOCTH, CBA3-
HOCTM M cb6ajlaHCMPOBaHMA JKCNEPMMEHTAJBHBIX CXeM C 0coGeHHbIM Y4é-
TOM CXeM HeNoJHbIX 61oKkoB. JIOKa3biBaeTCA 3KBMBAJEHTHOCTb ABYX OIpe-
AeNeHuit OPTOTOHAJNLHOCTM M NPUBOAATCA BLITEKAIOLDME M3 HMX yCIOBUA
OpPTOrONANLHOCTH ANA ONpeAejeHUA IRCMepUMEHTANLHBIX CXeM. Npuso-
OATCA TaKke YCNOBMA OLEHKM MapaMeTpuiecKux Pyuximi aas 060HEKTOB
¥ onpefieasieTCA YMCI0 HeAONYCKAIOUX OLEHKY KOHTPACTOB MEXKY obbex-
TaMH.






