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K. Yano and S. Isihara have investigated complete and horizontal lifts of geometric
objects from a differential manifold M to the manifold TM in [4].

In this paper we present soime proporties of the pair of linear connections on TM given
by complete and horozontal lifts of the pair of m-conjugate connections on M. With the
aid of metods given in [4] we transfer some results concerning m-conjugate connections
and n-geodesics from M to TM.

The main results are contained in theorems (21) and (44). All our considerations are in

the category r’ .

1. Introduction. Let (M, ) be a smooth n-dimensional manifold with a linear connec-
tion V. We denote by TA the tangent bundle over the manifold M. Let p denote the na-
tural projection p : TM = M. On TM there exists the natural structure of smooth 2n-di-
mensional differential manifold induced from M. (see e. g. [4] chapleil_; §1)

We assume that indices &, i, j, ... vary over {1,...,n],indices h, 1, ], ... vary over [n 4-
+1,...,2n) and indices A, I, J, ...vary over {1, ... ,n,n+1,..., 2n]. The Einstein sum-
mation convention will be used with respect to these systems of indices. Let f, denotes
the tangent map of a given mapping f and cxp, the exponential mapping with respect to
the given linear connection V. The exp, yiclds a diffeomorphism of a neighborhood U’ of
0'in T, M onto a neighborhood U of x in M, and rz denotes the automorphism of Ty M
given by 1z(Y) = Y — Z for Y € Ty M. p, being the tangent map of canonical projection

P :TM - M and projection K is denoted as follows: for each 4 € Tz TM and x = p(Z) we
set

1) . K|z(A):=(expy * 17 * T)a(A4)

Where 7 denotes the C™-map of p~! (U) into Ty M which assings to every Y €p* (U) the
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element r(Y) € Ty M which is obtained by a parallel transport of ¥ from y =p(Y) to the
point x along the unique geodesic arc in U joining x and y.

Let R2" be the Euclidean space of dimension 2n, and let (U, x) be a local chart on M.
We denote by (x,, .. , X,) a holonomic field of frames$ on U determined by x. Let’s de-
fine X:

X:p'(U)->R*"™(Z>(x',...,x", 2" ..., 2")

where (Z%, ..., Z™) are components of Z € p™! (U) with respect to the frame (x,, ;.. , X,)
and (x', ..., x") are the coordinates of the point x = p(Z) in (U, x). The pair (o' (U), X)
is called the natural lift of the chart (U, x). The natural lift of the local chart (U, x) is the
local chart on TM. The field of holonomic frames with respect to the local hart (5™ (U),
X) is called the natural frame. We denote it by (X, ... , Xp, Xp4p, -.. X2)-

{ e - n k
Let (ll;t) be local coefficients of the linear connection V ;i. e. Vg;Xj = kE I’ xi. Then
=1 ij
there are defined [2] the two linear mappings of TTM onto TM. p. is tangential to p.
thus if ¥ maps a neighbourhood of 0 in R into TM so that X is a corresponding ‘velocity
vector’, then p - W describes a curve of its foot points in M and p«JX is just its velocity
vektor. Another mapping, K, is defined locally as follows:

4 i B n
() K(X) = E XHn+ xlx'z")x,-, where X =A§ XAz, .
j=1 j =]

The projections p and K have the followingproperties:
a) foreachZ€TM

p+|Tz(TM) and K|Tz(TM)

are linear mappings of rank n n = dim M with values in T, (z)M.
b) for arbitrary Z € TM there exists the following decomposition into a direct sum

Tz TM =ker(p«|T2 TM) ® ker(K |Tz TM)

where dim kerp« =dim kerK =n

The definitions of horizontal, vertical and complete liftings used in thesequel are taken-
from [2] and [4].

A vector field v on TM is said to be the horizontal lift of the vector field v on M iff
for every Z € TM with x = p(Z) we have

paH @) =v(x) and KeH @)= 0.

A vector field v ¥ on TM is said 10 be vertical lift of the vector field v on M. iff for all
Z € TM we have
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pe0¥(2)=0 and K" (D)) 2v(x).
A vector field v€ on TM is called a complete lift of the vector field v on M, iff we have
pe(C@) =v(x) and K(€(2)) = (&)@).
Let T*TM denote a bundle which is cotangent with respect to the tangent bundle
T(TM). If there is given a frame (X, ... , Xn, Xp+y, ... , X2), then there exists a unique

co-frame dx!, ..., dx", dx"*!, ..., dx?", such that the value of dx?|Z on x5Z is
eaqual to the Kronecker 5‘; :

2
AE” wz dxA on TM is said to be the horizontal lift of the co-
=1

vector field w on M iff for all Z € TM withx =p(Z) and for each vector field v on M we
have

A covector field wf =

Wl wH#)|Z=0 and w”(vV)lZ =w®)ly .
A covector field w ¥ on TM is said to be the vertical lift the convector field w on M iff
wV )iz =wE)lx andw” ¢¥)1Z=0.
A covector field w€ on TM is said to be the complete lift of the covector field w iff
wC0)1Z = w(Vzv)x + (Vzw)@)Ix
wCoH)Z = (Vzw)0)Ix
wc(vV)lZ =w@)lx

Let f be a smooth real valued function on M. A function f ¥ on TM defined by f V(._Z):
: = f(p(2)), for arbitrary Z € TM is the vertical lift of the function .

n
A function jc on TM defined on each Z € TM by the formulafc(Z) =k21 zk S[lk,is

the complete lift of the function f.

Let (U, x) be a local chart on M and (p* (U), X) a local chart on TM. Let (v*, ..., v")
and (w,, ..., wy) be local coordinates of the vector field » and the covector field w on M
respectively. The vector field v€ on TM has the coordinates

n . n .
(3) | pX@)1:=0",...,0", = Z'vp ..., £ 2'v)

i=1 i=1
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for any point Z of the local chart (p~* (U), X). Then the covector wC(Z ) has local coordi-
nates

n 4 on i
(Z‘IZ wm,...,iElZ Wn|is w,,...,w,,)
i= -

Let f be a smooth real-valued function on M and v be a vector field on M. Thus the
complete lift of the product fv hrs the form

Mm@ =rfer'@+r' .

Lemma. If (x,, ... , Xp) is the holonomic frame field on U, the set of 2n vector fields
..., x5x00, 0, x5p)on P (U), is a local field of frames on TM.

The matrix which transfers the linear bazis (x4)4 <1 ,...,2n into the (x,C, ey X6 .,

. » X§) has the following form

This matrix is non-singular what comletes the proof of the lemma.

Remark. The module of local vector filds on TM is generated by means of complete
and vertical lifts of holonomic vector fields from M.

Let 7 be a symmetric non-singular tensor field on M of the type (0, 2). A symmetric
non-singular tensor field #C on TM of the type (0, 2) is said to be the complete lift of the
tensor field if the equalities

(4.1) nCEC Uz =(Vz2m0. Wlx 3 v (Yzv. w)ix + 700, Vzu) I
(4.2) - €€ u")z =n(Vzv, u)1x

43) 7€oY, u€)iz =70, Vzu)is

(4.4) oV, u")z=0,

hold for arbitrary vector fields u, » on M and for each point Z € TM with x = p(Z). Let
(mis) be local coordinates of the tensor field = and (') the local coordinates in a chart (u,
x) of the inverse tensor field 7' . The local coordinates of € in the local chart (p~* (U), X)
are the following '
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A\
g Z*mpk my

(5) Gip@):= ¥
w0
The local coordinates of (n*)C are
(6) @@ := ’ :ﬁ \
o/ k::lz" A

where we have 7, w7 = 8-; .

2. Complete lift of m-conjugate linear connections. The following theorem is valid:
(cf. [4]). If M is a differentiable manifold with a linear connection V/, then there exists
a unique linear connections on TM which satisfies

@) Vu® = (Vu)©
h
for every vector fields v, u on M. If (};) are the local coefficiens of the connection V/,

then the coefficients of the connection V< with respect to the local chart (p™* (U), X) are
as follows ) ;

b o=t Be=-0la=0fa-o

~F n h i h h ~F
o= 21 @ = NORGENON TR

The connections VC is called the complete lift of the linear connection V.

, For any vector field v on M we define the covector field 7/\v := m(—, v). Thus we have
m \w(w) = w(w, v) for arbitrary vector field w on M. So =\ denote izomorphism of the
module of vector fields on M onto the module of covector fields on M. Let n\/ denote the
mapping which is reciprocal to 7/\. We define a mapping n\/ as follows: if 6 is a covector
field on M then m /6 is such a vector field that it holds m(m/6, v) := 6 (v) for any vector
field. The composition m/ . n/\ is the identity map on the module of vector fields on M
and the composition 7/\ m\ is the identity map on the module of covector fields on M.
The map V(_)(n/\v) denotes the linear mapping from the module of vector fields on M
onto the module of covector fields: i. e. -

V(__) (@/\v) :u >V, (n/\v)

where {,, (n/\v) is the covector field on M.
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The map V(—)(m ) denotes the linear mapping from the module off vector fields on
M onto itself: i. e. for arbitrary vector fields u, V, (m/0) is the vector field on M.

Let ¢/ be the linear connection on M and let 7 be a non-singular tensor field of the
type (0,2) on M.

Definition. The connection V* on M which is given by the formula

(10) Vou : = Vpu + my (7)),

is said to be a m-conjugate connection with respect to the given connection V. In.the local
chart (U, x) the formula (10) takes the form

i . f ;
an Ghl’ku’—(ﬂp'vkﬂp’ +1;‘)v"u’,
where (Gi ') are the local coefficients of the connection V..
We have the following.
Lemma. The following identity is valid
(13) (m/ 7, () = 1T ).
Proof. If the use the Jocal frame (x;, ..., X,) then we may write
n g
wV(V}, 7 \u)| m= 5?1 (n”"Vk ﬂﬂ.vku')xh ;-
This follows by formula (3) in the left-hand member of (13):

n ! n :
a9 @@, @ uy)€, = Z @, 7k u)x, + JZ 2 @ n Fu)x
for each Z € p™! (U) where m = p(2).

We have for the right-hand member of formula (13) the equality

c CA,,C _ ! ~HS K —ART ~ _K{r =
(15) "V(VSC(" MYyl = 2 SV Tgy g — VE Tg gy — VAT For V! Xy
where (VK) K= 1, ... . 2n are the local components of the vector vC (see formula (3)),

(7 ys) and (1?" ) are local components of the tensor € and (r! )C respectively. These are
given by (5), (6) and the coefficients (T‘Z) are given by (8). We decompose the right-hand
member of the formula (15) into the form

i UV X, 4 ¥ @SUTe, U VOX;

=np+l
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From direct calculations we have the following identities

(16) @SV gy U VE) 5 = ("G n )1,
(a7 (;,ifs§x g U VE) ;= 3,9, ”si_"/"k)lz
Proof of the formula (17):

8) PGy, UV =37 VU + 0 (G 7, VE 1) =
= 7, AU+ G VRO 4G5 A0 + T vE Uy +
+ 28 7y U+ Ve g VU + G Rl + Veitsy vVEUT)

We have the obvious identities

(18.1) (V7 , = ,,:%, ZP(Vem ),
(18.2) VeF )z =V,
(18.3) Vi)l =V
(18.4) (6;c ieplz =Viemy

and

(18.5)-188) (V7,0 = (VeFz)l, = Qs plz = (Ve =0
If we apply the above identities to the right-hand side of formula (18) then wé obtain:
(19) PSkuizP (Vy Tl, + va’l‘puivknst + 2P vku'lp Ver) +

+2° 1r'|'; ' Gy my)

forh =1, ...,n The above expressions (19) are differentials of real functions (s \/ L
"ut Vk)h -1,....n Withrespect to the vector Z €p™' (V). All functions (ﬂ""vk ﬂ,,“"’k);, s sy

are defined in a certain open subset of R". The expression (19) may be written in the form

(20) 9, (“Juvk ’;;‘uivk)h- g0
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which completes proof of the formula (17). In order to get a proof of (16) it is sufficient
to writte the left-hand member of these indentities in the explicit form.

Theorem. If the linear connections V' and / are n-conjugate in the sense of the for-
mula (10) then the connections V'€ and V€ are n-conjugate on TM.

Proof. The condition for nc-conjugation has the following local form
C,C _ C %0 C CcA,C
(22 V: P Vfcu + nV(VfC(r u)),

for arbitrary vector fields u, v on M. The complete lift of the formula (10) yields us

(23) PEuC = VEuC +(m (7, e uy)°
We have
9 V’fc u€ = Vfc u€ + u{"/(VfC(ﬂCA Uy)

from the lemma (12) and the above formula. That completes the proof of theorem (21).

3. Corollaries concerning curves in TM which are related to curves in M. Let (M, V/, 7)
be a structure like one considerated in 2. We assume that {/z # 0 every on M. Let’s take
consider the linear connection V* defined ba the formula (10) on the manifold M with a
so defined structure. Let y: R D1 - M be a parametrization of the curve k on M. The Ijet

of the map v, i:”'y(t) = T1 @ is the tangent vector of the curve k at the point y(s). We
say that curve k on M is a -geodesic ([1], [3]) if

(25) V,T+ nV(VT(:AT)) =T
A being some real function.

We are going to consider a structure (TM, o wc) where V€ and € are complete lifts
of V and = respectively.

Lemma. If Vr # 0 then vCﬂC # 0. Moreover vCﬂC =0ifVn=0.

Proof. In a local chart (p™ (U), X) formulas (18.1 —18.8) imply
n
Vimlz= Z Znl,

(Vf"g) Iz =V,
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(VEmlz =Yy
(Vi) z =V,
(Verplz =0
(Vensplz =0
(VEns)iz =0
TGS, =0
We obtain from above identities the implication
(Vn#0)= (V<€ £0)
If 7€ #€ = 0 then all above identies are equal to zero. We have the equivalence
(Vg =0) = (Vg 5, =0)

from (anf';.)l z = V7, = 0 which completes the proof of lemma (26).

Let the tensor field 7 on (M. V) satisfy the condition: V # O every where on M. Then
the connection V* defined by the formula (10) is different from the connection V.

Let TM be a manifold with connection VC and 'symetric non-singular tensor field €
of the type (0,2). We define the new connection VE* by putting

(27) Veou€ = Ve u€ + (V% @N\uY))

for arbitrary vector fields v, u on M. The above defined connection V€ is cailed the .
<Conjugate with respect to the given connection V¢ . We have

Theorem. The complete lift of the connection \J* given by the formula (10) ia identi-
cal to the nc-conjugare connection VC. of the connection V< which is given by the for-

mula (27).i. e (V" €)=J€°.
Proof. We have from the formulas (22) and (27)

el et

Which gives us at once the statement of theorem (28).
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Let v : I = M/t = y(t) be the description of the curve k on M. The mapping v* : I -
> TM/s > j:i ,7(t) paremetrizes the curve k* on TM. This is a natural lift of the curve k.

The natural lift k* of the geodesic on (M,V) is the geodesic on TM with respect to the

connection V<.

Example. Let k be n-geodesic on (M, V/, m), i. e. k is a geodesic on M with respect to
the connection V*. The natural lift k* is the 7€ -geodesic on (TM, ) and it is a geodesic
on TM with respect to the connection V°€.

Let’s consider the arbitrary E with the local parametrization '7:1" TM and fl"i'_: T
which satisfies the equality

(29) - VET+ nf,(v,.(nc/\f)) ENT

where A is a certain smooth real function on TM.
We have from the theorem (21).

Corollary. The curve Kisa geodesic on TM with respect to the connection V)% defin-
ed by the formula (27).

Proof. Making use of the identity (22) to the left hand member of formula (29) we
have

VT =T
T
and by virtue of the theorem (28) we get
VE'T =AT
T
The last equation describes a geodesic on TM with respect to the connection 7= q.e.d.
Let M and TM be manifolds with connections ¥ and V¢ respectively. Let k be a curve

on TM which is parametrized by 4 = w + vy : I = TM, where v is a parametrization of k,

k being a certain curve on M and w is some vector field on M. The curve kis geodesic on
TM with respect to the given connection if, and only if

1) ¥ parametrizes some geodesic k on (M, V)

2) w|im is a Jacobi vector field along the curve k (see [4] Prop. 9.1.)
There exists a unique connection on M which has a zero torsion and it has the same geo-
desics as the given connection V. Then we may take a torsion less connections { for
studying geodesics.

Let  be a connection with zero torsion on M and 7 be a parametrization of some geo-
desic k. A smooth vector field w on M is called a Jacobi field along k, if there holds along k
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(G Wy Vp w=RpwT
where T =j'7.
For the arbitrary vector fields u, v, w, on M
(32) R,w=V,V,w=V,V,»=T, W

Now we introduce some formulas for to determinate geodesic on TM. Let y:/—> M be
a parametrization of a geodesic kK on M and § be a fixed real number from7 CR, (e,, ...,

e,) be a given basis in the vector space T'r f. mM. The vector T is the tangent vector along
the curve k. Let (4, ... , u,) denote the parallel transport of (e;, ... , e,) along the geo-
desic k, then for each ¢ €1 the vectors (u, (2), ... u,(N)C TT (I)M form a basis of T,’ (”M.
We assume that T = u, . The Jacobi field w can be written uniquely in the form w =

n
= IE w‘u'. where the (W', ..., w") are real-valued functions defined on L. Because (u;) are
=1

vector fields which are transplate of (e,) along the geodesic k thus we have
(33) vT"i=° fori=1,...,n.

We calculate covariant derivatives

and
(35) Vs Vpw= 5-51 ",

From the formulas (31), (35) and from equation

* oanl
Rujuk u; =Ry

we have

n n n
(36) I-z:l(w’) U =k,f§1(R"”let)ul

We interprete formulas (36) as a system of linear equations of second order with coeffi-

cients (R i k’) kl=1,...,n and with the following initial conditions

37 w(@) =t and (va)la=k
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where t, k are certain fixed vectors in Ty (ﬂ)M. We deduce the existence and uniqueness

of solution (w', ... , w") of system (36rom the theory of differential equations.
If we consider the solution w of (36) with initial conditions (37), and the curve k which
is parametrized by v : / - M then the composition

wey:I>TM

ami YKL =1, ... nare
components of the curvante tensor of the connection {/ then the composition w * v para-
metrizes a certain geodesic on (TM, Vc). If R,k
curvante -tensor of a connection /* then the composition w ¢y parametrizes a certain

geodesic on (TM, V.C). The latest statement is an example of nc-geodesic on (TM, VC,
C) :

sives us parametrization of a certain geodesic on (TM, VC). If (R

l)kI =1, ..., n are components of a

m

4. The horizontal lifts of m-conjugate connections. Besides cosiderating complete lifts
of geometric objects (1,2) we take into consideration also the horizontal lift geometric
objects (see [4], chapter II).

The linear connection V” on TM which is defined by the formulas
V”Vuy=0, V”Vuﬂ=0,
1 4 14

Vs =@’ V=@

(38)

for any vector fields u, v on M, is called the horizontal lift of the linear connection V.
Remark. The vector field v¥ defined as in 1, satisfies the equality
(@) =v€2)—(V,»)" foreachZETM ([4]p. 87)

It follows from the above that the connection V” is well defined on the module of vector
fields on TM.

In the following part of our paper we will consider certain relations between the ho-
rizontal lifts of the m-conjugate connections. Our considerations will be performed in local
coordinates of a chart (p! (1), X).

The local coefficients of the connection V¥ are

=T =0, ffy =0, =0=1F,

e — — k [k = 3 =
=2T)~ZR, =0, T =13, & =1

(39)
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where (Fl’.“) are the local coefficients of the connection V/, (R’“") are the coordinates of

the curvante tensor of the connection V and (Z7) are the coordinates of the vector Z€
€p™! (U) with respect to the frame (X,, ..., X, ).

Let A be a tensor field of the type (0,2) on M. A tensor field A% onTM (of the type
(0,2)) defined by formulas

AH €, uc)l.z =A(Vyvu) +AQ, Vzu)

AH oS, uV)Iz =A(Vyv,u)
(40)
AR Y, uC)i, =40, V,u)

A4eY, u"y, =0

is called the horizontal lift of A. A vectors v, u are arbitrary vector fields on M.
Let B be a tensor field of the type (2,0) on M. A tensor field B# on TM, defined by
the formulas

B¥ (W€, o)1, = B(Vw,0) + B(w,V;0)

BH(wC, ")l , =B(V, w,0)
(41)
B, o)1, =B(w,V,0)

B WY, a")I,=0

is called a horizontal lift of the tensor field B. The tensor B isof the type (2,0). A covectors
w, o are arbitrary covectors fields on M.

‘Let m be a symmetric non-singular tensor field of the type (0,2) on M, and let (m;;) be
a matrix of a local components of #. The tensor field 7/ which is a horizontal lifting of 7
and is defined by means of the formula (40) has the following matrix of local coordinates:

\

/
_ Z"’i/lr_vz”u- i
(42) @ 2):=
LITE 0

The tensor field (n“)” defined by the formula (41) has the following local coordinates

o0,
(43) @H@y):=|
o, 2l ~ 0l
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Let M be the smooth differential manifold with the connection V. There is given sym-
metric non-singular tensor field m of the type (0,2) on M and the linear connection V*
which is defined the formula (10).

Theorem. .The horizontal lifts of n-conjugate connections \J* and \/ on M ia a pair of
ﬂC-conjugate connections V ¥ and P onTM.

Proof. Let (Gfl) be local coefficients of V" and (I‘A.;,) be local coefficients of connec-
tion V¥ defined by (39). The coordinates (7 ;) and (#7) of the tensor fields 7€ and
(1) respectively are defined in (5) and (6).

(45) GJHI - ﬁ.'rif + :_E’:’TSH (61;"31)

After some simple calculations we get

'(45.1) Gl =T} +wh(Vm)

(45.2) C;'i =0

(45.3) 6;"__ =

(45.4) G =0

(45.5) Gh=Ph+ 7 Qi) +7 ")
(45.6) 6)5‘, =r%+ (V1)

(45.7) c':ff =1+ (V)

(45.8) c";;l_. =0

In the local coordinates we have formula
1 h
(46) Gh=rf +2* ()
Making use of the formulas (39) to the right-hand side of the formula (46) we get

proofs of the equalities (45.1-45.4) and (45.6—45.8). Now it remains to prove (45.5).
The formulas (39) and (46) imply
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ARy = B h s h
@7 Cl@:= 2 (Z T+ yn ), =28, )]
where B denotes the curvanture tensor of /*. From the formulas (47) and (45.5) we have
(48) GH@) = ([ + (Vi )T" + (Vi )T M),

where Vj is the operetor of the covariant differentiation with respect to the connection A
and /s is the operator of the covariant differentiation with respect to the given connection
VH . The right-hand side of the formula (48) is:

(49) B+ (V)7 — (i g P = @), % -

'[fsz*"ruk"'h —(qu"slk _Z*Rkjsr)ﬂri'm -

—If 28, 2 + U @ ).
From the formulas
(A) g =Vt — Iy n — I, ™"
® ‘Rkﬁh=r?f[k-r‘:flj+rz:r}!l-rj‘fril
© Tk = Vi + T, Mg + Ty,

and from the partial derivatives of the functions

g".(x‘, RO < A i T =k-§lenﬁ(x’, ,x")lk

with respect to the variables (x', ..., x) fors, i = 1, ..., n the right-hand side of the
formula (49) is of the form:

k k k k k
(£ vk"s'i)li-i'z Chs1j™i + 2 T +Z iiliﬂsr*-z P;ci“

o _
ks 1 ™ri ksTrilj Jn*

srij
_ k h _ 7k h k .k
["'.SZ (Vk T i P‘I'cr"ri + P‘Hﬂrr)ﬂ; 4 r;:lk"‘n'": +(Z F/r:lk z r‘;ull =

TG O -0, Dm0 =, (2, + 25 T, + 28 T ) o™ 4

kt % js ks “tr kr “st

+2 G m (V7 — T 7 =T, #).

After some abbreviation,
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(50) ZX (V) + 25Dy —ZE R+ 2F Ty, 0 -
~ZErL V ay ot 2k I Vi Ay 7 + 28 Vi1 Vi wh —ZE ), Vymg

The left-hand side of the formula (48) takes the form
(51

e TS W,

k ~h ~t _
kt /i—z G/eri‘zkrh

wity T2 (V) o +Z* Uy 1y -

K k r _ h 4 h t
—-z* Phkrr;i_z r';:tvl“n’", zkvk“s:"; F}:‘ AR/ V;“rr"’ i

+zk l"';’ l‘;".+2k P,;rvk T 7T+ Z* vfﬂqr Ak l‘£+Zk Vlﬂq,’fqh Vk ﬂr‘ﬂ"

Let 7 be non-singular tensor field on M. By a covariant derivating of the identity
L 7h = 5% we get

A BELEE AL
Consequently
(D) Vi 1 V0 = — (@ G m ) @ V)

with respect to any local chart (U, x) on M.
From the identity (A), (B) and (D) in (51) we have
(52) G'}}(Z):=z" rj;.—z" R,

h k
i +Z (Vkﬂs

h_
j D"

=2z Vi i [;s’ ath 22k FZ, V/ Mei L l}tivk Tee k-

—Zkvk nstn’hvjﬂn.n"+zk %V k.

] st

By means of the idensity (D) it is easy to see: the equality of the right-hand member of
(50) and (52) holds. We obtain the equality

2 Gl =2 Byl =@+ (VI F + 7T

what finishes the proof of the theorem (44).
Let V7 # 0 on M and let nfl be the horizontal lift of thetensor field m.

Remark. Connections 7" ¥ and 7 on TM are not necessarily the n/ -conjugate con-
nections on M.



Liftings of s-Conjugate Connections 125

Proof. Suppose that connections V4 and V¥ are of! -conjugate. That would imply
, K Ly

(53) Gl =T+ 2 9 7g)

in an arbitrary local chart (p™ (U), X) on TM. The last term of the formula (53’) may be

written in the form of the sum of the 8 terms as in (45.1—45.8). We take one term of this
sum, e.g.

(54) Ghd = (1";3‘ + #F (G + 7 (T 7)), 2.
A simple calculation yields
(VI )z = (Vi Ttk = v, ﬁ")ll -i.', o f‘::’,ir.‘_
-; :r_r‘ sr - Msilf Vlt f'r—l}: 7, =0.
Thus we have
(5) Vr#,=0
and analoguously
(56) V; #;=0.
We obtain from formulas (54—56)
67 o =T

On the other hand the application of formulas (39) to the connection given by for-
mula (46) yields 3

= s
(58) Gl.l r+ o).
From the formulas (57) and (58) we obtain an inequality

(59) = rj + (Y, 7,) # T,

because of Vj n_. # 0. This inequality gives a contradiction, what completes the proof of

the remark (53).

Let (TM, VH, nH) be the horizontal lift of the structure (M, ¥/, 7) i.e. the horizontal
lift with respect to the given linear connection on M. In view of theorem (44) and of re-
mark (53) we conclude that V*# and VH are nC-conjugate always, while V*H and V#
are #H conjugate iff Vx =0 on M.
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STRESZCZENIE

K. Yano i S. Isihara wprowadzili zupetne i horyzontalne podnoszenie obiektéw geo-
metrycznych z rozmaitosci rézniczkowej M na rozmaito$é TM [4].

W tej pracy przedstawiono pewne wtasnosci par koneksji liniowych na TM danych po-
przez zupetne oraz horyzontalne podniesienie par koneksji #-sprzg¢zonych z rozmaitosci
M. Za pomoca metod danych w [4] zostaty podniesione i zbadane pewne koneksje oraz
m-geodezyjne na rozmaitosci TM.

Wyniki tej pracy zawarte s3 w twierdzeniach (21) i (44). Wszystkie rozwazania prowa-
dzone sg w kategorii C*.

PE3IOME

K. fvo u C. Mummxapa BBexyM COBeplIeHHbIe M TOPUBOHTAJLHbIE IOA-
HATUA reoMeTpuyeckux ob6rexkToB M3 auddepeHunamLHOro pasHoobpasua
M na MHOrooGpasue TM [4]. '

B sToli paGore mpencraBiAeTCA HEKOTOpPbie CBOMCTBA Nap JMHEHON!
CBA3HOCTU Ha TM naHHBIX uepe3 COBEPLIEHHBbIE M TOPU3OHTAJbHbIE MOA-
HATMA nap II — cnpsmkenHbix cBA3sHocTu ¢ M. [Ipu nomMoum MeTOZOB Npen-
CTaBJIEHHbIX B [4] MepeHOCUTCA HEKOTOpble pe3yabTaThl Kacawmoumecs IT
cBsa3nocT 1 I1 reoge3udiinbx 3 M Ha TM.

PeaysbraTel 310l paboThl comep:KaTcA B yTBepxkIenmax [21] u [44]
M Bce pacCy’kfeHMA BeXyTcA B KaTteropuu C=.



