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On the Limiting Behaviour of Some Functions of the Average 
of Independent Random Variables

O granicznym zachowaniu się pewnych funkcji średniej niezależnych zmiennych 
losowych.

О предельном поведении некоторых функций средних независимых случайных 
величин.

1. Introduction and preliminaries

Let {Xk, > 1} be a sequence of random variables. Investigations of 
n

the asymptotical behaviour of {Sn/n, 1}, where Sn — £ Xk, are 
fc-i

inportant both from the theoretical and the applied point of view. In 
particular, consideration of the limit distribution of

where cn == anb„ln and dn = n/bn > 0, % > 1, are normalizing constants, 
constitutes a notable part of probability theory and mathematical statis
tics. In the case when the limit distribution of {Yn,w>l} is normal, 
then {Xk, fc > 1} is sometimes called asymptotically normal. In this 
note we shall use the following

Definition 1. Let {Xfc, fcjs 1} be a sequence of random variables. The 
n

sequence {Snln, 1}, Sn = £ Xk, is said to have the property of asymp-
fc-i

to tic normality if there exist normalizing constants on and d„ > 0, w > 1, 
such that

Jf as n -> oo (A in law),(1)
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where Jf is the normal random variable with mean zero and standard 
deviation 1, i.e.

r / S„ \ 1 1 f

limP d = 0 ®) -= “7= 1

n->oo L \ n I J

Here we are interested in the finding a class <8 of real functions g 
in which the property of asymptotical normality is invariant in the sense 
that for every function g eG there exist normalizing constants c'n = cn(g), 
d'n = > 1, such that
(2) d'n(g(«„»-<) b as n-* oo
where b is the normal random variable with mean a and standard 
deviation b.

One can immediately notice, by the central limit theorem, that if 
{Xk, fc>l} is a sequence of independent and identically distributed 
random variables with EXn = /z, = a2 < oo, n > 1, then {Snln, n > 1}
has the property of asymptotical normality with cn = p and dn = 
— Vn/a, n 1. Hence, we see that statements asserting the con
dition under which {g(8nln),n^l} has the property of asymptotical 
normality are direct generalizations of the central limit theorem.

The aim of this note is to give some theorems concerning the asympto
tic normality of {g(8nln), n > 1} and to extend these results to the case 
when n is replaced by an integer-valued random variable Nn.

2. Classes of functions preserving the property of asymptotical 
normality

We consider here a sequence {X„,n^l} of independent random 
variables.

In what follows we shall need the lemmas:

Lemma 1. (see, e.g. [5]). Let {Xn, n 1} be a sequence of random varia
bles such that Xn X as n -> oo. If h is a continuous function, then h (Xn)

h(X) as n -> oo.

Remark. If Xn p — const., and f is a continuous function at the 
point p, then /(JTn) f(p) as w-> oo.

Lemma 2. (see, e.g. [6]). Let {Xn, n > 1} be a sequence of random varia
bles such that Xn -+ X as n -> oo. If {Tn, n > 1} and {Zn, n > 1} are se
quences of random variables such that Yn->- las n-^- oo and Zn 0 as n -> oo, 
then Un = XnYn + Zn X as n-> oo.
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We now give some results concerning the asymptotic behaviour of 
{g(8nln),n^l}.

Theorem 1. [11]. Let {Xn, n > 1} be a sequence of independent and iden
tically distributed random variables with, EXt = p and o2Xt — o2 < oo. 
Suppose that <3is the class of all functions g differentiable at the point 
x — p with g'(p} 0.
Then for every g

Proof. Define

(4) h(x) =
g(x)-g(p)
(x-p)g'(p)

1

if x p, 

if x = p.

Since g is differentiable at x = p, then h is continuous, so lim/i(«) = 1 
x->-n

— h(p). Using the fact that Sn/n _> p as »-> oo, it then follows from 
Lemma 1 that hfSJri) 5- h(p) as »-> oo.

Moreover, we see that

y/n IS \(5) .~(g(8nln)-g(p)} = — (-7 ~B)^(8nln).
g (p)o 0 \ n I

But, by the central limit theorem

Therefore, using Lemma 2 and (5), we conclude that (3) holds, i.e. (2) 
holds with cn = g(p) and d'n — Ynl(g'(p)o).

The proof of Theorem 1 leads to a more general result:

Theorem 1'. Let {Zn, n^ 1} be a sequence of random variables such 
that Zn -> p, and an(Zn — p) 2+ Z as «->00, where p is a constant and 
{«„,»> 1} is a sequence of real numbers. Then for every g e

“?(/*)) ^Z as n-noc.
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Theorem 1 is also a particular case of the following

Theorem 2. Let {Xn, n 1} be a sequence of independent random varia
bles with EXn = pn and a2Xn = a2t < oo, n > 1, satisfying the Lindeberg

condition. Suppose that SJn -> p, and s"1 (f? pk — np) -> a as »->oo, 
n k~\

where s2n = £ a2k. Then for every
k~l

Proof. As in the proof of Theorem 1, we have

where h is the function defined by (4). 
We see that

)'•(-)
n
\ Pk ! c

n
’ \ S Pk~nP I c< \

fc=I hi "|+fc = 1 h ",
/ \ n 1 Sn \ 1-I / sn \n J

Hence, by the assumptions of Theorem 2, we obtain (6).
As a consequence of Theorem 1' or Theorem 2, we have

Corollary. Let {Xn, n > 1} be a sequence of independent random varia
bles with EXn = p and a2Xn = a2n< oo, n > 1, satisfying the Lindeberg 
condition. If Snln p as n -> oo, then (6) holds with a — 0.

Theorem 3. Let {Xn, n 1} be a sequence of independent random varia
bles with EXn = pn, a2Xn = a2n < oo satisfying the Lindeberg condition. 

Suppose that SJn -> p and pn = £ pk/n -> p as n -> oo, and let be the
*;=i

class of all functions g differentiable in some neighbourhood of p and such 
that g'(p) =/= 0, and g' is continuous at the point p.

Then for every ge9*

m yh: (’Hr) ”■

Proof. Using Lagrange’s formula we have

where 0 < 0 < 1.
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But

- 2 f*x L
-----as n -> oo,

and, by the assumptions,

9' +e ('V 3 aS n~*

Corollary. If under the assumptions of Theorem 3

»(?(/!„)-ffM) ..............—:---------------!—> as n -> oo,
Sn

then

We have the following slightly more general result:

Theorem 4. Let {Xn, n 1} be a sequence of independent random varia
bles with EXn = yn, a2Xn = o2n< oo satisfying the Lindeberg condition. 
Suppose that (X„, » > 1} satisfies the weak law of large numbers and that 
is the class of all functions g with continuous derivative such that g'(yn) #= 0, 
and

JfiPn) i when Un 0 as n^- oo,
9 (/*„)

and ,in = J1 pk/n. 
fc-i

Then, for every g e(S'

(9)
9

Proof. Define

9^}~9Wn
(10) M*) =

if ® yn,
(X-Pn)9'(pn)

1 if x = pn, n = 1,2,

as w -> oo.

As before,
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But for SJn a.s., we have

as n -> oo.
This fact together with (11) proves Theorem 4.

Remark If as n -> oo and g' (p) 0, then (9) reduces to (8).
Moreover, we have the following theorem

Theorem. 5. Let {Xn, n 1} be a sequence of independent random varia
bles with EXn = pn, o2Xn = <r£ < oo satisfying the Lindeberg condition 
and the weak law of large numbers. Suppose that &" is the class of all functions g 
with continuous second derivative such that

sup|gf" (x)/g' (j?)| < K < oo, where K is a positive constant. Then, for
X

every g e <S" (9) holds.

Proof. From the definition of hn in (10), the assumptions concerning g, 
and Taylor series expansion, we get

\(Sn/«)-l
g(SJn)-g(pn) _ t
(Snln-pn)g'(pn)

g'(/ln)(^„/n-An)+lg"(A» + e[^n/n-AJ)(^/w-An)2

- (Snln-pn)
2g'(An)

where o < 0 < 1 Since Snln — pnf> 0,
as n-> oo and sup\g"(%)lg'(x)\ < X, we get hn(S„ln) — l X0, as »-> oo.

X

Hence, by (11) and Lemma 2, we obtain (9).

3. The behaviour of functions of sums with random indices

Here we extend the previous results to the case of random indexed sums.

Theorem 6. Let {Xn, n^ 1} be a sequence of independent and identi
cally distributed random variables with EXt = p and a2X1 = a2 < oo. 
Suppose that {Nn, 1} is a sequence of positive integer-valued random 
variables such that {Xn,n^l} and {Nn,n^l} are independent, and 

(12) Nn 1^. oo as n _> oo.
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Then for every g e & where <& is the class of functions defined in Theorem 1, 
we have

(13)

Proof. Let
Pnk = P [-^n ~ ^3 i n, k =1,2,....

Using the properties of probability measures and (12), we get
(a) 0; n, k =1,2,...,

(b) £pnlc = 1; n = 1,2,...,
A;«l

(c) limpnJt = 0; k = 1,2, ....
n->00

Taking into account the independence of {X„,n>l} and {27„,»>1} 
we have

L

Using (a)-(c), Toeplitz’ Lemma (see, e.g. [3], p. 238) and Theorem 1, we 
get (13).

Corollary. Under the assumptions of Theorem 6. ivith g(x) = x, we get 
the result of [6], p. 472.

Under the assumption (12) and the independence of {Xn, n > 1} 
and {Nn, w > 1} it can be seen that corresponding to Theorems 2-5 we 
have the following results:

(6') {glSNnINn)-glp))f^ ^aas n-> oo,

(S') (s(SNJNn)-S(PNn)) as « oo,
g xPwNn

(»') as n_* °°-

Remark. If one uses the fact that — p, (a.s.-almost sure) and 
n

3
NnJ^. oo as n -> oo imply 'v„

N..
-/z as »-* oo ([7], p. 148), then the proof
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of Theorem 6 is similar to that of Theorem 1. Namely, we have

as n -> oo, where fe is the function defined by (4). This follows from The
orem 1 [6], p. 472, the fact mentioned above and Lemma 2.

By the last Remark we have a more general result, namely:

Theorem 6'. Let {Zn, n > 1} be a sequence of random variables such 
that Znn"> p, and an(Zn — p)—> Z as »-> oo, wherep is a constant and 
{an, n > 1} is a sequence of real numbers. If {Nn, 1} is a sequence of 
positive integer-valued random variables such that {Z„,n>l} and {Nn, 
n > 1} are independent, and (12) holds, then for every

Y^(9(ZNn)-g(p))^ Z as oo.

Proof. The assumptions Z„^* p as n-> oo and (12) imply that ZNn-i- p 
as w-> oo [2]. Moreover, we know that an(Zn — p)^> Z as %-> oo and (12) 
give a v (Z Vn — /z) 4- Z as n -> oo [8]. Using the function h defined by (4), 
and the previous arguments, we have for every g E&

~;'~t 9 (ZNn) -g(p)) = aNn (ZNn -p)h (ZVn) Z as oo.
9 (I1)

As an application of this Theorem, we have the following two theo
rems:

Theorem 7. Let {Xn, n > 1} be a sequence of independent random varia
bles with EXn = p, azXn = a^< oo, w > 1, such that 8nlna-^ p as n -> oo. 
Suppose that {Nn,n^l} is a sequence of positive integer-valued random 
variables such that {Xn,n^l} and {Nn, n^ 1} are independent and (12) 
holds. If for any given e > 0

1 'Vn— V f x*dFk(x-p)$-0 as n —*■ oo,
Sxr r j J

lx|>««jvn
or equivalently if the so-called „random Lindeberg condition'1'1

-j— V f x'dFk(x-p} = 0 [10] 
s^n & M>J.,Nn J

is satisfied, then for every g

(9(SNnINn)-g(p)) as n-> oo.
9 W8Nn
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Proof. Taking into account Theorem 6j it is enough to state that the 
assumptions of Theorem 7 imply that

SN,
as n-> oo.

But this assertion follows from Theorem 6.2 of [9] or from Theorem 1 [10].

Theorem 8. Let {Xn, n > 1} be a sequence of independent random varia
bles with EXn — p, o2Xn = a2 < 00, n > 1, such that SJn"^ p as n-+ 00. 
Suppose that {Nn, n> 1} is a sequence of positive integer-valued random 
variables such that {Xn, n> 1} and {Xn, n> 1} are independent and (12) 
holds. If (14) holds and

s2 — Es2
0*8

0 as n -> 00,”n P

v„

as n-+ 00,

then for every

9'^bnaSNn\y\Nj 

where b2n = Es2Nnl(Es2Nn +po2Nn).

Proof. As previously, we have

g'(p)oSXn\ \ Nn I I °SNn \Nnl 

SN —Nnp
But, by Theorem 2 of [10] —- --------- is asymptotically normal

N(Q, bn) where b2n = Es2Nnl(Es2Nn +po*Nn), and, moreover, we know 
that h(8Nn/Nn) 5-1 as n-+ 00, which ends the proof.

Now using the considerations mentioned in the previous Remark, 
together with some facts on the limit behaviour of sums with random 
indices, one can prove

Theorem 9. Let {Xn, n 1} be a sequence of independent and identically 
distributed random variables with EXt == p and o*X1 = <r2 < 00. Suppose 
that A is a positive discrete random variable, and put

Nn = [nA],

where [a>] denotes the integral part of x. Then for every g e (13) holds.
To prove the statement it is enough to use Theorem 1 [4], p. 472 and 

the considerations given above.
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The limit behaviour of functions of sums with random indices when 
{Xn, те > 1} and {Nn, те > 1} are not assumed to be independent, is given 
by the following theorem.

Theorem 10. Let {Xn, n^ l} be a sequence of independent and identically 
distributed random variables with EXt — p and огХх — a2. If {Nn, те > 1} 
is a sequence of positive integer-valued random variables such that

N p(16) ------ > A as те -> oo,
те

where A is a positive random variable, then for every g e @(13) holds.
In the case when A is a discrete, positive-valued random variable, 

then, under (15), the assertion of Theorem 10 is a consequence of Theorem 4
[6] p. 475 and the facts used earlier. When A is a positive random varia
ble one can use the results given in [1] or [4].
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STRESZCZENIE

Niech {Xk,k^l} będzie ciągiem niezależnych zmiennych losowych, 
a g funkcją rzeczywistą. W pracy określa się warunki asymptotycznej

normalności ciągu {</($„/%), n > 1}, gdzie Sn = £ Xk, & również asympto- 
fc-i

tycznej normalności ciągu {g(SNn/Nn),n^l}, gdzie {Wn,w>l} jest 
ciągiem zmiennych losowych o wartościach w zbiorze liczb naturalnych.
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РЕЗЮМЕ

Пусть {Хк,к~^1} -последовательность независимых случайных 
величин и вещественная функция. В работе устанавливается условие
асимптотической нормальности последовательности {д(8п/п), п = 1},

п
где 8п = £ Хк, а также асимптотической нормальности последова- 

к-1
тельности > 1) где {Хп, п ^-последовательность цело
численных положительных случайных величин.




