ANNALES
UNIVERSITATIS MARIAE CURIE-SKEODOWSKA
LUBLIN-POLONIA

VOL. XXXI, 12 SECTIO A 1977

Statistics Department, University of Adelaide, South Australia.
Instytut Matomatyk{, Uniweraytet Marli Curie-Sklodowskiej, Lublin

KERWIN W. MORRIS, DOMINIK SZYNAL

On the Limiting Behaviour of Some Functions of the Average
of Independent Random Variables

O granicznym zachowaniu si¢ pewnych funkeji érednicj niezaleinyech zmiennych
losowych.

O npenesabHOM MOBEAEHNM HEKOTOPHX OYHKNHUM CPOXHMX HE3aBUCHMHX CIy4YaiHHX
BOJIMYHH.

1. Introduction and preliminaries

Let {X., k> 1} be a sequence of random variables. Investigations of

n
the asymptotical behaviour of {S,/n,n>1}, where §, = ) X,, are
kel

mportant both from the theoretical and the applied point of view. In
particular, consideration of the limit distribution of
S Sn

Yn ='F:' —a, = dn(_n— 8 )’
where ¢, = a,b,/n and d, = n/b, > 0, n > 1, are normalizing constants,
constitutes a notable part of probability theory and mathematical statis-
tics. In the case when the limit distribution of {¥,,n > 1} is normal,
then {X,,k>1} is sometimes called asymptotically normal. In this
note we shall use the following

Definition 1. Let {X,, k¥ > 1} be a sequence of random variables. The

n

sequence {S,/n,n > 1}, §, = 3 X,,issaid to have the property of asymp-
k=1

totic normality if there exist normalizing constants o, and d, > 0, n > 1,

such that

n

(1) d, (—n— —c,,) L ¥ as n—> oo (L in law),
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where 4" is the normal random variable with mean zero and standard
deviation 1, i.e.
S, 1 7
IimP[ “/ On\l< m-! = ¢ m) =/—_. ra—‘zﬂd‘.

Here we are interested in the finding a class ¢ of real functions ¢
in which the property of asymptotical normality is invariant in the sense
that for every function ¢e@ thereexist normalizing constants ¢, = c,(g),
d, =d,(g), n > 1, such that

(2) d,(g(S,/n)—0)) > Ny a8 n—> oo

where 4, , is the normal random variable with mean a and standard
deviation b.

One can immediately notice, by the central limit theorem, that if
{X,, k>1} is a sequence of independent and identically distributed
random variables with EX, = u, 0® X, = ¢®*< oo, n > 1, then {S,/n, n > 1}
has the property of asymptotical normality with ¢, = u and d, =
= l/n/a, n>1. Hence, we see that statements asserting the con-
dition under which {g(S,/n),n > 1} has the property of asymptotical
normality are direct generalizations of the central limit theorem.

The aim of this note is to give some theorems concerning the asympto-
tic normality of {g(8,/n),n > 1} and to extend these results to the case
when n is replaced by an integer-valued random variable N, .

2. Classes of functions preserving the property of asymptotical
normality

We consider here a sequence {X,,n >1} of independent random
variables.
In what follows we shall need the lemmas:

Lemma 1. (see, c.g. [0]). Let {X,, n = 1} be a sequence of random varia-
bles such that X, L X asm— oo. If h is a continuous function, then h(X,)
L h(X) as n—> oo.

Remark. If X, & p = const., and f is a continuous function at the
point p, then f(X,) iaa-f(,u) as n— oo,

Lemma 2. (scc, e.g. [6]). Let {X,,n > 1} be a sequence of random varia-
bles such that X, L X as n—> oo. If {(Y,,n>1}and {Z,,n > 1} are se-
quences of random variables such that Y,‘—f; lasn >occandZ, f» 0 as n — oo,
them U, = X,Y, +2Z, 42X as n> .
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We now give some results concerning the asymptotic behaviour of
{9(8,/n), n >1}.

Theorem 1. [11]. Let {X,,n > 1} be a sequence of independent and iden-
tically distributed random variables with EX, = u and 0*X, = o2 < oo,
Suppose that ¥, i8 the class of all functions g differentiable at the point
z =pu with ¢g'(u) #0.

Then for every g€ %,

Vn (y(s

n L
(3) PIPY —) —-y(,u)) - N as n— oco.

n
Proof. Define
g(x)—g(n)

(x—u)g'(p)
1 if v = u.

(4) h(z) = RhE s

Since g is differentiable at # = u, then & is continuous, so limk(z) =1
z—u
= h(p). Using the fact that 8, /n =4 @ as n—> oo, it then follows from
Lemma 1 that h(S,/n) 5 h(un) a8 m — oo.
Moreover, we gee that

Iv‘% Va

(5) PIrY: (9(8,/m)— g(m)] ——0—(7 —#) h(8,/n).

But, by the central limit theorem

I
— —u) S A a8 n—> oo

g n

Therefore, using Lemma 2 and (5), we conclude that (3) holds, i.e. (2)
holds with ¢, = g(¢) and d, = Vn/(g’ (u)o).
The proof of Theorem 1 leads to a more general result:

Theorcm Y. Let {Z,,n> 1} be a sequence of random variables such

that 2, 5 pu, and a,(Z,—p) 5 Z as n— oo, where u is a constant and
{a,, n = 1} is a sequence of real numbers. Then for every g € ¥,

—g(p) 5 Z as n—> oo.
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Theorem 1 is also a particular case of the following

Theorem 2. Let {X,, n = 1} be a sequence of independent random varia-
bles with EX, = u, and o*X, = ol < oo, n > 1, satisfying the Lindeberg

condition. Suppose that S,/n 5 pu, and s ‘(2 Pp—np)—>a as n— oo,

where s, = E o;. Then for every g € ¥,

k=1
n S L
(®) —o (0(32) —0) B Hos a5 n > .
gws, \"\n) 7" ‘
Proof. As in the proof of Theorem 1, we have
n S n (8 8
7 = i) (o st =% 3l ==
. rn 005e) —o0) =25 =) (5)
where % is the function defined by (4).
We see that
n S-n Sn S" —k%l . Sn \ kg‘l Y ( 'Sn 3
e e et |
g, \n n 8, n 8, n

Hence, by the assumptions of Theorem 2, we obtain (6).
As a consequence of Theorem 1’ or Theorem 2, we have

Corollary. Let {X,,n > 1} be a sequence of independent random varia-
bles with EX, = u and o¢*X, = o) < oo, m > 1, satisfying the Lindeberg
condition. If 8,/n 2 u as n— oo, then (6) holds with a = 0.

Theorem 3. Let {X,,n = 1} be a sequence of independent random varia-
bles with EX, = pu,, 0*X, = o> < oo satisfying the Lindeberg condition.

Suppose that S, |n = pand ji, = Y p./n—> pu as n— oo, and let ¥}, be the
k=1

olass of all functions g differentiable in some meighbourhood of u and such
that g'(u) # 0, and g’ is continuous at the point u.
Then for every ge 9,
n N L
(8) —,——( (—”—) —g(p l)) — A as n— oo,
7w, U\ ) T

Proof. Using Lagrange’s formula we have

n ( (s,,) B o, a1 A ) (S o __))
77 0 ) o) = g (5 Ao (540 (55

where 0 < 6 < 1.
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But

— AN a8 n— oo,

s.I'l

"
n Sn X Su _kg:]. M L
o, PV 4 | o0 B
and, by the assumptions,
'(S"+e A LA R
. .5 . S — - .
9\, B i g \u) as
Corollary. If under the assumptions of Theorem 3

n(g(ii,) —g(w))

Sn

- & a8 n—> oo,

then
(0[5 o) = 4 e
e | bl Bt AY ) s =¥ OOy
9’ (n)s, n
We have the following slightly more general result:

Theorem 4. Let {X,,n = 1} be a sequence of independent random varia-
bles with EX, = u,, 02X, = o> < co salisfying the Lindeberg condition.
Suppose that {X,, n > 1} satisfies the weak law of large numbers and that ¥,
18 the class of all functions g with continuous derivative such that g'(z,) # O,
and

A@.) - U » »
~w,"—);l—--—" L1 when U, 5 0 as n—> o,
9’ (i)
and i, =k2 un.
-]
Then, for every g € 4’

ne S I
9 2 ol =23 =gl = 3
i i, 0] ~7@) % -
Proof. Define

9(27)—9(/7)[7" - =

P ——— lf T —7‘1—‘ n
(10) k(@) = @—g)g () 5

1 if ¢=pg,n=1,2,..

As before,

S —i',uk
n 8 P\ | (MR, ) ‘_gg)
o W v 22 g
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But for 8,/n # i, a.s., we have

Sn v = Sn =

- - >l
n WAL ER L g’ ()
(; _'.“n)g (.“n)

as n — oo.

This fact together with (11) proves Theorem 4.

Remark If ji, -+ u as n — oo and g¢'(u) # 0, then (9) reduces to (8).
Moreover, we have the following theorem

Theorem. 5. Let {X,, n > 1} be a sequence of independent random varia-
bles with EX, = p,, 0*X, = o2 < oo satisfying the Lindeberg condition
and the weak law of large numbers. Suppose that 4"’ is the class of all functions g
with continuous second derivative such that

suplg’’(z)/g’ (z)| < K < oo, where K is a posilive constant. Then, for
every ge ¥’ (9) holds.

Proof. From the definition of &, in (10), the assumptions econcerning g,
and Taylor series expansion, we get

S o —
B (8, n)—1 = ¢ a/™) yfuﬁ) .
(Sn/'n_!“n)g (l‘n)
(Snf'n _Fn)g'(ﬁn)

1=

- g”(ﬁn +8[Sn{"‘_aﬁn]}
o (aShefros
( n/n /‘n) 29'([7,,)

where o< 6<1 Since 8, /n—p,k 0,
a8 n — oo and suplg’(z)/g’ (z)] < K, we get h,(S,/n)—1 50, a8 n > oo.
z

Hence, by (11) and Lemma 2, we obtain (9).

3. The behaviour of functions of sums with random indices

Here we extend the previous results to the case of random indexed sums.

Theorem 6. Let {X,,n > 1} be a sequence of independent and identi-
cally distributed random variables with EX, = u and o*°X, = o® < oo.
Suppose that {N,,n =1} is a sequence of positive integer-valued random
variables such that {X,,n>1} and {N,,n > 1} are independent, and

(12) N, L oasn_, oo.
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Then for every g € 4,,, where G, is the class of functions defined in Theorem1,
we have

VN,

13
= g'(n)o

l—gN" —g( ))."‘ V' as n—
5 0.
] N, g\u

Proof. Let
D e (PAIN, ) Tl 0 ' = 18 2158 Kk
Using the properties of probability measures and (12), we get
(a) Pu=05n,k=1,2,...,

(b) Bl it eI b

k=1
(e) limp,, =0; k =1,2,....
n -»00
Taking into account the independence of {X,,n =1} and {N,, 1}

we have

[’/N Vﬁﬁ\n/*\r )_H(ju} a2 w] s
g'(we

3 Vi
:EP[ e 98l g(m)mlP[N,‘ = k.
k

Using (a)-(c), Toeplitz’ Lemma (see, e.g. [3], p. 238) and Theorem 1, we
get (13).

Corollary. Under the assumptions of Theorem 6. with g(z) = z, we get
the result of [6], p. 472.

Under the assumption (12) and the independence of {X,,n > 1}
and {N,,n > 1} it can be seen that corresponding to Theorems 2-5 we
have the following results:

(6") (9(Sn, IN)—g(p) 5 A 488 n— oo,

g (xt)s
N,
(8" o )'8 (g( Nn/N,,)-—g(yNn))_,.Af’ as n - oo,
Nn
(9" 9(—1\3,);1\;(9(8\ IN,)—g(@iy,) 5 & a8 n—> oco.

S
Remark. If one uses the fact that -* “* u, (a.s.-almost sure) and
n

S -3
N, £ oo as n-> oo imply -l—vﬁ'ﬂ i a8 n > oo ([7], p. 148), then the proof
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of Theorern 6 is similar to that of Theorem 1. Namely, we have

V-Fn ( S_vn ( ) S —.N"[.l} S , ‘A,-
og’ (1) g(TV‘,{) gy o/, ‘(N,.)"

as n - oo, where h is the function defined by (4). This follows from The-
orem 1 [6], p. 472, the fact mentioned above and Lemma 2.
By the last Remark we have a more general result, namely:

Theorem 6’. Let {Z,,n > 1} be a sequence of random variables such
that 7,3 u, and a,‘(Z,,—p)f» Z a3 n— oo, where u i8 a constant and
{a,,n =1} 18 a sequence of real numbers. If {N, ,n > 1} is a sequence of
positive integer-valued random variables such that {Z,,n>1} and {N,_,
n > 1} are independent, and (12) holds, then for every g € ¥,

(g(ZNn)—g(,u))AZ as n—» oo.

“n
9'(w)
Proof. The assumptions Z, > pasn— ooand (12) imply that Z 5 I
as n— oo [2]. Moreover, we know that a,(Z,, -—-y)-» Z as m — oo and (12)

give ay (Zy — y)—» Z as n — oo [8]. Using the function h defined by (4),
and the previous arguments, we have for every g € ¢

ﬂ'. A
5(—)9< x)—9()) = ay (Zy, —u) W(Zy,) +Z a8 n->o0,

As an application of this Theorem, we have the following two theo-
rems:

Theorem 7. Let {X,, n > 1} be a sequence of independent random varia-
bles with EX, = u, 6*X, = a2 < oo, n> 1, such that S,,/nai' % as m — oo.
Suppose that {N,,n > 1} is a sequence of positive integer-valued random
variables such that {X, ,n>1} and {N,,n > 1} are independent and (12)
holds. If for any given ¢ > 0

Nn

1 .
V f xzdFk(x-—‘u)i 0 as n — oo,
8\'7

n j:‘-l |z|>28p1p,
or equivalently if the so-called ,,random Lindeberg condition”

Y’ ( 22dF, (z — ;z)] — 0 [10]
Nn k=1 |x|>uN,,
18 satisfied, then for every g ¥,

N
9 (#)8

(14) lim % [

fi—=00

- (g( Nn/Nn)_g(l‘))—" A as n— oo,
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Proof. Taking into account Theorem 6, it is enough to state that the
assumptions of Theorem 7 imply that

N, (SN,‘

—_ )E;-Vasn—-)oo
el :

8N,
But this assertion follows from Theorem 6.2 of [9] or from Theorem 1 [10].

Theorem 8. Let {X,, n > 1} be a sequence of independent random varia-
bles with EX, = u, 02X, = 62 < oo, n > 1, such that S,/n*> u as n — ococ.
Suppose that {N,.,n=> 1} is a sequence of positive integer-valued random
variables such that {X ,n>1} and {N,,n > 1} are independent and (12)
kolds. If (14) holds and

frOasnﬁoo,

then for every ge 9,

¥, f‘g” \ )i// -
AT TIE I ol TN

where b2 = EsN”/(Ean-}—yo”N,,).

Proof. As previously, we have

v.—N Sy
T (o[) ) < S (),
g9’ (n)a Sy, N, / aSN" \n,/
N
But, by Theorem 2 of [10] i is asymptotically normal

a Ny,
N(0,b,) where b2 —EsN /(EsN —+ yo’Nn), and, moreover, we know
that A(Sy, /N,) Flasn—> oo, which ends the proof.
Now using the considerations mentioned in the previous Remark,
together with some facts on the limit behaviour of sums with random
indices, one can prove

Theorem 9. Let {X,,, n = 1} be a sequence of independent and identically
distributed random variables with EX, = u and o°X, = o* < oco. Suppose
that A is a positive discrete random variable, and put

n — [na],

where [z] denotes the integral part of x. Then for every g € @, (13) holds.
To prove the statement it is enough to use Theorem 1 [4], p. 472 and
the considerations given above.
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The limit behaviour of functions of sums with random indices when
{X,,n>1}and {N,,n > 1} are not assumed to be independent, is given
by the following theorem.

Theorem 10. Let {X,, n > 1} be a sequence of independent and identically
distributed random variables with EX, = u and o*X, = o If {N,,n>1}
i8 a sequence of positive integer-valued random variables such that

P

(15) N"—)l as m— oo,
n

where 1 i3 a positive random variable, then for every g € 4, (13) holds.

In the case when A is a discrete, positive-valued random variable,
then, under (15), the assertion of Theorem 10 is a consequence of Theorem 4
[6] p. 475 and the facts used earlier. When A is a positive random varia-
ble one can use the results given in [1] or [4].
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STRESZCZENIE

Niech {X,, k> 1} bedzie ciggiem niezaleznych zmiennych losowych,
a g funkecjg rzeczywistg. W pracy okresla si¢ warunki asymptotycznej

n
normalnodci ciggu {g (8, /n), n > 1}, gdzie 8, = > X,, a rowniez asympto-
k=1

tyeznej normalnodei ciagu {g(SN"/N,,), n>1}, gdzie {N,, n>1} jest
ciggiem zmiennych losowych o wartoSciach w zbiorze liczb naturalnych.
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PE3SIOME

IMycts {X,, k > 1} -nocinexoBaTelbHOCTh HE3ABUCHUMHEIX CIyYalHBIX
BEJIMYMH M BelllecTBeHHaA PyHkuuA. B palGoTe ycraHaBiIMBaeTcA yCiI0BHE
aCMMNTOTHYECKOH HOPMANbHOCTH ToCiexoBaTenbHocTH {g(8,/n), n = 1},

n
rae 8, = 3 X;, a TakiKe acCUMITOTHYECKO/ HOPMAILHOCTH IOCJIERO0Ba-
E=1

TelbHOCTH {§(Sy,/N,), »=>1) rae {N,, n > 1}-nocienoBaTebHOCTb LEO-
YUCIEHHBIX MOJIOMKUTENbHHX CIYy4ailHBIX BeJIMYMH.






