UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLIN-POLONIA
 VOL. XXXI, 1
 SECTIO A
 1977

Bowling Green State University, Bowllng Groen. Ohio 43403, USA

HASSOONS.AL-AMIRI

Applications of the Domain of Variability of Some Functionals within the Class of Carathéodory Functions

Zastosowania obszaru zmienności pewnych funkcjonałow w klasie funkcji Caratheodorye'go

Применение области ивменения некоторых функцдоналов в классе фувкции Каратеодоры.

1. Preliminaries

Let P_{β} denote the class of Carathéodory functions of order $\beta, 0 \leqslant \beta<\mathbf{1}$; that is, functions $p(z), p(0)=1$ regular in the unit disc E and for which $\operatorname{Rep}(z)>\beta ; P_{0}=P$.

In a recent paper, Zmorovic [7] has obtained the exact lower bound of $\operatorname{Re} \frac{z p^{\prime}(z)}{p(z)}, p(z) \in P_{\beta}$. Before stating Zmorovič's theorem we list in the following some of the symbols that shall be used throughout.

Remark 1. $|z|=r ; \quad h=\frac{\beta}{1-\beta} ; \quad a=\frac{1+r^{2}}{1-r^{2}} ; \quad b=\frac{2 r}{1-r^{2}}$ $\boldsymbol{R}(\beta)=\frac{1+(2 \beta-1) r}{1+r}, \boldsymbol{R}(0)=\boldsymbol{R} ; \bar{R}(\beta)=\frac{1-(2 \beta-1) r}{1-r}, \bar{R}(0)=\bar{R}$.

Theorem A (V. A. Zmorovic). By $r(h)$ we denote the root, unique in $(2-\sqrt{3}, 1]$ of the equation

$$
\begin{equation*}
h(1+r)\left(4 r-1-r^{2}\right)=(1-r)^{3} \tag{1}
\end{equation*}
$$

Then on every circle $|z|=r<1$, for every function $p(z) \in P_{\beta}, 0 \leqslant \beta<1$, the estimate

$$
\operatorname{Re} \frac{z p^{\prime}(z)}{p(z)} \geqslant \sigma(z)
$$

This work is partially supported by a summer grant from the Faculty Research Committee at Bowling Green State University.
is valid, where

$$
\begin{equation*}
\sigma(r)=-\frac{2 r}{(1+r)(1-r+h(1+r))} \tag{2}
\end{equation*}
$$

when $0 \leqslant r \leqslant r(h)$ and

$$
\begin{equation*}
\sigma(r)=-\left((a+h)^{1 / 2}-h^{1 / 2}\right)^{2} \tag{3}
\end{equation*}
$$

when $r(h) \leqslant r<1$. These estimates are exact.
Let $f(z)$ be regular in E with $f(0)=0, f(z) f^{\prime}(z) \mid z \neq 0$ in E and satisfy there the conditions

$$
\begin{equation*}
\operatorname{Re}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0 \tag{4}
\end{equation*}
$$

for some real number α. Let us denote the class of such functions by \mathbb{S}_{a}. \mathbb{S}_{a} is called the class of α-convex functions, see e.g., [4], [5], [6].

Al-Amiri [1] has obtained the exact radius of α-convexity $r_{\alpha, \beta}$, for the class of the normalized starlike functions of order β which is denoted by $\boldsymbol{S}_{\beta}^{*}$; that is
$r_{a, \beta}=\max \left\{R \mid f \in \mathbb{S}_{\beta}^{*}\right.$ implies $f \in \mathbb{S}_{\alpha}$, for $|z|<R$ and $\left.a \geqslant 0,0 \leqslant \beta<1\right\}$
Theorem B (Al-Amiri). The radius of α-convexity $r_{a, \beta}, \alpha \geqslant 0,0 \leqslant \beta<1$ or the class \mathbb{S}_{β}^{*} is given by

$$
\begin{equation*}
r_{1}=r_{a, \beta}=\left(\frac{2 \beta-\alpha+2\left(\beta^{3}+h_{\iota} \rho\right)^{1 / 2}}{2 \beta+a+2\left(\beta^{2}+h a \beta\right)^{1 / 2}}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

for $\beta_{0} \leqslant \beta<1$ and
$r_{2}=r_{\alpha, \beta}=\left[\left(1-2 \beta+\alpha(1-\beta)+\left((1-2 \beta+\alpha(1-\beta))^{2}-(1-2 \beta)^{2}\right)^{1 / 2}\right]^{-1}\right.$
for $0 \leqslant \beta \leqslant \beta_{0}$, where β_{0} is the smallest positive root of

$$
\begin{equation*}
r_{1}=r_{2} \tag{7}
\end{equation*}
$$

β_{0} lies in the interval $\left(\frac{\alpha}{4+\alpha}, \frac{-\alpha+\left(\alpha^{2}+8 \alpha\right)^{1 / 2}}{4}\right)$. The results are sharp.
Let $\boldsymbol{H}(a)$ denote the class of regular functions $f(z)$ normalized so that $f(0)=0, f^{\prime}(0)=1$ and satisfying in the unit dise E the condition

$$
\begin{equation*}
\operatorname{Re}\left[(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0 \tag{8}
\end{equation*}
$$

for some real number a.

Recently, Al-Amiri and Reade [2] have shown the following result.
Theorem C (Al-Amiri and Reade). Let $f(z)$ be in the class of normalized univalent functions with $\operatorname{Re} f^{\prime}(z)>0$ for $z \in E$. Then $f \in H(\alpha)$ for $r<r_{\alpha}$ where
i) $r_{a}=(1+\sqrt{2 \alpha})^{-1}, a \geqslant 0$
ii) $r_{a}=\left(\frac{1-\alpha-(\alpha(\alpha-1))^{1 / 2}}{1-\alpha}\right)^{1 / 2}, \alpha \leqslant 0$.

All results are sharp.
Now the purpose of this note is to reproduce the above three theorems through an appropriate application of a result concerning the domain of variability. This result, Theorem D below, is capable of further applications of old and new results. For instance, Theorem B and Theorem C can be extended to the case $a<0$ and to the class where $\operatorname{Ref}^{\prime}(z)>\beta$, $0 \leqslant \beta<1$, respectively. However, these extensions would involve a rather long and complicated formulas.

Using the methods of Gutlijanski [3] we are able to obtain, after long and rather tedıous but simple analysis, the following generalization of Theorem 1 in [3] as follows:

Theorem D. Let $z \in E$ be fixed. Then the domain of variability D of the functional

$$
\begin{equation*}
I(p)=\operatorname{Re} p(z)+i \operatorname{Re}\left(p(z)+\frac{z p^{\prime}(z)}{p(z)}\right) \tag{9}
\end{equation*}
$$

within the class $P_{\beta}, 0 \leqslant \beta<1$ is bounded by a closed Jordan curve.
Case 1. If $h \leqslant \frac{r-1+\left(1+6 r+r_{0}\right)^{1 / 2}}{2(1+r)}$, the upper boundary curve of D, Γ^{+}, consists of three connected arcs $\Gamma_{k}^{+}(k=1,2,3)$, and the lower curve Γ^{-}is connected with Γ^{+}at the end points over the interval $\underline{\boldsymbol{R}}(\beta) \leqslant x$ $\leqslant \bar{R}(\beta)$, where $\operatorname{Re} p(z)=x$. These curves are aescribed below:
$\Gamma_{1}^{+}: y=\Phi_{1}(x)=\frac{3+h}{2} x-h-\frac{1}{2} \frac{\left(1-h^{2}\right)(1+h) x}{\left[2(a+h)(1+h) x-1-2 a h-h^{2}\right]}$,
for $\underline{R}(\beta) \leqslant x \leqslant \xi_{1}$, and

$$
\begin{align*}
\Gamma_{2}^{+}: & y=\Phi_{2}(x)=\frac{3+h}{2} x-h \\
& -\frac{y_{0}^{3}+\left(1+2 a h+h^{2}-2(1+h)(a+h) x\right) y_{0}+\left(1-h^{2}\right)(1+h) x}{2 y_{0}^{2}} . \tag{11}
\end{align*}
$$

for $\xi_{1} \leqslant x \leqslant \xi_{2}$, and

$$
\begin{equation*}
\Gamma_{3}^{+}: y=\Phi_{3}(x)=x+a-\frac{1+a h}{(1+h) x} \tag{12}
\end{equation*}
$$

for $\xi_{2} \leqslant x \leqslant \bar{R}(\beta)$.
The lower curve is

$$
\begin{equation*}
\Gamma^{-}: y=\psi(x)=(2+h) x-a-2 h+\frac{\beta(a+h)}{x} \tag{13}
\end{equation*}
$$

for $\underline{R}(\beta) \leqslant x \leqslant \bar{R}(\beta)$.
Case 2. If $h \geqslant \frac{r-1+\left(1+6 r+r^{2}\right)^{1 / 2}}{2(1+r)}$, then the boundary curves are γ^{+}and Γ^{-}which are joined at the end points over the interval $\underline{R}(\beta) \leqslant x$ $\leqslant \bar{R}(\beta)$ and are described as follows:

$$
\begin{gather*}
\gamma^{+}: y=\Phi_{\mathrm{a}}(x)=x+a-\frac{1+a h}{(1+h) x} \tag{12}\\
\Gamma^{-}: y=\psi(x)=(2+h) x-a-2 h+\frac{\beta(a+h)}{x} \tag{13}
\end{gather*}
$$

for $\mathbf{R}(\beta) \leqslant x \leqslant \bar{R}(\beta)$.
Remark 2. The ares $\Gamma_{1}^{+}, \Gamma_{3}^{+}, \gamma^{+}$are increasing and convex while Γ_{2}^{+} is increasing and concave. ξ_{1}, ξ_{2} and y_{0} appearing in Theorem D are solutions to certain equations which we shall not need.

In the second section we will prove these theorems using Theorem D

2. Proofs

Theorem A. It is clear from (9) that to minimize $\operatorname{Rc} \frac{z p^{\prime}(z)}{p(z)}, p \in P_{\beta}$, we need to minimize $K(x)$ where

$$
K(x)=\psi(x)-x, \operatorname{Re} p(z)=x, \underline{R}(\beta) \leqslant x \leqslant \bar{R}(\beta)
$$

where $\psi(x)$ is given by (13), (13)'. Consequently,

$$
\begin{equation*}
K(x)=(1+h) x-a-2 h+\frac{\beta(a+h)}{x} \tag{14}
\end{equation*}
$$

since

$$
K^{\prime}(x)=1+h-\frac{\beta(a+h)}{x^{2}}=0
$$

is satisfied for

$$
\begin{equation*}
x_{0}=\left(\frac{\beta(a+h)}{1+h}\right)^{1 / 2} \tag{15}
\end{equation*}
$$

and $K^{\prime \prime}\left(x_{0}\right)>0$, it follows that

$$
\min K(x)=K\left(x_{0}\right)
$$

with $\underline{R}(\beta)<x<\bar{R}(\beta)$. We note that

$$
x_{0} \leqslant\left(\frac{a+h}{1+h}\right)^{1 / 2}=((1-\tilde{\beta})(a+h))^{1 / 2}<(1-\beta)(a+b+h)=\bar{R}(\beta),
$$

but x_{0} may not be greater than $\underline{R}(\beta)$. From (14) we get

$$
\begin{equation*}
\min _{p \in P_{\beta}} \frac{z p^{\prime}(z)}{p(z)}=K\left(x_{0}\right)=(1+h) x_{0}-a-2 h+\frac{\beta(a+h)}{x_{0}} \tag{16}
\end{equation*}
$$

provided $x_{0} \geqslant \underline{R}(\beta)$. Substitution $n^{\circ}(15)$ in (16) yields

$$
\min _{p \in P_{\beta}} \frac{z p^{\prime}(z)}{p(z)}=\sigma(r)=-\left((a+h)^{1 / 2}-h^{1 / 2}\right)^{2}
$$

which is (3). Otherwise

$$
\min _{p \subset P_{\beta}} \frac{z p^{\prime}(2)}{p(z)}=\sigma(r)=K(\underline{R}(\beta))
$$

if $x_{0} \leqslant \underline{R}(\beta)$. Again from (14) we get

$$
\begin{aligned}
\sigma(r) & =(1+h)(1-\beta)(a-b+h)-a-2 h+\frac{\beta(a+h)}{(1-\beta)(a-b+h)} \\
& =-b-h+\frac{h(a+h)}{a-b+h} \\
& =-\frac{2 r}{(1+r)(1-r+h(1+r))}
\end{aligned}
$$

which is (2). See Remark 1 for the symbols. One can directly verify that $x_{0}=\underline{R}(\beta)$ is (1) of the theorem, while $x_{0} \leqslant \underline{R}(\beta)$ and $x_{0} \geqslant \underline{R}(\beta)$ are equivalent to $0 \leqslant r \leqslant h(r)$ and $r(h) \leqslant r<1$, respectively. Thus Theorem A is completed. Exactness has already been established in [7].

Theorem B. Let $\frac{z f^{\prime}(z)}{f(z)}=p(z)$ and

$$
y=\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\operatorname{Re}\left(p(z)+\frac{z p^{\prime}(z)}{p(z)}\right), f \in \mathbb{S}_{\beta}^{*}
$$

Then, for $\alpha \geqslant 0$, it follows from (4) that the radius of α-convexity $r_{\alpha, \beta}$ for the class $\boldsymbol{S}_{\beta}^{*}$ may be obtained through minimizing

$$
(1-\alpha) x+a y
$$

Now we consider the family of parallel lines L_{a}, where

$$
L_{a}:(1-a) x+a y=\lambda
$$

Frons (9) and the above, $r_{a_{*} \beta}$ can be obtained by determining the support line (extremal) of the domain of variability D (Theorem D) within the family L_{a}.

For $a>0$

$$
\begin{equation*}
\min _{(x, y) \in D}((1-\alpha) x+\alpha y)=\min _{(x, y) \in D} \lambda=a \operatorname{sinin} y(0) \tag{17}
\end{equation*}
$$

where $y(0)$ is the y-intercept of the parallel line L_{a} of slope $\frac{a-1}{a}<1$. From the nature of the boundary of D, the support line in the family L_{a} is either tangent to the lower curve Γ^{-}as given by (13), (13)', provided the point of tangency x_{1}, with $\underline{R}(\beta)<x_{1}<\bar{R}(\beta)$, or the support line is on the point $(\underline{R}(\beta), \psi \underline{R}((\beta)))$, where $\psi(x)$ is given by (13), (13)'. For

$$
\psi^{\prime}(x)=2+h-\frac{\beta(a+h)}{x^{2}}=\frac{a-1}{a}
$$

is satisfied for

$$
\begin{equation*}
x_{1}=(1-\beta)\left(\frac{\alpha\left(h a+h^{2}\right)}{\alpha-\beta+1}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

and $x_{1}<\vec{R}(\beta)$. Hewever, x_{1} may not be greater than $\underline{R}(\beta)$. Therefore if $\underline{R}(\beta)<x_{1}<\bar{R}(\beta)$, then from (13), (13)' and (17) we have

$$
\begin{aligned}
\min _{(x, y) \in D} \lambda & =(1-a) x_{1}+\alpha \psi\left(x_{1}\right) \\
& =2\left(\alpha(\alpha-\beta+1)\left(h a+h^{2}\right)\right)^{1 / 2}-\alpha(2 h+a)=0
\end{aligned}
$$

yields

$$
\begin{equation*}
r_{1}=r_{a, \beta}=\left(\frac{2 \beta-\alpha+2\left(\beta^{2}+h a \beta\right)^{1 / 2}}{2 \beta+\alpha+2\left(\beta^{2}+h \alpha \beta\right)^{1 / 2}}\right)^{1 / 2} \tag{19}
\end{equation*}
$$

which is (5). Otherwise $r_{a, \beta}$ is the smallest positive root satisfying

$$
(1-\alpha) \underline{R}(\beta)+a \psi(\underline{R}(\beta))=0
$$

which yields

$$
\begin{align*}
\boldsymbol{r}_{2}=\boldsymbol{r}_{a, \beta}=[(1-2 \beta+\alpha & (1-\beta)+ \\
& \left.+\left((1-2 \beta+\alpha(1-\beta))^{2}-(1-2 \beta)^{2}\right)^{1 / 2}\right]^{-1} \tag{20}
\end{align*}
$$

which is (6).

However, (20) can't be used tc determine $r_{a / \beta}$ if

$$
\beta \geqslant \frac{-\alpha+\left(a^{2}+8 a\right)^{1 / 2}}{4}
$$

since r_{2} would be greater than 1. Also (19) can't be used to determine $r_{a, \beta}$ if $\beta \leqslant-\frac{\boldsymbol{\alpha}}{\alpha+4}$, since r_{1} would be a nonreal number.

To find β_{0} that makes the transition from (19) to (20) we set

$$
\begin{equation*}
r_{1}=r_{2} \tag{2i}
\end{equation*}
$$

and solve for β. The smallest positive root of (21) would consequently lie in the interval

$$
\left(\frac{a}{4+a}, \frac{-\alpha+\left(\alpha^{2}+8 \alpha\right)^{1 / 2}}{4}\right)
$$

This completes Theorem B. Exactness has already been established in [1].
Theorem C. Let $f^{\prime}(z)=p(z)$ with $x=\operatorname{Re} p(z)$. Then the domain of variability D^{\prime} of the functional

$$
J(p)=\operatorname{Re} p(z)+i \operatorname{Re}\left(1+\frac{z p^{\prime}(z)}{p(z)}\right)
$$

for all $p \in P$ can bo established from the domain D of Theorem D by letting $\beta=0$ and replacing the boundary arcs Γ_{k}^{+}and Γ^{-}in case 1 by γ_{k}^{+}and γ^{-}, when $k=1,2,3$, respectively, where

$$
\begin{equation*}
\gamma_{1}^{+}: y=\varphi_{1}(x)=\Phi_{1}(x)-x+1=1+\frac{x}{2}\left[1-\frac{1}{2 a x-1}\right] \tag{22}
\end{equation*}
$$

for $\underline{R} \leqslant x \leqslant \xi_{1}$,
$\gamma_{2}^{+}: y=\varphi_{2}(x)=\Phi_{2}(x)-x+1=1+\frac{x}{2}-\frac{y_{0}^{3}-(2 a x-1) y_{0}+x}{2 y_{0}^{2}}$,
for $\xi_{1} \leqslant x \leqslant \xi_{2}$,

$$
\begin{equation*}
\gamma_{3}^{+}: y=\varphi_{3}(x)=\Phi_{2}(x)-x+1=1+a-\frac{1}{x} \tag{24}
\end{equation*}
$$

for $\xi_{2} \leqslant x \leqslant \bar{R}$, while the lower curve is

$$
\begin{equation*}
\gamma^{-}: y=\psi_{1}(x)=\psi(x)-x+1=1-a+x \tag{25}
\end{equation*}
$$

As in [2] it can be shown that γ_{1}^{+}and γ_{3}^{+}are increasing and convex while γ_{2}^{+} is increasing and concave.

To find r_{a} of Theorem C, we employ the method used in the proof of Theorem B. Namely, by determing the support line for the domain D^{\prime} within the parallel lines \mathscr{L}_{a}, where

$$
\mathscr{L}_{a}:(1-\alpha) x+\alpha y=\lambda
$$

which have the slope $\frac{a-1}{a}$.
For $a>0$

$$
\min _{(x, y) \in D^{\prime}}((1-\alpha) x+\alpha y)=\min _{(x, y) \in D^{\prime}} \lambda=a \min y(0) .
$$

In this range of a, the slope of \mathscr{L}_{a} is $\frac{a-1}{a}<1$ and since the slope of the lower curve γ^{-}is 1 , then the support line must be on $\left(\underline{R}, \psi_{1}(\underline{R})\right)$. Hence from (25) it follows that

$$
\min \lambda=(1-\alpha) \underline{R}+a \psi_{1}(\underline{R})=(1-\alpha) \frac{1-r}{1+r}+a\left(1-\frac{1+r^{2}}{1-r^{2}}+\frac{1-r}{1+r}\right)=0
$$

yields

$$
\begin{equation*}
r_{a}=(1+\sqrt{2 \alpha})^{-1} \tag{26}
\end{equation*}
$$

which is part (i) of Theorem C.
For $\alpha<0$,

$$
\min _{(x, y) \in D^{\prime}}((1-\alpha) x+\alpha y)=\min _{(x, y) \in D^{\prime}} \lambda=\alpha \max y(0)
$$

In this case the support line is either tangent to the upper curve, on $\left(\underline{R}, \psi_{1}(\underline{R})\right)$ or on $\left(\bar{R}, \psi_{1}(\bar{R})\right)$. If the support line is on $\left(\boldsymbol{R}, \psi_{1}(\boldsymbol{R})\right)$ then \boldsymbol{r}_{α} would be given by (26) which is impossible. Also, if the support line is on $\left(\bar{R}, \psi_{1}(\bar{R})\right)$ then

$$
\min \lambda=(1-a) \frac{1+r}{1-r}+a\left(1-\frac{1+r^{2}}{1-r^{2}}+\frac{1+r}{1-r}\right)=0
$$

implies

$$
(1-2 a) r^{2}+2 r+1=0
$$

which is impossible too. Since γ_{2}^{+}is concave, the support line is either tangent to γ_{1}^{+}or to γ_{3}^{+}. The formal case is impossible since the tangent line to γ_{1}^{+}would yield (following the procedure used so far) $r_{a}=\tilde{r}_{a}$ where

$$
\begin{equation*}
\tilde{r}_{a}=\left(\frac{1+\alpha+(\alpha(\alpha-2))^{1 / 2}}{1-3 \alpha+(a(\alpha-2))^{1 / 2}}\right)^{1 / 2} . \tag{27}
\end{equation*}
$$

We next show that the tangent line to γ_{3}^{+}with the same slope $\frac{a-1}{a}$ gives part (ii) of Theorem C. But from (ii) and (27) one can easily prove that $\tilde{r}_{a}<r_{a}$ and thus the support line is not tangent to γ_{1}^{+}but is tangent to γ_{3}^{+}.

Now from (24)

$$
\varphi_{3}^{\prime}(x)=\frac{1}{x^{2}}=\frac{a-1}{a}
$$

is valid for

$$
x^{*}=\sqrt{\frac{\alpha}{\alpha-1}}
$$

Let

$$
y^{*}=\varphi_{3}\left(x^{*}\right)=1+a-\left(\frac{\alpha-1}{\alpha}\right)^{1 / 2}
$$

Then

$$
\min \lambda=(1-\alpha) x^{*}+\alpha y^{*}=0
$$

yields

$$
\alpha+2 \sqrt{a(\alpha-1)}+\alpha a=0
$$

From this we get

$$
r_{u}=\left(\frac{1-\alpha-(\alpha(\alpha-1))^{1 / 2}}{1-a}\right)^{1 / 2}
$$

which is part (ii) of the theorem. The exactness has been shown in [3].

REFERENCES

[1] Al-Amiri, H. S., On the radius of β-convexity of starlike functions of order α, Proc. Amer. Math. Soc., 39 (1973), 101-109.
[2] -, Reade, M. O., On a linear combination of some expressions in the theory of the univalent functions, Monatsh. Math., (to appear).
[3] Gutljanskii, V. J., On the domain of some functionals and the properties of level curves within certain classes of univalent functions, Trudy Tomsk. Gos. Univ., 200 (5) (1968), 71-87.
[4] Miller, S. S., Mocanu, P., Reade, M. O., All a-convex functions are starlike, Rev. Roumaine Math. Pures Appl., 17 (1972), 1395-1397.
[5] Mocanu, P., Une propriété de convexite generalisé́ dans la représentation conforme, Mathomatica (Cluj), 11 (1969), 127-133.
[8] Mocanu, P., Reade, M. O., The radius of a-convexity for the class of starlike univalent functions, a-real, Proc. Amer. Math. Soc., 51 (1975), 395-400.
[7] Zmorovič, V. A., On the bounds of starlikeness and of univalence in certain classes of functions regular in the circle $|z|<1$, Amer. Math. Soc. Transl., (2) 80 (1969), 227-242.

STRESZCZENIE

Niech P_{β} oznacza klase funkcji regularnych w kole jednostkowym E, spełniajacych warunki $p(0)=1, \operatorname{Re} p(z)>\beta$ dla $z \in E$.

W pracy podano obszar zmiennosci funkcjonału $I(p)=\operatorname{Re} p(z)+$ $+i \operatorname{Re}\left(p(z)+z \frac{p^{\prime}(z)}{p(z)}\right)$. W oparciu o ten rezultat, podano inne dowody znanych już wczesniej trzech twierdzeń, dotyczących różnych klas funkcji jednolistnych zdefiniowanych poprzez związek z klasa P_{β}.

PEЗЮME

Пусть P_{β} обозначает класс регулярных функций в круге E, выполняя условия $p(0)=1, \operatorname{Re} p(z)>\beta, z \in E$.

В работе представлено область изменения функционала $I(p)$ $=\operatorname{Re} p(z)+i \operatorname{Re}\left(p(z)+z \frac{p^{\prime}(z)}{p(z)}\right)$. На основе этих результатов, представлено другие доказательства уже раньше известных трех теорем, относящихся к разным классам однородных функций, определенных связью с классом P_{β}.

