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Zastosowania obszaru zmicnnoéei pewnych funkecjonaltéw
w klasie funkeji Caratheodorye’go

ITpumMeHeHHe 061aCTH MBMEHEHHWA HEKOTOPHX (YHKIROHANOB

B kKixacce GyEknuu HapatTeonoph.
1. Preliminaries

Let P, denote the class of Carathéodory functions of order 8, 0 < 8 < 1;
that is, functions p(z), p(0) = 1 regular in the unit disc £ and for which
Rep(z) > 8; P, = P.

In a recent paper, Zmorovi¢ [7] has obtained the exact lower bound

"
of ReM, p(2) € Ps. Before stating Zmorovic’s theorem we list

p(2)
in the following some of the symbols that shall be used throughout.

1472 2r
Remark 1. 2| =7; h=—ﬁ—; a = +r2; b 2
1-8 1—7r 1—7r

1+(26—1)r oo 1—(28—1)r
sy RO =R R = =

Theorem A (V. A. Zmorovié). By r(h) we denote the root, unique in
(2—V3,1] of the equation

R(L+7)(4r—1—12) = (1—7)3 (1)

Then on every circle |2| =r <1, for every function p(z) e Py, 0< B <1,
the estimate

R(p) = , B(0)= E.

zp’(2)
p(2)
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18 valid, where

2r
e e v 4
when 0 < r < r(h) and
o(r) = —((a+h)"* —R¥2)? (3)

when r(h) < r < 1. These estimates are exact.

Let f(2) be regular in E with f(0) = 0, f(2)f'(2)/z # 0 in E and satis-
fy there the conditions

zf'(2) ( f'(2) )]
Rel|(l—u Tall- 0
eD U TE I Y | i “)

for some real number a. Let us denote the class of such functions by S,. S,
is called the class of a-convex functions, see e.g., [4], [6], [6].

Al-Amiri [1] has obtained the exact radius of a-convexity r,,, for
the class of the normalized starlike functions of order g which is denoted
by 83; that is

r,;=max{R| fe 8 implies fe§,, for 2] <R and a>0 <p<1)

Theorem B (Al-Amiri). The radius of a-convexity 7,5, =0, 0< <1
or the class S} i8 given by

(5)

; 2ﬂ—a+2wL+M¢W”)
¥W =05 =

2f+a +2(B* + hap)"”
Jor Bo<B<1 and

ra = rop=[(1-28+a1—B)+((1—28+a(1—p) -1 —26""]"  (6)
for 0 < B < B,, where f, is the smallest positive root of

ry =17,5. (7)

= 24 8q)'/2
B, lies in the mtervall\ o B (a4+ %)

Let H(a) denote the class of regular functions f(2) normalized so that
f(0) =0, f'(0) = 1 and satisfying in the unit disc £ the condition

Re[(l—u}f‘(zH—a(l + sz{f:))] ~ 0 (8)

). The results are sharp.

for some real number a.
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Recently, Al-Amiri and Reade [2] have shown the following result.

Theorem C (Al-Amiri and Reade). Let f(z) be in the class of normalized
univalent functions with Ref'(2) > 0 for ze€ E. Then fe H(a) for r<r,
where

i) r, = (14+V2a)!, a>0

iy 1. — {l—a—l(a(a—l))llz)llz1  h
—a

All results are sharp.

Now the purpose of this note is to reproduce the above three theorems
through an appropriate application of a result concerning the domain
of variability. This result, Theorem D below, is capable of further appli-
cations of old and new results. For instance, Theorem B and Theorem C
can be extended to the case a < 0 and to the class where Ref’'(z) > 8,
0 < B < 1, respectively. However, these extensions would involve a rather
long and complicated formulas.

Using the methods of Gutlijanski [3] we are able to obtain, after
long and rather tedious but simple analysis, the following generalization of
Theorem 1 in [3] a8 follows:

Theorem D. Let 2 € E be fized. Then the domain of variability D of the
functional

(9)

I(p) = Rep(z)+iRe (p(z)+ zP'(?-))

p(2)
within the class Py, 0 < f < 1 18 bounded by a closed Jordan curve.

r—1+4(1+6r+7,)"

2(1+7) '
of D, I't, consists of three connected arcs I} (k =1,2,3), and the lower
curve I'" i3 connected with I'* at the end points over the interval R(f) < x
< R(B), where Rep(2) = x. These curves are described below:

Case 1. If h<

the upper boundary curve

o fa.L i3k (A . i) i
I'f: y =o,(2) = 3 7 2[2(a+h)(1+h)z—1—2ah —h?]’ e
for R() <z < &, and
Ifiy =00 = "1t o h
_ Yt (420 R -2+ H) (@t Wa)y, + (1R A+RE

2y,
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Jor {, <z < &, and

jorganipird-iie dtak -
s Y =Dy(x) =z+a— (1+h)x’ (12)
Jor & <z < R(p).
The lower curve is
(a+h
I'':y =y(z) =(2+h)x—a—2h+ E%—*——)- (13)

for R(B) <z < R(B).

r—1-4 (14 6r 4212

2(1+7) :
are y* and I'" which are joined at the end points over the interval R(f)< =
< R(B) and are described as follows:

Case 2. If h= then the boundary curves

yt: y = O (x) =w+a——}iﬂ, (12)’
1+h)x

B(a+h)
- ’

I :y=yla)=(2+hz—a—2h-+- (13)’

for R(B) <z < R(B).

Remark 2. The arcs I'y, I'j, y* are increasing and convex while I';
is increasing and concave. ,, &, and y, appearing in Theorem D are solu-
tions to certain equations which we shall not need.

In the second section we will prove these theorems using Theorem D

2. Proofs

zp’(2)
()

Theorem A. It is clear from (9) that to minimize Rec y D € Py,
we need to minimize K (z) where
K (2) = p(@)—=, Rep(z) = o, R(B) < v < E(B),

where y(z) is given by (13), (13)’. Consequently,

prary R gl i s (14)
since
K@) =1+h— ﬂ(“—“:h) =0

T
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is satisfied for

1/2
- [y b

To o\ 1+
and K''(x,) > 0, it follows that

min K (z) = K (x,),
with R(B) < z < E(B). We note that

h 1/2 _
m,é(:ih) — (=B (a+ )" < (1—B)(a+b+h) = R(B),

but z, may not be greater than R(f). From (14) we get

mipi By Sl Al ip-sass et St (16)

peP; P (2) Ly

provided x, = E(f). Substitution oi (15) in (16) yields

EB,(Z) = et _((a_i_h)l/z_hl/z)z
vePy p(?)

which is8 (3). Otherwise

min 2p (2)
pcPy D (2)

if 1, < R(B). Again from (14) we get

= a(r) = K(R(f)),

Iy 8 o g ~ Bla+h)

h(a+h)
a—b-+h
2r
T An(1—rF+rQA+7)
which is (2). See Remark 1 for the symbols. One can directly verify that
z, = R(p) is (1) of the theorem, while z, < R(g) and z, > R(f) are equi-

valent to 0 <7< h(r) and r(h) <r <1, respectively. Thus Theorem A
is completed. Exactness has already been established in [7].

z2f'(2)
f(2)
2" (2)

W )" zp’(2)
v=To(t+ Tt = refpra+ 2 2). ses

= —b—h 4+

Theorem B. Let

= p(z) and
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Then, for a > 0, it follows from (4) that the radius of a-convexity r,,
for the class 8; may be obtained through minimizing
(1l—a)z+ay.
Now we consider the family of parallel lines L,, where
L: (l—a)z+ay = A2.

From (9) and the above, 7, ; can be obtained by determining the support
line (extremal) of the domain of variability D (Theorem D) within the
family L .

For a> 0

min ((1—a)z+ ay) = min A = aminy(0), (17)
(z,¥)eD (z,v)eD

. -1
where y(0) is the y-intercept of the parallel line L, of slope S <1
a

From the nature of the boundary of D, the support line in the family L,
is either tangent to the lower curve I'" as given by (13), (13)’, provided
the point of tangency z,, with R(8) < x, < R(B), or the support line is
on the point (E(8), yE((8))), where y(z) is given by (13), (13)". For

Bla+h) a—1
? h

v(@) =2+h—

a
is satisfied for
a(ha+ h?)\'"*
a—p+1)’
and », < B(B). Hewever, z, may not be greater than R(B). Therefore if
R(B) < @, < E(B), then from (13), (13)’ and (17) we have

& (1—&( (18)

min 2 = (1 —a)z, + ay(z,)
(z,¥)eD

= 2(a(a—pB+1)(ha+h?)*—a(2h+a) =0
yields

o (2ﬂ“a+2(ﬂﬁ+haﬁ)llz)1/z
ry =Tgp = 2ﬂ+a+2(ﬁ’+haﬂ)”’

which is (6). Otherwise 7, ; is the smallest; positive root satisfying

(1—a)R(B)+ap(R(B) =0

(19)

which yields
rs =r,p=[1-28+a(1-8)+

+((1—28+a(l—p)2—(1—-28))"]7",  (20)
which is (6).



Applications of the Domain of Variability... 11

However, (20) can’t be used tc determine r,; if

—a+(a®+ 8(1)”2

- 4

Y

since r, would be greater than 1. Also (19) can’t be used to determine

: a b
r.pif f<- , since r, would be a nonreal number.
f + 4

a
To find 8, that makes the transition from (19) to (20) we set

ry =71y, (21)

and solve for B. The smallest positive root of (21) would consequently
lie in the interval

[ a —a+4 (a248a)'”
\ 4+a’ 4 {
This completes Theoremi B. Exactness has already been cstablished in [1].

Theorem C. Let f'(2) = p(2) with # = Rep(z). Then the domain
of variability D’ of the functional

2p’ (21)
p(2)

for all p e P can be established from the domain D of Theorem: D by
letting § = 0 and replacing the boundary ares Iy and I'” in case 1 by
y+ and y~, when k =1, 2, 3, respectively, where

!
J(p) =Rep(z)+iRe |1+
\

x 1
45 g A =0 ey 1=1+4+—J1—— 22
1Y = @) 1(@)—a+ -+ 2 [ 2@_1], (22)

forR <z <¥¢,

T Yo — (20— 1)y, +2 ;
ity =@a) = Py(x)—w+1 =1+— — 2 0 — (23)
2 2y;
for ;<2< é,,
s 1
vty =gs(@) = Giaj—ot+l =1+a——, (24)
for £, <z < R, while the lower curve is
Y iy =wpi(@) =yp@@)—2+1 =1—a+z (25)

As in [2] it can be shown that y; and y; are increasing and convex while y;
is increasing and concave.
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To find », of Theorem C, we employ the method used in the proof
of Theorem B. Namely, by determing the support line for the domain D’
within the parallel lines .#,, where

L (l—a)ztay =4

-1
which have the slope ’ :
a
For a> 0
min ((1—a)#+ay) = min 4 = aminy(0).
(z,y)eD’ (z.¥)eD’

—1
In this range of a, the slope of %, is Y < 1 and since the slope of
a

the lower curve y~ is 1, then the support line must be on (R, y,(R)).
Hence from (25) it follows that

1—7r { 1412 1—7)\

i =(1— 3 R) = (1— Al — e =
minl = (1 —a)R+ ay,(R) = ( ﬂr)1 r+a\ 1_r,+1+r, 0
yields

r, = (1+V2a)"! (26)

which is part (i) of Theorem C.
For a < 0,

min ((1—a)z+ay) = min 1 = amaxy(0).

(z,v)eD’ (z,v)eD’
In this case the support line is either tangent to the upper curve, on
(R, v1(R)) or on (R, y,(R)). If the support line is on (R, y,(R)) then r,
would be given by (26) which is impossible. Also, if the support line is
on (R, y,(R)) then

147
1—7r

mind = (1—a)

1472 147
+a(1— 1—7° 1—r)

implies
(1—2a)r2+2r+1 =0

which is impossible too. Since y; is concave, the support line is either
tangent to ;" or to y;. The formal case is impossible since the tangent
line to y; would yield (following the procedure used so far) r, =¥, where

e (v 1+a+(a(a_2))l/2 \|l/2

I ‘T—3ra+(a(a—2))”2 y o



We next show that the tangent line to y; with the same slope
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a—1

gives part (ii) of Theorem C. But from (ii) and (27) one can easily prove
that 7, < r, and thus the support line is not tangent to ¢ but is tangent
to yi.

Now from (24)

a—1

, 1
@3 (@) -

is valid for

x> =]/ -
a—1

Let
a—1\"
y* =ga(@*) =1+a— ( 4 ) 3
Then
mind =(1—a)z*+ay* =0
yields

a+2l/a(a—1) +aa =0.

From this we get

s /l—a—(a(a—l))m\‘”2
l1—a }

which is part (ii) of the theorem. The exactness has been shown in [3].

(1]
(2]
(3]

[4]
(5]
(6]
(71
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STRESZCZENIE

Niech P, oznacza klasg funkcji regularnych w kole jednostkowym E,

spelniajacych warunki p(0) = 1, Rep(z) > 8 dla 2z € E.
W pracy podano obszar zmienno$ci funkcjonalu I(p) = Rep(z)+

?'(2) ). W oparciu o ten rezultat, podano inne dowody

+iRe(p(e)+2
znanych juz weze$niej trzech twierdzen, dotyczacych réznych klas funkeji

jednolistnych zdefiniowanych poprzez zwigzek z klasy Pj.

PE3IOME

Ilycts P, o6o3nayaeT Kiaacc peryaapHuX yukumit B kpyre FE, Bhimo-

nHAA yenoBusa p(0) = 1, Rep(z) > B, z € E.
B paGote nmpepncraBiaeno obaacte M3MeHeHMA QyHKUMoHAna I(p)
L
. (2)\
= Rep(:)-l—zl{-e(p(z)—}-z };(’)). Ha ocHoBe 3Tux pe3ysbTaToB, INpen-
CTaBjIeHO JApyrHve N0Ka3aTelbCTBA yiKe paHblle HM3BECTHHX TpeX TeopeM,
OTHOCALUMXCA K Pas3HBIM KiaccaM OJHOPOAHBIX (YHKUMiI, onmpeqeseHHBIX

CBA3BI0 € Kiaccom Pj.



