ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XXXI, 1	SECTIO A	1977

Bowling Green State University, Bowling Green. Ohio 43403, USA

HASSOON S. AL-AMIRI

Applications of the Domain of Variability of Some Functionals within the Class of Carathéodory Functions

Zastosowania obszaru zmienności pewnych funkcjonałów w klasie funkcji Caratheodorye'go

Применение области изменения некоторых функционалов

в классе функции Каратеодоры.

heceans 1 is [3] as follows: 1. Preliminaries

Let P_{β} denote the class of Carathéodory functions of order β , $0 \le \beta < 1$; that is, functions p(z), p(0) = 1 regular in the unit disc E and for which $\operatorname{Rep}(z) > \beta$; $P_0 = P$.

In a recent paper, Zmorovič [7] has obtained the exact lower bound of $\operatorname{Re} \frac{zp'(z)}{p(z)}$, $p(z) \in P_{\beta}$. Before stating Zmorovič's theorem we list in the following some of the symbols that shall be used throughout.

Remark 1.
$$|z| = r; \quad h = \frac{\beta}{1-\beta}; \quad a = \frac{1+r^2}{1-r^2}; \quad b = \frac{2r}{1-r^2}$$

 $R(\beta) = \frac{1+(2\beta-1)r}{1+r}, R(0) = R; \quad \bar{R}(\beta) = \frac{1-(2\beta-1)r}{1-r}, \quad \bar{R}(0) = \bar{R}.$

Theorem A (V. A. Zmorovič). By r(h) we denote the root, unique in $(2 - \sqrt{3}, 1]$ of the equation

$$h(1+r)(4r-1-r^2) = (1-r)^3$$
⁽¹⁾

Then on every circle |z| = r < 1, for every function $p(z) \in P_{\beta}$, $0 \le \beta < 1$, the estimate

$$\operatorname{Re}rac{zp'(z)}{p(z)} \geqslant \sigma(z)$$

This work is partially supported by a summer grant from the Faculty Research Committee at Bowling Green State University. is valid, where

$$r(r) = -\frac{2r}{(1+r)(1-r+h(1+r))}$$
(2)

)

when $0 \leq r \leq r(h)$ and

$$\sigma(\mathbf{r}) = -((a+h)^{1/2} - h^{1/2})^2$$
(3)

when $r(h) \leq r < 1$. These estimates are exact.

a

Let f(z) be regular in E with f(0) = 0, $f(z)f'(z)/z \neq 0$ in E and satisfy there the conditions

$$\operatorname{Re}\left[\left(1-a\right)\frac{zf'(z)}{f(z)} + \alpha\left(1+z\frac{f''(z)}{f'(z)}\right)\right] > 0 \tag{4}$$

for some real number a. Let us denote the class of such functions by S_a . S_a is called the class of a-convex functions, see e.g., [4], [5], [6].

Al-Amiri [1] has obtained the exact radius of a-convexity $r_{\alpha,\beta}$, for the class of the normalized starlike functions of order β which is denoted by S^*_{β} ; that is

$$r_{a,eta} = \max\left\{R \mid f \in S^*_eta ext{ implies } f \in S_a, ext{ for } |z| < R ext{ and } a \geqslant 0, ext{ } 0 \leqslant eta < 1
ight\}$$

Theorem B (Al-Amiri). The radius of a-convexity $r_{\alpha,\beta}$, $\alpha \ge 0$, $0 \le \beta < 1$ or the class S^*_{β} is given by

$$r_{1} = r_{\alpha,\beta} = \left(\frac{2\beta - \alpha + 2(\beta^{3} + h\alpha\beta)^{1/2}}{2\beta + \alpha + 2(\beta^{2} + h\alpha\beta)^{1/2}}\right)^{1/2}$$
(5)

for $\beta_0 \leqslant \beta < 1$ and

$$\mathbf{r}_{2} = \mathbf{r}_{\alpha,\beta} = \left[\left(1 - 2\beta + \alpha (1 - \beta) + \left((1 - 2\beta + \alpha (1 - \beta))^{2} - (1 - 2\beta)^{2} \right)^{1/2} \right]^{-1}$$
(6)

for $0 \leq \beta \leq \beta_0$, where β_0 is the smallest positive root of

 $r_1 = r_2$. (7)

 β_0 lies in the interval $\left(\frac{\alpha}{4+\alpha}, \frac{-\alpha+(\alpha^2+8\alpha)^{1/2}}{4}\right)$. The results are sharp.

Let H(a) denote the class of regular functions f(z) normalized so that f(0) = 0, f'(0) = 1 and satisfying in the unit disc E the condition

$$\operatorname{Re}\left[(1-a)f'(z) + a\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > 0$$
(8)

for some real number a.

Recently, Al-Amiri and Reade [2] have shown the following result.

Theorem C (Al-Amiri and Reade). Let f(z) be in the class of normalized univalent functions with $\operatorname{Re} f'(z) > 0$ for $z \in E$. Then $f \in H(a)$ for $r < r_a$ where

i)
$$r_a = (1 + \sqrt{2a})^{-1}, \ a \ge 0$$

ii) $r_a = \left(\frac{1 - a - (a(a-1))^{1/2}}{1 - a}\right)^{1/2}, \ a \le 0.$

All results are sharp.

Now the purpose of this note is to reproduce the above three theorems through an appropriate application of a result concerning the domain of variability. This result, Theorem D below, is capable of further applications of old and new results. For instance, Theorem B and Theorem C can be extended to the case a < 0 and to the class where $\operatorname{Re} f'(z) > \beta$, $0 \leq \beta < 1$, respectively. However, these extensions would involve a rather long and complicated formulas.

Using the methods of Gutlijanski [3] we are able to obtain, after long and rather tedious but simple analysis, the following generalization of Theorem 1 in [3] as follows:

Theorem D. Let $z \in E$ be fixed. Then the domain of variability D of the functional

$$I(p) = \operatorname{Re} p(z) + i \operatorname{Re} \left(p(z) + \frac{z p'(z)}{p(z)} \right)$$
(9)

within the class $P_{\beta}, \ 0 \leqslant \beta < 1$ is bounded by a closed Jordan curve.

Case 1. If $h \leq \frac{r-1+(1+6r+r_0)^{1/2}}{2(1+r)}$, the upper boundary curve

of D, Γ^+ , consists of three connected arcs Γ_k^+ (k = 1, 2, 3), and the lower curve Γ^- is connected with Γ^+ at the end points over the interval $\underline{R}(\beta) \leq x \leq \overline{R}(\beta)$, where $\operatorname{Re} p(z) = x$. These curves are described below:

$$\Gamma_1^+: y = \Phi_1(x) = \frac{3+h}{2}x - h - \frac{1}{2} \frac{(1-h^2)(1+h)x}{[2(a+h)(1+h)x - 1 - 2ah - h^2]}, \quad (10)$$

for $\underline{R}(\beta) \leqslant x \leqslant \xi_1$, and

$$\Gamma_{2}^{+}: y = \Phi_{2}(x) = \frac{3+h}{2}x - h$$

$$- y_{0}^{3} + (1+2ah+h^{2}-2(1+h)(a+h)x)y_{0} + (1-h^{2})(1+h)x \qquad (11)$$

for $\xi_1 \leq x \leq \xi_2$, and $\Gamma_3^+: y = \Phi_3(x) = x + a - \frac{1+ah}{(1+h)x}$, (12)

for $\xi_2 \leqslant x \leqslant \overline{R}(\beta)$. The lower curve is

$$\Gamma^{-}: y = \psi(x) = (2+h)x - a - 2h + \frac{\beta(a+h)}{x}$$
(13)

for $R(\beta) \leq x \leq \overline{R}(\beta)$.

Case 2. If $h \ge \frac{r-1+(1+6r+r^2)^{1/2}}{2(1+r)}$, then the boundary curves are γ^+ and Γ^- which are joined at the end points over the interval $\underline{R}(\beta) \le x \le \overline{R}(\beta)$ and are described as follows:

$$\gamma^+: y = \Phi_2(x) = x + a - \frac{1+ah}{(1+h)x},$$
 (12)'

$$\Gamma^{-}: y = \psi(x) = (2+h)x - a - 2h + \frac{\beta(a+h)}{x}, \qquad (13)'$$

for $\mathbf{R}(\beta) \leq x \leq \overline{R}(\beta)$.

Remark 2. The arcs Γ_1^+ , Γ_3^+ , γ^+ are increasing and convex while Γ_2^+ is increasing and concave. ξ_1 , ξ_2 and y_0 appearing in Theorem D are solutions to certain equations which we shall not need.

In the second section we will prove these theorems using Theorem D

2. Proofs

Theorem A. It is clear from (9) that to minimize $\operatorname{Re} \frac{zp'(z)}{p(z)}, p \in P_{\beta}$, we need to minimize K(x) where

$$K(x) = \psi(x) - x, \operatorname{Re} p(z) = x, R(\beta) \leq x \leq R(\beta),$$

where $\psi(x)$ is given by (13), (13)'. Consequently,

$$K(x) = (1+h)x - a - 2h + \frac{\beta(a+h)}{x}.$$
 (14)

since

$$K'(x) = 1 + h - \frac{\beta(a+h)}{x^2} = 0$$

is satisfied for

$$x_{0} = \left(\frac{\beta(a+h)}{1+h}\right)^{1/2},$$
(15)

and $K''(x_0) > 0$, it follows that

$$\min K(x) = K(x_0),$$

with $\underline{R}(\beta) < x < \overline{R}(\beta)$. We note that

$$x_0 \leqslant \left(rac{a+h}{1+h}
ight)^{1/2} = ig((1-eta)(a+h)ig)^{1/2} < (1-eta)(a+b+h) = ar{R}(eta),$$

but x_0 may not be greater than $R(\beta)$. From (14) we get

$$\min_{p \in P_{\beta}} \frac{zp'(z)}{p(z)} = K(x_0) = (1+k)x_0 - a - 2h + \frac{\beta(a+h)}{x_0}$$
(16)

provided $x_0 \ge R(\beta)$. Substitution of (15) in (16) yields

$$\min_{p\in \mathcal{P}_{\beta}} rac{z\,p'(z)}{p(z)} \,=\, \sigma(r) \,=\, -\, ig((a+h)^{1/2} - h^{1/2}ig)^2$$

which is (3). Otherwise

$$\min_{p \in P_{\beta}} \frac{zp'(z)}{p(z)} = \sigma(r) = K(\underline{R}(\beta)),$$

if $x_0 \leq R(\beta)$. Again from (14) we get

$$\sigma(r) = (1+h)(1-\beta)(a-b+h) - a - 2h + \frac{\beta(a+h)}{(1-\beta)(a-b+h)}$$

= $-b - h + \frac{h(a+h)}{a-b+h}$
= $-\frac{2r}{(1+r)(1-r+h(1+r))}$

which is (2). See Remark 1 for the symbols. One can directly verify that $x_0 = \underline{R}(\beta)$ is (1) of the theorem, while $x_0 \leq \underline{R}(\beta)$ and $x_0 \geq \underline{R}(\beta)$ are equivalent to $0 \leq r \leq h(r)$ and $r(h) \leq r < 1$, respectively. Thus Theorem A is completed. Exactness has already been established in [7].

Theorem B. Let
$$\frac{zf'(z)}{f(z)} = p(z)$$
 and
 $y = \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) = \operatorname{Re}\left(p(z) + \frac{zp'(z)}{p(z)}\right), f \in S_{\beta}^{*}.$

Then, for $a \ge 0$, it follows from (4) that the radius of *a*-convexity $r_{a,\beta}$ for the class S_{β}^* may be obtained through minimizing

$$(1-a)x+ay$$
.

Now we consider the family of parallel lines L_a , where

$$L_a: (1-a)x + ay = \lambda.$$

From (9) and the above, $r_{a,\beta}$ can be obtained by determining the support line (extremal) of the domain of variability D (Theorem D) within the family L_a .

For a > 0

$$\min_{(x,y)\in D}\left((1-a)x+ay\right)=\min_{(x,y)\in D}\lambda=a\min y(0),$$
(17)

where y(0) is the y-intercept of the parallel line L_a of slope $\frac{a-1}{a} < 1$.

From the nature of the boundary of D, the support line in the family L_a is either tangent to the lower curve Γ^- as given by (13), (13)', provided the point of tangency x_1 , with $\underline{R}(\beta) < x_1 < \overline{R}(\beta)$, or the support line is on the point $(\underline{R}(\beta), \psi R(\beta))$, where $\psi(x)$ is given by (13), (13)'. For

$$\psi'(x) = 2+h-rac{\beta(a+h)}{x^2} = rac{a-1}{a}$$

is satisfied for

$$x_{1} = (1-\beta) \left(\frac{a(ha+h^{2})}{a-\beta+1} \right)^{1/2},$$
(18)

and $x_1 < \overline{R}(\beta)$. Hewever, x_1 may not be greater than $\underline{R}(\beta)$. Therefore if $R(\beta) < x_1 < \overline{R}(\beta)$, then from (13), (13)' and (17) we have

$$\min_{\substack{(x,y)\in D}} \lambda = (1-a)x_1 + a\psi(x_1) \\ = 2(a(a-\beta+1)(ha+h^2))^{1/2} - a(2h+a) = 0$$

yields

$$r_{1} = r_{a,\beta} = \left(\frac{2\beta - a + 2(\beta^{2} + ha\beta)^{1/2}}{2\beta + a + 2(\beta^{2} + ha\beta)^{1/2}}\right)^{1/2}$$
(19)

which is (5). Otherwise $r_{a,\beta}$ is the smallest positive root satisfying

 $(1-a)\underline{R}(\beta)+a\psi(\underline{R}(\beta))=0$

which yields

$$r_2 = r_{a,\beta} = \left[\left(1 - 2\beta + \alpha \left(1 - \beta \right) + \right) \right]$$

+ $((1-2\beta+\alpha(1-\beta))^2-(1-2\beta)^2)^{1/2}]^{-1}$, (20)

which is (6).

However, (20) can't be used to determine $r_{a/\beta}$ if

$$eta \geqslant rac{-a+(a^2+8a)^{1/2}}{4}$$

since r_2 would be greater than 1. Also (19) can't be used to determine $r_{a,\beta}$ if $\beta \leqslant rac{a}{a+4}$, since r_1 would be a nonreal number.

To find β_0 that makes the transition from (19) to (20) we set

$$r_1 = r_2, \tag{21}$$

and solve for β . The smallest positive root of (21) would consequently lie in the interval

$$\left(\frac{a}{4+a}, \frac{-a+(a^2+8a)^{1/2}}{4}\right).$$

This completes Theorem B. Exactness has already been established in [1].

Theorem C. Let f'(z) = p(z) with $x = \operatorname{Re} p(z)$. Then the domain of variability D' of the functional

$$J(p) = \operatorname{Re} p(z) + i \operatorname{Re} \left(1 + \frac{z p'(z)}{p(z)} \right)$$

for all $p \in P$ can be established from the domain D of Theorem D by letting $\beta = 0$ and replacing the boundary arcs Γ_k^+ and Γ^- in case 1 by γ_k^+ and γ^- , when k = 1, 2, 3, respectively, where

$$\gamma_{1}^{+}: y = \varphi_{1}(x) = \Phi_{1}(x) - x + 1 = 1 + \frac{x}{2} \left[1 - \frac{1}{2ax - 1} \right], \quad (22)$$

for $\underline{R} \leq x \leq \xi_{1}$,

$$\gamma_2^+: y = \varphi_2(x) = \Phi_2(x) - x + 1 = 1 + \frac{x}{2} - \frac{y_0^3 - (2ax - 1)y_0 + x}{2y_0^2},$$
 (23)

for
$$\xi_1 \leqslant x \leqslant \xi_2$$
,

$$\gamma_3^+: y = \varphi_3(x) = \Phi_2(x) - x + 1 = 1 + a - \frac{1}{x},$$
 (24)

for $\xi_2 \leqslant x \leqslant \overline{R}$, while the lower curve is The formal c

$$\gamma^{-}: y = \psi_{1}(x) = \psi(x) - x + 1 = 1 - a + x$$
 (25)

As in [2] it can be shown that γ_1^+ and γ_3^+ are increasing and convex while γ_2^+ is increasing and concave.

To find r_a of Theorem C, we employ the method used in the proof of Theorem B. Namely, by determing the support line for the domain D'within the parallel lines \mathscr{L}_a , where

 \mathscr{L}_a : $(1-a)x + ay = \lambda$

which have the slope $\frac{a-1}{a}$

For a > 0

$$\min_{(x,y)\in D'} \left((1-a)x+ay
ight) = \min_{(x,y)\in D'} \lambda = a\min y\left(0
ight).$$

In this range of a, the slope of \mathscr{L}_a is $\frac{a-1}{a} < 1$ and since the slope of the lower curve γ^- is 1, then the support line must be on $(\underline{R}, \psi_1(\underline{R}))$. Hence from (25) it follows that

$$\min \lambda = (1-a)\underline{R} + a\psi_1(\underline{R}) = (1-a)\frac{1-r}{1+r} + a\left(1 - \frac{1+r^2}{1-r^2} + \frac{1-r}{1+r}\right) = 0$$

yields

$$r_a = (1 + \sqrt{2a})^{-1} \tag{26}$$

which is part (i) of Theorem C. For $\alpha < 0$,

$$\min_{(x,y)\in D'} \left((1-a)x + ay \right) = \min_{(x,y)\in D'} \lambda = a \max y(0).$$

In this case the support line is either tangent to the upper curve, on $(\underline{R}, \psi_1(\underline{R}))$ or on $(\overline{R}, \psi_1(\overline{R}))$. If the support line is on $(R, \psi_1(R))$ then r_a would be given by (26) which is impossible. Also, if the support line is on $(\overline{R}, \psi_1(\overline{R}))$ then

$$\min \lambda = (1-a) \frac{1+r}{1-r} + a \left(1 - \frac{1+r^2}{1-r^2} + \frac{1+r}{1-r} \right) = 0$$

implies

$$(1-2a)r^2+2r+1 = 0$$

which is impossible too. Since γ_2^+ is concave, the support line is either tangent to γ_1^+ or to γ_3^+ . The formal case is impossible since the tangent line to γ_1^+ would yield (following the procedure used so far) $r_a = \tilde{r}_a$ where

$$\widetilde{r}_{a} = \left(rac{1+lpha+(lpha(lpha-2))^{1/2}}{1-3lpha+(lpha(lpha-2))^{1/2}}
ight)^{1/2}.$$
 (27)

UFIVERSIFATES MARIAE CURIE-SELODOWSI

We next show that the tangent line to γ_3^+ with the same slope $\frac{1}{a}$ gives part (ii) of Theorem C. But from (ii) and (27) one can easily prove that $\tilde{r}_a < r_a$ and thus the support line is not tangent to γ_1^+ but is tangent to γ_3^+ .

Now from (24)

$$\varphi_3'(x) = \frac{1}{x^2} = \frac{a-1}{a}$$

is valid for

$$x^* = \sqrt{\frac{a}{a-1}}$$

Let

$$y^* = \varphi_3(x^*) = 1 + a - \left(\frac{a-1}{a}\right)^{1/2}$$

Then

$$\min \lambda = (1-a)x^* + ay^* = 0$$

yields

$$a+2\sqrt{a(a-1)}+aa=0$$

From this we get

We will have that ?

$$a_a = \left(\frac{1-a-(a(a-1))^{1/2}}{1-a}\right)^{1/2}$$

which is part (ii) of the theorem. The exactness has been shown in [3].

REFERENCES

- Al-Amiri, H. S., On the radius of β-convexity of starlike functions of order a, Proc. Amer. Math. Soc., 39 (1973), 101-109.
- [2] -, Reade, M. O., On a linear combination of some expressions in the theory of the univalent functions, Monatsh. Math., (to appear).
- Gutljanskii, V. J., On the domain of some functionals and the properties of level curves within certain classes of univalent functions, Trudy Tomsk. Gos. Univ., 200 (5) (1968), 71-87.
- [4] Miller, S. S., Mocanu, P., Reade, M. O., All a-convex functions are starlike, Rev. Roumaine Math. Pures Appl., 17 (1972), 1395-1397.
- [5] Mocanu, P., Une propriété de convexite generalisé dans la représentation conforme, Mathematica (Cluj), 11 (1969), 127-133.
- [6] Mocanu, P., Reade, M. O., The radius of a-convexity for the class of starlike univalent functions, a-real, Proc. Amer. Math. Soc., 51 (1975), 395-400.
- [7] Zmorovič, V. A., On the bounds of starlikeness and of univalence in certain classes of functions regular in the circle |z| < 1, Amer. Math. Soc. Transl., (2) 80 (1969), 227-242.

STRESZCZENIE

Niech P_{β} oznacza klasę funkcji regularnych w kole jednostkowym E, spełniających warunki p(0) = 1, $\operatorname{Re} p(z) > \beta$ dla $z \in E$.

W pracy podano obszar zmienności funkcjonału $I(p) = \operatorname{Re} p(z) + i\operatorname{Re}(p(z) + z \frac{p'(z)}{p(z)})$. W oparciu o ten rezultat, podano inne dowody znanych już wcześniej trzech twierdzeń, dotyczących różnych klas funkcji jednolistnych zdefiniowanych poprzez związek z klasą P_{β} .

РЕЗЮМЕ

Пусть P_{β} обозначает класс регулярных функций в круге E, выполняя условия p(0) = 1, $\operatorname{Re} p(z) > \beta$, $z \in E$.

В работе представлено область изменения функционала I(p)= $\operatorname{Re} p(z) + i \operatorname{Re} \left(p(z) + z \, \frac{p'(z)}{p(z)} \right)$. На основе этих результатов, представлено другие доказательства уже раньше известных трех теорем, относящихся к разным классам однородных функций, определенных связью с классом P_{β} .