UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXX, 10

SECTIO A

976

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej, Lublin

CZESŁAWA TOKARCZYK

The Podkovyrin's Connections with a Torsion

Koneksje Podkowyrina ze skręceniem Связности Подковырина с кручением

We consider the structure (M, e, b, a) where: M is differentiable manifold of dimension n = 2m, e is the tensor field of the type (1, 1) such that:

$$e: TM \rightarrow TM$$

with

$$e \cdot e = \omega I,$$

where $\omega = +1$, or $\omega = -1$, $I = id_{TM}$, b is the field of symmetric corelations (i.e. a tensor field of type (0, 2) which satisfies the condition:

(2)
$$b(u, e(v)) = b(v, e(u)), u, v \in F^1;$$

a is a covector field. Moreover, we assume that $u \rightarrow b(u, -)$ is an inversible function.

Theorem 1. Given a point of the manifold M then there exists a frame R, such that the matrix $e^{i}_{.j}$ of the components of the tensor e takes the form

$$(e_{\boldsymbol{\cdot}j}^i) = \left(\frac{0}{\omega E} \mid \frac{E}{0}\right)$$

Proof. In fact, at the point $x_0 \in M$ this frame may be defined in the following way. Let x_1 be an arbitrary vector in x_0 . We set $ex_1 = x_{m+1}$. The vectors x_1, x_{m+1} are linearly independent and they spanned a 2-dimensional space P_2 . The next step: at the point x_0 we choose a pair of vectors x_2 and $x_{m+2} = ex_2$ where x_2 is b-orthogonal to P_2 . Thus we obtain four linearly independent vectors $x_1, x_2, x_{m+1}, x_{m+2}$ which have spanned a 4-dimensional space P_4^1 . Then, we choose next pair of vectors x_3, x_{m+3} ,

where $x_3 \notin P_4$ and $x_{m+3} = ex_3 \notin P_4$. Now we have six linearly independent vectors $x_1, x_2, x_3, x_{m+1}, x_{m+2}, x_{m+3}$ generalizing the space P_6 . By a prolongation this process step-by-step we obtain the frame $R(x_0, x_1, \ldots, x_m, x_{m+1}, \ldots, x_{2m})$ in which the components e_{*j}^i of the tensor e have the form:

$$(e^i_{*j}) \; = \left(rac{e^\lambda_\mu \; \mid \; e^{\overline{\lambda}}_\mu}{e^\lambda_\mu \; \mid \; e^{\overline{\lambda}}_\mu}
ight),$$

$$\lambda, \mu = 1, 2, ..., m, \bar{\lambda}, \bar{\mu} = 1, 2, ..., m,$$

where

(3)
$$e^{\lambda}_{\mu} = 0, \ e^{\overline{\lambda}}_{\mu} = \tilde{\delta}^{\overline{\lambda}}_{\mu}, \ e^{\lambda}_{\overline{\mu}} = \omega \ \tilde{\delta}^{\lambda}_{\overline{\mu}}, \ e^{\overline{\lambda}}_{\overline{\mu}} = 0.$$

(The symbol δ_{β}^{a} also denotes Kronecker delta, with

$$\delta_{\mu}^{\bar{\lambda}} = \delta_{\bar{\mu}}^{\bar{\lambda}} = 0, \ \delta_{\mu}^{\lambda} = \tilde{\delta}_{\mu}^{\lambda}, \ \delta_{\bar{\mu}}^{\bar{\lambda}} = \tilde{\delta}_{\hat{\mu}}^{\bar{\lambda}}).$$

Then we introduce the operators

$$\Omega = rac{1}{2} \left(I \otimes I + b \otimes \check{b}
ight),$$

(4)

(b)
$$\Omega^* = \frac{1}{2} \left(I \otimes I - b \otimes \check{b} \right),$$

where b is the inverse corelation with respect to b. These operators were introduced by M. Obata [3]. By a direct computation we obtain the following:

Lemma 1.

(5)
$$\Omega \cdot \Omega = \Omega, \ \Omega^* \cdot \Omega^* = \Omega^*, \ \Omega \cdot \Omega^* = \Omega^* \cdot \Omega = 0.$$

Corollary.

$$\ker \Omega = \operatorname{im} \Omega^*, \ \ker \Omega^* = \operatorname{im} \Omega, \ \ker \Omega^* \cap \ker \Omega = \{0\}.$$

Denote by F_1^1 the moduli of tensor fields of type (1, 1) on M.

Proposition 1. Annual and M. S. & Called and A. Annual and Annual

$$F^1_1=\ker\Omega\oplus\ker\Omega^ullet.$$

Proof.

Let $v \in F_1^1$. We may assume, that v = x + y, where $x = \Omega^* v$, $y = v - \Omega^* v \in \ker \Omega$. It follows that $v \in \ker \Omega \oplus \ker \Omega^*$ by corollary. Denote by L the Lie algebra of GL(n, R).

Proposition 2. Let V be an L-valued 1-form. Then the tensor equation of the form

(6)
$$\Omega X = V,$$

in which X is an unknown tensor of the same type as V, has a solution if and only if

$$\Omega^* V = 0.$$

A general solution is of the form

$$(8) X = V + \Omega^* U,$$

where U is an arbitrary linear L-valued form.

In virtue of (2) we have $c_{ij} = c_{ji}$, and moreover for the matrix of the components c^{is} of the inverse tensor c we have $c^{is} = \omega b^{ki} e^{s}_{\cdot k}$.

Then we look for a most general connection ∇ on the manifold M, which satisfies the conditions

$$\nabla e = 0$$

and

(10)
$$(\nabla_v b)(u, w) = a(v) b(u, e(w)), u, v, w \in F^1.$$

We call them Podkovyrin connections.

Theorem 2. Local components ω_i^s of a Podkovyrin connections are of the form

(11)
$$\omega_{i}^{s} = \frac{1}{4} \left(e_{.r}^{s} de_{.i}^{r} + c_{.i}^{qs} db_{iq} - 2Ae_{.i}^{s} + b_{.i}^{rs} db_{ri} + (e_{.r}^{s} e_{.i}^{p} - c_{ri} c_{.i}^{ps}) A_{p}^{r} \right),$$

where $s, i, r, \ldots = 1, 2, \ldots, n$, b_{ij} and b^{is} are the local components of the tensors b and b respectively, and $c_{ij} := e_{,i}^k b_{ik}$.

We assume $A = a_k dx^k$, where a_k — are components of a vector field and A_p^r are components of an arbitrary linear form valued in a Lie algebra.

Proof.

The formulas (9) and (10) in a holonomic field of frames take the form:

If we write the left hand member of (10') in the expanded form and we pass to forms we have:

$$db_{ij} = b_{is}\omega_j^s + b_{sj}\omega_i^s + Ab_{is}e_{ij}^s.$$

Multiply this equality by bir and divide by 2, we got

(12)
$$\frac{1}{2} \left(\delta_s^r \delta_j^i + b_{sj} b^{ir} \right) \omega_i^s = \frac{1}{2} \left(b^{ir} db_{ij} - A e_{\cdot j}^r \right).$$

In the bracket on the left hand side of (12) there are just the components Ω_{sj}^{ri} of the Obata operator (4a). Thus the components $\Omega_{sj}^{\bullet ri}$ of the operator (4b) take the form:

$$arOmega_{sj}^{ullet ri} = rac{1}{2} \left(\delta_s^r \delta_j^i \! - \! b_{sj} b^{ir}
ight).$$

It is easy to verify that the formulas (5) hold well. This means that the equation (12) is the tensor equation. A solution of the equation of (12) is the following:

(13)
$$\omega_i^s = \frac{1}{2} \left(b^{ks} db_{ki} - Ae^s_{\cdot i} + (\delta_k^s \delta_i^l - b_{ki} b^{ls}) \tilde{\omega}_i^k \right),$$

where $\ddot{\omega}_l^k$ is an arbitrary linear L-valued form. Let's turn to the equation (9'). It is equivalent to the following:

$$e^{k}_{\cdot j}\omega_{k}^{i}-e^{i}_{\cdot k}\omega_{j}^{k}=-de^{i}_{\cdot j}$$

We contract both members of this equation by $e^{j}_{.h}$. In view of $\omega^{2} = 1$ we have:

$$(14) \qquad (\delta_h^s \delta_k^i - \omega e_{\cdot k}^i e_{\cdot h}^s) \omega_s^k = -\omega e_{\cdot h}^j de_{\cdot i}^i.$$

As (9') and (10') are to be satisfied simultanously, so the right hand member of (13) should satisfy (14). Then we have:

$$\frac{1}{2} \left(\delta^{s}_{h} \, \delta^{i}_{k} - \omega e^{i}_{\cdot k} e^{s}_{\cdot h} \right) (b^{rk} db_{rs} - A e^{k}_{\cdot s} + (\delta^{k}_{p} \, \delta^{l}_{s} - b_{ps} b^{lk}) \, \hat{\omega}^{p}_{l}) = \omega e^{i}_{\cdot j} de^{j}_{\cdot h}.$$

Thus we have to solve the following equation:

$$(15) \qquad \frac{1}{2} \left(\delta_h^l \delta_p^i - b_{ph} b^{li} - \omega e_{\cdot p}^i e_{\cdot h}^l + c^{li} c_{ph} \right) \tilde{\omega}_l^p$$

$$= -\frac{1}{2} b^{ri} db_{rh} + \frac{1}{2} c^{ri} e_{\cdot h}^s db_{rs} + \omega e_{\cdot l}^i de_{\cdot h}^l.$$

We shall show that if $\omega=1$ then the expression in the bracket on the left hand member of (15) is an Obata operator i.e. if we denote it by $\tilde{\Omega}$, then it may be expressed in the form (4a) or (4b) in the following way:

$$\tilde{\Omega} = \frac{1}{2} (I \otimes I - B \otimes \dot{B}),$$

where the components of the product $B \otimes \check{B}$ are of the form:

$$B^{li}_{ph} = b_{ph}b^{li} + \omega e^i_{,p}e^l_{,h} - c_{li}c_{ph}$$

Denote by $\tilde{\Omega}^{\bullet}$ the operator

$$ilde{arOmega}^{ullet} = rac{1}{2} (I \otimes I + B \otimes \check{B}).$$

Lemma 2. In a case $\omega=1$ the operators $\tilde{\Omega}$ and $\tilde{\Omega}^*$ satisfy (5). Proof.

Let's find a mapping

$$egin{align} P\colon F_1^1{ o}F_1^1\ [X_s^l]{\mapsto} [ilde{Q}_{hs}^{ll} ilde{Q}_{qi}^{*hr}X_r^q]. \end{array}$$

P is of the form:

$$P_{pq}^{lr}X_{r}^{p}=rac{1}{2}\left(\delta_{p}^{r}\delta_{q}^{l}-\omega e_{\cdot q}^{l}e_{\cdot p}^{r}+c_{pq}c^{lr}-b_{pq}b^{lr}
ight)X_{r}^{p}.$$

Let us find the kernel of this mapping. Thus it suffices to find a solution of the following system:

(16)
$$(\delta_p^r \delta_q^l - \omega e_{,q}^l e_{,p}^r + c_{pq} c^{lr} - b_{pq} b^{lr}) X_r^q = 0.$$

Making use of the theorem 1 and of formulas (3) we may write the system (16) as four groups of systems of equations:

(a)
$$(\delta^{a}_{\mu}\delta^{\lambda}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{.\mu} + c_{\mu\beta}c^{a\lambda} - b_{\mu\beta}b^{a\lambda})X^{\beta}_{a} +$$
 $+ (\delta^{a}_{\mu}\delta^{\lambda}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\beta}c^{a\lambda} - b_{\mu\beta}b^{a\lambda})X^{\beta}_{a} +$
 $+ (\delta^{a}_{\mu}\delta^{\lambda}_{\beta} - \omega e^{\bar{a}}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\beta}c^{\bar{a}\lambda} - b_{\mu\beta}b^{\bar{a}\lambda})X^{\beta}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\lambda}_{\beta} - \omega e^{\bar{a}}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\beta}_{a} = 0$
(b) $(\delta^{a}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\bar{\lambda}}_{,\beta} + c_{\mu\beta}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\beta}_{a} +$
 $+ (\delta^{a}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\bar{\lambda}}_{,\beta} + c_{\mu\beta}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\beta}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\bar{\lambda}}_{,\beta} + c_{\mu\beta}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\beta}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\bar{\lambda}}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\beta}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\bar{\lambda}}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\beta}_{a} = 0$
(c) $(\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{a}\lambda} - b_{\mu\bar{\beta}}b^{\bar{a}\lambda})X^{\bar{\beta}}_{a} +$
 $+ (\delta^{\bar{a}}_{\mu}\delta^{\bar{\lambda}}_{\beta} - \omega e^{\lambda}_{.\mu}e^{\lambda}_{,\beta} + c_{\mu\bar{\beta}}c^{\bar{\alpha}\lambda}$

which yields

(a)
$$(\omega - 1)(b_{\mu\bar{\beta}}b^{a\bar{\lambda}}X_{a}^{\bar{\beta}} + b_{\mu\bar{\beta}}b^{\bar{a}\bar{\lambda}}X_{\bar{a}}^{\bar{\beta}}) = 0$$
,

(b)
$$(\omega-1)(b_{\mu\beta}b^{a\bar{\lambda}}X_a^{\beta}-X_{\mu}^{\bar{\lambda}}+b_{\mu\beta}b^{\bar{a}\bar{\lambda}}X_{\bar{a}}^{\beta})=0$$
,

(18) (c)
$$(\omega-1)(b_{\mu\beta}b^{a\lambda}X_{\bar{a}}^{\bar{\beta}}-X_{\bar{\mu}}^{\lambda}+b_{\mu\bar{\beta}}b^{\bar{a}\lambda}X_{\bar{a}}^{\bar{\beta}})=0$$
,

$$(\mathrm{d}) \ (\omega-1)(b_{\bar{\mu}\beta}b^{a\bar{\lambda}}X_a^\beta+b_{\bar{\mu}\beta}b^{\bar{a}\lambda}X_{\bar{a}}^\beta)=0.$$

If $\omega = 1$ then these equation are satisfied identically, now then $\tilde{\Omega} \cdot \tilde{\Omega}^* = \bar{\Omega}^* \cdot \tilde{\Omega} = 0$ holds. Thus (5) is satisfied. In the case $\omega = 1$, for the equation (15), the condition (7) holds well. In fact, we have:

$$\tilde{\mathcal{Q}}_{hp}^{*li} \bigg(-\frac{1}{2} \; b^{rh} db_{ri} + \frac{1}{2} \; c^{rh} e^s_{\cdot i} db_{rs} + e^h_{\cdot r} de^r_{\cdot i}) \; = \frac{1}{2} \; (-b^{rl} db_{rp} + c^{rl} e^s_{\cdot p} db_{rs}) \, .$$

If we split this expression into four groups of indices and we make use of (3) then we obtain the identity:

$$-b^{rl}db_{rp}+c^{rl}e_{\cdot p}^sdb_{rs}=0\,.$$

In power of the proposition 2 a solution of (15) for $\omega = 1$ is

$$egin{align} ilde{\omega}^p_q &= rac{1}{2} \left(-b^{rp} db_{rq} + c^{rp} e^s_{\cdot q} db_{rs} + e^p_{\cdot r} de^r_{\cdot q} +
ight. \ &+ \left(\delta^s_q \, \delta^p_r + b^{sp} \, b_{rq} + e^p_{\cdot r} e^s_{\cdot q} - c_{rq} c^{sp}
ight) A^r_s
ight), \end{split}$$

where A_s^r is an arbitrary linear L-valued form. By substituting (19) into (13) we get (11). This is a most general connection, satisfying (9) and (10).

A torsion tensor T_{ji}^s , expresses by means of the following formulas in a holonomic field of frames

$$\begin{split} T_{ji}^s &= \tfrac{1}{2} (e_{.\,r}^s (\partial_j e_{.\,i}^r - \partial_i e_{.\,j}^r) + c^{rs} (\partial_j c_{ri} - \partial_i c_{rj}) + \\ &+ b^{rs} (\partial_j b_{ri} - \partial_i b_{rj}) + 2 \left(a_i e_{.\,j}^s - a_j e_{.\,i}^s \right) + \\ &+ \left(e_{.\,r}^s e_{.\,i}^p - c_{ri} c^{rs} \right) A_{ip}^r - \left(e_{.\,r}^s e_{.\,j}^p - c_{ri} c^{ps} \right) A_{ip}^r \right). \end{split}$$

Theorem 3. If A_{jp}^r is any skew-symmetric tensor satisfying the conditions

$$c_{ri}c^{ps}A_{jp}^{r} = -c_{rj}c^{ps}A_{ip}^{r}$$

and

$$A^t_{[ji]} = b^{rt} \partial_{[i} b_{j]r} + a_{[j} \delta^t_{i]} + \partial_{[i} e^t_{j]},$$

then connection which is expressed by (11) is a torsionless connection.

Proof. Let us introduce the tensor A_{ip}^r by means of the torsion tensor T_{ji}^s provided that A_{kp}^r satisfies (20). Then, we have

$$egin{aligned} e^s_{m{\cdot}m{r}}(e^p_{m{\cdot}m{i}}A^{m{r}}_{m{j}p}-e^p_{m{\cdot}m{j}}A^{m{r}}_{m{i}p}) &= e^s_{m{\cdot}m{r}}(\partial_j e^r_{m{\cdot}m{i}}-\partial_i e^r_{m{\cdot}m{j}}) - \ &-c^{rs}(b_{iq}\partial_j e^q_{m{\cdot}m{r}}-b_{jq}\partial_i e^q_{m{\cdot}m{r}}) - b^{rs}(\partial_j b_{m{r}m{i}}-\partial_i b_{m{r}m{j}}) - \ &-a_i e^s_{m{\cdot}m{i}}+a_i e^s_{m{\cdot}m{i}}-2T^s_{m{i}m{i}}. \end{aligned}$$

By a contraction of both members by e_s^t and writing the obtained equalitions in four groups of indices and making use of (3) we get

$$A^t_{[ji]} = b^{rt} \partial_{[i}b_{j]r} + a_{[j} \, \delta^t_{i]} + \partial_{[i} \, \theta^t_{*j]} - 2 T^t_{ji}$$
 .

Then it suffices to put any skew-symmetric tensor satisfying (20) and (21) instead of A_{ii}^{l} . Thus we obtain a connection which is torsionless.

Remark 1. Podkovyrin considers some special surfaces in a biplanar space [7] of even dimension. He gives a construction of a connection for which the given tensor e is parallel (9'). Then the two components of the corresponding immersion tensor b, c, are non-degenerated and they satisfy the relations

$$c_{ij} = b_{ik} e^k_{\star j},$$

$$(10') V_k b_{ij} = a_k c_{ij},$$

(*)
$$\nabla_k c_{ij} = \omega a_k b_{ij}.$$

There is also introduced a complex tensor B, where

$$(22) B_{ij} = b_{ij} + \kappa c_{ij}$$

and $\kappa = \sqrt{\omega}$. B is of rank ($\frac{1}{2}$ rank b). The formulas (*) are in a formal analogy with the conditions for a connection to be a Weyl one. But there is no angle-like invariant so that B would be used for a parallel transport of this invariant.

If a connection satisfies (10') and, simultanously

 λ being a real scalar function, then λ must be a constant. In fact, we have from (23)

$$\nabla_k(\lambda b_{ij}) = \lambda \check{a}_k c_{ij}$$

or

$$(\nabla_k \lambda) b_{ij} + \lambda \nabla_k b_{ij} = \lambda \check{a}_k c_{ij}.$$

From (10') we have:

$$(\partial_k \lambda) b_{ij} + \lambda a_k c_{ij} = \lambda a_k c_{ij}.$$

Hence

$$\lambda \left((\partial_k \ln \lambda) b_{ij} + a_k c_{ij} \right) = \lambda \ddot{a}_k c_{ij},$$

Or

$$\lambda ((\partial_k \ln \lambda) e_{ij}^s + a_k \delta_i^s) c_{is} = \lambda a_k c_{ij}.$$

A contraction of this equality by cip, yields

$$\lambda \big((\partial_k \ln \lambda) e^p_{\cdot j} + a_k \, \delta^p_j \big) = \lambda \check{a}_k \, \delta^p_j.$$

Hence

$$\delta_j^p \check{a}_k = (\partial_k \ln \lambda) e_{,j}^p + a_k \delta_j^p$$
.

Because we have $e_{\cdot p}^p = 0$ then

$$n \cdot \check{a}_k = n a_k$$

Hence

$$a_k = a_k$$

Hence we conclude that $\lambda = \text{const.}$ By similar reason the tensor $B_{ij} = b_{ij} + \sqrt{\omega c_{ij}}$ considered in [7] can not be used for measuring angles of tangent vectors.

Remark 2. In the paper [7] there is defined a connection by its coefficients

(24)
$$\tilde{\Gamma}_{ij}^{k} = \theta_{ij}^{k} - \frac{1}{2}(a_{i}e_{\cdot j}^{k} + a_{j}e_{\cdot i}^{k} - a_{s}b^{sk}c_{ij}),$$

where G_{ij}^k are Christoffels of b. These coefficients do not satisfy (9'). There is considered a special case, namely, if the components a_k satisfy the condition

(**)
$$ilde{a}_i = \omega e_i^k a_k = \partial_i \theta$$
 .

Such a field is called a solenoid one. (**) implies a posibility of finding certain new tensors h and \bar{h} such that it holds

$$ilde{h}_{ij} = h_{ik} e^k_{,j} \ h_{ij} = ilde{h}_{ik} e^k_{,j}$$

and or our stood of Selections & and there & end s patroness sales a last a gold !

$$b_{ij} = e^{-\theta} h_{ij}$$

$$c_{ij} = e^{-\theta} \tilde{h}_{ij}$$

and

(26)
$$\begin{aligned} \nabla_k h_{ij} &= \tilde{a}_k h_{ij} + a_k \tilde{h}_{ij} \\ \nabla_k \tilde{h}_{ij} &= \tilde{a}_k \tilde{h}_{ij} + \omega a_k h_{ij} \end{aligned}$$

where $\tilde{a}_k = e^p_{\cdot k} a_p$. Thus there may be computed the coefficients of a connection \mathring{I}^k_{ij} :

(27)
$$\mathring{\Gamma}_{ij}^{k} = \mathring{G}_{ij}^{k} - \frac{1}{2} (\tilde{a}_{i} \, \partial_{j}^{k} + \tilde{a}_{j} \, \partial_{i}^{k} + a_{i} \, e_{\cdot j}^{k} + a_{j} \, e_{\cdot i}^{k}) + \frac{1}{2} \, \tilde{a}_{s} (h^{ek} \, h_{ij} + \tilde{h}^{ek} \, \tilde{h}_{ij}),$$

where G_{ij}^{k} are Christoffels of h. These satisfy (9') with h in a place of b.

Now there arises the following question: what conditions are to be satisfied, that the connection determined by (11) is the canonical Podkovyrin connection (27). By substituting (**) and (25) into (27) we obtain

(28)
$$\Gamma_{ij}^{k} = G_{ij}^{k} - \frac{1}{2} (a_{i} e_{\cdot j}^{k} + a_{j} e_{\cdot i}^{k} - a_{p} b^{pk} c_{ij}),$$

where G_{ij}^k are of Christoffels with respect to b_{ij} . In virtue of (11), we have

$$(29) \Gamma_{ij}^{k} = \frac{1}{2} (e_{\bullet r}^{k} \partial_{i} e_{\bullet j}^{r} + c^{rk} b_{jq} \partial_{i} e_{\bullet r}^{q} - a_{i} e_{\bullet j}^{k} + b^{rk} \partial_{i} b_{rj} + (e_{\bullet r}^{k} e_{\bullet j}^{r} - c_{rj} c^{pk}) A_{ip}^{r}).$$

By comparing right numbers (28) and (29), we get

$$(30) \qquad (e_{\cdot r}^{k} e_{\cdot j}^{p} - c_{rj} e^{pk}) A_{ip}^{r} =$$

$$+ a_{p} b^{pk} c_{ij} - e_{\cdot r}^{k} \partial_{i} e_{\cdot j}^{r} - e^{rk} b_{jq} \partial_{i} e_{\cdot r}^{q}.$$

By a contraction these equations by $\frac{1}{2}e^{i}_{\cdot k}e^{j}_{\cdot s}$ we obtain

$$(31) \quad \frac{1}{2} (\delta_r^t \delta_s^p - b_{rs} b^{pt}) A_{ip}^r = \frac{1}{2} (c^{pt} e_{\cdot s}^j \partial_j b_{ip} - c^{pt} e_{\cdot s}^j \partial_p b_{ij} - -a_j e_{\cdot s}^j \delta_i^t + a_p c^{pt} b_{is} - e_{\cdot s}^j \partial_i e_{\cdot j}^t - b^{rt} c_{qs} \partial_i e_{\cdot r}^q).$$

This is a tensor equation of the type (6), which satisfies (7). Then a solution of (31) is of the form

$$(32) A_{is}^{t} = \frac{1}{2} (c^{pt} e_{\cdot s}^{j} \partial_{j} b_{ip} - c^{pt} e_{\cdot s}^{j} \partial_{p} b_{ij} - a_{j} e_{\cdot s}^{j} \delta_{i}^{t} + + a_{p} e^{pt} b_{is} - e_{\cdot s}^{j} \partial_{i} e_{\cdot j}^{t} - b^{rt} c_{gs} \partial_{i} e_{\cdot r}^{q} + (\delta_{r}^{t} \delta_{s}^{p} - b_{rs} b^{pt}) U_{to}^{r}),$$

where U_{ip} is an arbitrary tensor of the type (1, 2).

Proposition 3. If A_{is}^{t} is defined by (32), then the connection (11) is the canonical Podkovyrin connection.

Remark 3. In a case $\omega = 1$, or in a complex case, equalities (18) imply directly $X_s = 0$. Also in this case there exists a unique connection which is consistent with our structure.

REFERENCES

- [1] Miron, R., Asupra conecsiunilor compatibile cu structuri conform aproape simplectice sau conform metrice, Analele Univ. din Timișeara, Ser. Math., V (1967), 127-133.
- [2] ,, , Espace a structure conforme presque symplectique, Colloquium Mathematicum, 26 (1972), 207-215.
- [3] Obata, M., Hermitian manifolds with quaternion structure, Tohoku Mathem. Journal, 10 (1958), 57-78.
- [4] Подковырин, А. С., Гиперповерхности унитарного пространства I, Изв. Вузов. Матем. 8 (63), (1967), 41-52.
- [5] , Гиперповерхности унитарного пространства II, Изв. Вузов. Матем. 9 (64), (1967), 75-85.
- [6] " Об одном характеристическом признаке особой поверхности Х₄ биаффинного пространства (МБ)₆, Труды семинара кафедры геометрии, в. IV-V, (129), 6 (1960) 111-121
- [7] " , Об одном обобщении связности Вейля, Труды семинара кафедры геометрии в. VI (1971), 70-76.

STRESZCZENIE

Rozpatrzmy strukturę postaci (M, e, b, a), gdzie M jest rozmaitością różniczkowalną wymiaru 2n, e jest polem tensorowym typu (1,1), takim że $e \cdot e = eI$, przy czym $e^3 = 1$, a I jest tensorem jednostkowym, b jest polem symetrycznych korelacji spełniających warunek b(u, e(v)) = b(v, e(u)), a jest polem kowektorów. Zakładamy ponadto, że korelacja $u \rightarrow b(u, -)$ jest odwracalna i korelację odwrotną oznaczamy symbolem b.

W pracy tej znajdujemy ogólną postać koneksji Podkowyrina, oraz wyliczamy ich skręcenia. Lokalne współrzędne ω_i^g otrzymanej koneksji są postaci

$$\omega_{i}^{s} = \frac{1}{4} \left[e_{r}^{s} de_{i}^{r} + e^{qs} db_{iq} - 2Ae_{i}^{s} + b^{rs} db_{ri} + (e_{r}^{s} e_{i}^{p} - c_{ri} e^{p3}) A_{p}^{r} \right]$$

gdzie $a = a_k dx^k$, A_p^r są współrzędnymi dowolnej formy liniowej o wartościach w algebrze Lie'go liniowej grupy L^n .

РЕЗЮМЕ

Рассмотрим структуру вида (M, e, e, a), где M является дифференциальным многообразием размерности 2n, e является тензоровым полем типа (1,1), таким что $e^+e^-=\epsilon I$, при чём $\epsilon^2=1$, а I единичным тензором, ϵ — является полем симметрических корреляций совершающих условие $\epsilon(u,e(v))=\epsilon(v,e(u))$, а является полем ковекторов. Кроме того, предполагаем что корреляция $u-\epsilon(u,-)$ оборотная и эту оборотную корреляцию обозначаем символом ϵ .

В данной работе находим общий вид связности Подковырина и подсчитываем их кручения. Местные координаты ω^a полученной связности имеют вид:

$$\omega_{i}^{s} = \tfrac{1}{4}[e_{r}^{s}de_{i}^{r} + c^{qs}db_{iq} - 2Ae_{i}^{s} + e^{rs}db_{ri} + e_{r}^{s}c_{i}^{p} - c_{ri}c^{ps}A_{p}^{r}]$$

где $a=a_k dx^k$, Ap_p^r являются координатами любой формы со значениями в алгебре Ли линейной группы L^n .