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The Podkovyrin’s Connections with a Torsion

Koneksje Podkowyrina zo skreceniem

CsasHocty TTOAXOBBIDHHA C KpYyYeHHEM

We consider the structure (J,e, b, a) where: M is differentiable
manifold of dimension » = 2m, € is the tensor field of the type (1,1)
such that:

e: TM->TM
with
(1) ee = ol,
where w = +1, or w = —1, I = idgy, b is the field of symmetric core-
lations (i.e. a tensor field of type (0, 2) which satisfies the condition:
(2) b(u,e(®) = b(v, e(w)), u,veF

a i8 a covector field. Moreover, we assume that 4 —b(u, —) is an inversible
function.

Theorem 1. Given a point of the manifold M then there exists a frame
R, such that the matrix ef, of the components of the tensor e takes the form

A (|

Proof. In fact, at the point z,e M this frame may be defined in
the following way. Let x, be an arbitrary vector in z,. We set ez, = &, ,,.
The vectors ,, «,,,, are linearly independent and they spanned a 2-dimen-
sional space P,. The next step: at the point 2, we choose a pair of vectors
x, and @, , = ex, where z, is b—orthogonal to P,. Thus we obtain
four lincarly independent vectors z,, z;, z,,.,, %,,,, which have spanned
a 4 —dimensional space P]. Then, we choose next pair of vectors z,, =, .,
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where z; ¢ P, and z,,,; = éxy ¢ P,. Now we have six linearly independent
Vectors &, Tsy Tgy Tppyyy Tyyyoy Tmys geDeralizing the space Pg. By a pro-
longation this process step-by-step we obtain the frame R(z,,x,,...

vt &y Byyyy -+ Top) in which the components ¢.; of the tensor e have
the form:
A 7
; e, | e
(e.) Z( ;‘ l ;)’
& | &

Ay b =252 s 5100 Ay T =1k 2575 ..o My
where
(3) et =0, 6l =8, 62 =0b, ¢l =0.
(The symbol d3 also denotes Kronecker delta, with

S megte= 0y o) =8 83 =%

¥

Then we introduce the operators

1 >
(a) Q = (I8I+b®p),
(4)
1 ;
(b) Q"='§(I®I—b®b),

where b is the inverse corelation with respect to b. These operators were
introduced by M. Obata [3]. By a direct computation we obtain the follo-
wing:

Lemma 1.
(5) Q0 =0 00" =0 00" =00 —0.
Corollary.
ker Q = im Q°, ker Q* = im Q, ker 2*nker 2 = {0}.
Denote by F) the moduli of tensor fields of type (1,1) on M.
Proposition 1.
F! — ker Q @ker Q°.

Proof.
Let ve F}. We may assume, that v = z-+y, where z = Q%v, y = v—
—Q"v e ker 2. It follows that v e ker 2 @ker 2° by corollary.
Denote by L the Lie algebra of GL(n, R).
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Proposition 2. Let V be an L-valued 1-form. Then the tensor
equation of the form

(6) X =7V,

in which X is an unknown tensor of the same type as V, has a solution if
and only if

(7) Q'V =0.

A general solution is of the form
(8) X=V+QU,

where U 18 an arbitrary linear L-valued form.
In virtue of (2) we have ¢; = ¢;, and moreover for the matrix of
the components ¢ of the inverse tensor ¢ we have ¢“: = wb*'e’,.
Then we look for a most general connection F on the manifold M,
which satisfies the conditions

9) Ve =0
and
(10) (V,b)(u, w) = a(v) blu, 6(w)), u,v,w e FL.

We call them Podkovyrin connections.

Theorem 2. Local components w; of a Podkovyrin connections are of
the form

1
(11)  @f = — (¢ defs+ o™ db;, — 246+ b db,; + (¢, 6% — ¢,:6™) A]

4 »ly
where 8,i,7,... =1,2,...,n, by and b* are the local components of the
tensors b and b respectively, and cy: = 5b,,.

We assume A = a,ds*, where a, — are components of a vector field

and A7, are components of an arbitrary linear form valued in a Lie algebra.
Proof.

The formulas (9) and (10) in a holonomic field of frames take the form:

(9,) Vkefj = 0,

(10’) kafj = akb,-,efj.

If we write the left hand member of (10’) in the expanded form and we
pass to forms we have:

dbﬂ = b,'8 w? + ij U)g +Abin eff .
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Multiply this equality by b and divide by 2, we got
1 i 1 8 1 ir
(12) 5 (B8 +byb"0f == (b"ab, —A¢).
In the bracket on the left hand side of (12) there are just the components

QI of the Obata operator (4a). Thus the components Q,‘," of the operator
(4b) take the form:

1
[t = 5 (87 6] — by b™).
It is easy to verify that the formulas (5) hold well. This means that the

equation (12) is the tensor equation. A solution of the equation of (12)
is the following:

iy
(13) o) = S (b dby; — A€+ (05 0} — by b®)@f)

where @} is an arbitrary linear L-valued form. Let’s turn to the equa-
tion (9’). It is equivalent to the following:

We contract both members of this equation by ¢/,. In view of w? =1
we have:

(14) (63 8} — we' e%) wf = —wel)dely.

As (9') and (10’) are to be satisfied simultanously, 8o the right hand member
of (13) should satisfy (14). Then we have:

1 .

3 (05 8% — we'e%) (b™ db,, — A€k, + (85 8, — b, b'*) 0F) = we';del; .
Thus we have to solve the following equation:

1 . . . 1
(15) = (8,8, — b, 0" — we' €'y + e,y of
Roil ; ) L iy
= — '5 bndbrh‘*' 56 efhdb”-{-we.,de.h.

We shall show that if w = 1 then the expression in the bracket on the
left hand member of (15) is an Obata operator i.e. if we denote it by £,

then it may be expressed in the form (4a) or (4b) in the following way:

e 1 v
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where the components of the product B ®B are of the form:
BI':‘h = bphb“+ wefpof;,—c“cph.
Denote by 3° the operator
o = %(1@ I+BQ®B).

Lemma 2. In a case w = 1 the operators £ and Q* satisfy (5).
Proof.
Let’s find a mapping
P: F,—»F,
[ X319, 95" X

i

P is of the form:
;]
Pl X? = 7 (& 8} — €7+ €,0 ¢ — b b7 X2,
Let us find the kernel of this mapping. Thus it suffices to find a solu-
tion of the following system:
(16) (87 8% — wel €7, + Cpe @ — b, b") X2 = 0.

Making use of the theorem 1 and of formulas (3) we may write the system
(16) as four groups of systems of equations:

(a‘) (6: 6:,—wej‘pc‘.’p+cﬂﬂc“—b”ﬂb“")xﬁ.*_
+ (8585 — wed, e’y +c 50 — b,5b™) XB+

+ (6;—1‘ 6; o we?’”e'.‘ﬂ +c"ﬂca‘ T b”ﬂb;xl) Xg-f—

+ (82 85 — wed, &5 + c,50* —b,3b*) X2 = 0
(b) (82 6}—we‘.’,‘_e.i,,-i-c,,,tf"‘—b,,pb"i)?ﬂ-}-
+ (85 83 — we®, e + c,50™ — b,b*) X2+

+ (83 8} — we?, 6% + ¢,5¢* — b,;b™) X2 -
+(82 8 — wese + 0,56 — b,5b) XE = 0
(€) (82063 — wesels+ cppc™ —bypb™) X5+
+ (8% 8} — we; 65+ capo™ — bzpd™) Xo +

+ (83 8 — wed, 6% + ez 0™ — bb™) X2+

+ (82 85 — wel 63 + 050" — bpb®) X2 = 0
(d) (828} — weel+ezpe™ — by X5+
+ (82 83 — we?, 64+ czpe™ — bb™) X5 +

+ (88 83 — we® ey + 0%t — b pb*) X5 +

+ (8265 — wef’,—,af‘,-}— cpc™t — bzb™) X =0

n

(17)
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which yiclds
(a) (@ —1)(b,zb" X% +b,;b"X8) =0,
(b) (& —1)(b, ;b X5 —X* +b,,b°°X%) =0,
(18)  (€) (w—1)(b,,b™XE—X2 1 b, ;b¥XE) = 0,
(d) (o —1)(b;sb"* X5+ b;,b%X%) = 0.
If o =1 then these equation are satisfied identically, now then Q-0*

= (*-0 = 0 holds. Thus (5) is satisfied. In the case w = 1, for the equa-
tion (15), the condition (7) holds well. In fact, we have:

e 1 1 1

(0 4 ( 5 b™ab,; + o c™ e’ db,, + €. de”,) — 5 (—=b"db,, +c" e’ db,,).
If we split this expression into four groups of indices and we make use
of (3) then we obtain the identity:

—b"adb,, +c"e%,db,, = 0.
In power of the proposition 2 a solution of (15) for v =1 is
. 1
(19) w? = 5(—b"’db,q+c"’e‘.qdb,,+o?’,defq+
+ (0307 +b°Pb,, + €%, 6%y — ¢, ") A7),

where A} is an arbitrary linear L-valued form. By substituting (19) into
(13) we get (11). This is a most general connection, satisfying (9) and (10).

A torsion tensor T'j, expresses by means of the following formulas
in a holonomic field of frames

T = §(e,(0;60,— 0,€y) + ¢ (04¢,; — 0;5¢,y) +
+ (¢!, 6% —c,;c™) Af, — (62,60 —0,¢™) AL).

Theorem 3. If A} is any skew-symmetric tensor satisfying the con-
ditions

(20) ¢ CP°A], = —c, cP AL,
and
(21) A?ji] = b"(’)[‘bn,—i—au é:] +0It5’;l’

then connection which is expressed by (11) is a torsionless connection.

Proof. Let us introduce the tensor A7, by means of the torsion
tensor T provided that A}, satisfies (20). Then, we have

el (e Af, — 6%y AL) = e2,(0;07,—0,67)) —
—0" (btqaj 6?, - qua‘ 0?’.) | br’ ((]jb,.‘ —— a‘bd) e
—a;6%;+aset —2T5;.
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By a contraction of both members by ¢, and writing the obtained equali-
tions in four groups of indices and making use of (3) we get

Alyy = b"Bytyy, + a3 8+ 6y — 2.

Then it suffices to put any skew-symmetric tensor satisfying (20) and (21)
instead of Aj;. Thus we obtain a connection which is torsionless.

Remark 1. Podkovyrin considers some special surfaces in a biplanar
space [7] of even dimension. He gives a construction of a connection
for which the given tensor e is parallel (9°). Then the two components
of the corresponding immersion temsor b, ¢, are non-degenerated and
they satisfy the relations

ey = b{k‘f}s
(10') V&bﬂ = ako”,
(.) V,,o;, = (Dakb“.

There is also introduced a complex tensor B, where
(22) By = by +x0y

and x = Vo. B is of rank (3 rank b). The formulas (*) are in a formal
analogy with the conditions for a connection to be a Weyl one. But there
i8 no angle-like invariant so that B would be used for a parallel transport
of this invariant.

If a connection satisfies (10') and, simultanously
(23) Pi(Aby) = dy(A0y),
A being a real scalar function, then A must be a constant. In fact, we have
from (23)

Pi(Aby) = Adyoy

or

(V"l) b“+lebﬂ == ldk(’“.
From (10’) we have:

(a,‘).)b“—i-ﬂ.a,‘cq = ldk(’“.
Hence
or

A((aklnl) 0:,+ak d;)ou = za'kO“.

A contraction of this equality by ¢, yields
2((61‘1!12)0?}'*'“,‘6]”) = lﬁk (’Ipv

8 — Annales
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Hence
Gfl'i,‘ = (akln}.)e?j +ak6}’.

Because we have ¥, = 0 then
Hence

Hence we conclude that A4 = const. By similar reason the tensor
B, = b‘,+l/wo‘, considered in [7] can not be used for ineasuring angles
of tangent vectors.

Remark 2. In the paper [7] there is defined a connection by its
coefficients

(24) ffj = @ — d(o;ely+ a6l —a, 0% o),

where G} are Christoffels of b. These coefficients do not satisfy (9’). There
is considered a special case, namely, if the componcnts a, satisfy the
condition

(.‘) &‘ = wﬂfak = 6‘0.

Such a field is called a solenoid one. () implies a posibility of finding
certain new tensors h and k such that it holds

i'tj = hikol.‘;

ku —a i’ik"’.‘j
and

b" = e_oh‘j
(25) g

c“ =€ h‘j
and

Vihy = @hy+ a h

(26) L] gy + By By

thu = &k‘il‘, + wakh“

where a, = ¢%.a,. Thus there may be computed the coefficients of a con-
nection I'j:

(@7)  If = Gl— 1@, 8f + & 8F + a,oly+ aje) + 4, (B by + h<Ry),

where ('7‘}; are Christoffels of h. These satisfy (9') with 2 in a place of b.
Now there arises the following question: what conditions are to
be satisfied, that the connection determined by (11) is the canonical
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Podkovyrin connection (27). By substituting (=) and (25) into (27) we
obtain

(28) Tf = Gl — lagely+ay0k—a,b™cy),
where G{‘, are of Christoffels with respect to by. In virtue of (11), we have
(29) T = }(e*,0,6],+c™b, 0,68, — a;0% +b™0,b,, + (¢*, 67, — ¢, ;0P*) AT,).
By comparing right numbers (28) and (29), wo get
(30) (6% 0% —0,0™") A7, =
+a,bP 0, — 6*,0,67;—0™b,,0,¢7,.
By a contraction these equations by }é'.e/, we obtain
(31)  }(8,87 —b,b™) AL, = §(c™6l,0:by — 0™ 61,0, b, —

—a,6!,0;+ a,0"b;, —6!,0,6' ) — b ¢,y 0;67,).

This is a tensor equation of the type (6), which satisfies (7). Then a solu-
tion of (31) is of the form

(32) Al = }(ce!,0;b,,—c™6!,0,by —a6l, 8+
Al apepl bu i 8{.6‘ 6‘-1 i br‘cqa 0‘0?, Gl (6:' 6? — bn bp‘) U:p) ]
where U7, is an arbitrary tensor of the type (1, 2).

Proposition 3. If A, is defined by (32), then the-connection (11) is the
canonical Podkovyrin connection.

Remark 3. In a case w =1, or in a complex case, equalities (18)
imply directly X* = 0. Also in this case there exists a unique connection
which i8 consistent with our structure.
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STRESZCZENIE

Rozpatrzmy strukture postaci (M, e, b, a), gdzie M jest rozmaitodoig réznioz.
kowalng wymiaru 2n, e jest polem tensorowym typu (1,1), takim ze e-e = eI, przy
ozym & = 1, a I jest tensorem jednostkowym, b jest polem symetryoznych korelacji
gpelniajgcych warunek b(u, ¢(v)) = b(v, e(u)), a jest polem kowektoréw. Zakladamy
ponadto, ze korelacja u-—»b(u,—) jest odwracalna i korelacje odwrotng oznaczamy
symbolem b.

W praey tej znajdujemy ogélng postadé koneksji Podkowyrina, oraz wyliczamy
ich skrecenia. Lokalne wspéirzedne w$ otrzymanej koneksji sg postaci

o} = }[e;def+ o dby, — 2Ae}+ bredby; +(ef6] — 0p07°) A]

gdzie a = a;,dz*, 4] sa wspéirzednymi dowolnej formy liniowej o wartoéciach w al-
gebrze Lie'go liniowej grupy L™.

PE3IOME

PaccMoTpHM Cc1pyKTYpY Braa (M, e, e, a), rae M aBnserca naddeperumansnbmm Maoroobpa-
3UCcM Pa3MEPHOCTH 271, e ABNAETCA TER30POBLIM nojieM Tuna (1,1), TaxuM vto e*e = ¢ I, mIpH YéM
2 = 1, a | enMHHYHBIM TEH30POM, 8 — ABJIAETCA DOJIEM cmmerpmecxux:xoppenmmn coBepmalo-
18X YCNOBHE a(u,e(v)) = a(v,e(u)), a sBnseTca moseM xoBekTopoB. KpoMe Toro, npeanmonaraem
YTO KOoppe/auna 4 — 6(u, —) 060poTHAA H 3TY 060POTHYIO KOppe/ALHIO 0603HayaeM CHMBOJIOM 6.

B nannoM paboTte HaxoauM o6mui BUA CBA3HOCTH ITOAKOBLIDHHA M MOACYATHIBAEM MX KpY-
yeHHus. MecTHble KOOpPAHHATH w‘} OONY4YEHHON CBA3HOCTH HMEIOT BMA:

w} = }efde]+cdby—2Ae}+6dbys+efcP—cpicPiA])

rae a=akdx", Ap,'J ABNAIOTCA KoopauHaTaMu moGoit popMH co 3HavennsaMuH B anrebpe Jln
uHedHOK rpynnmr L™,



