UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXX, 8

SECTIO A

1976

Department of Mathematics, Howard University, Washington, D. C. 20059, USA

RONALD J. LEACH

Strongly Starlike Functions of Higher Order

Funkcje mocno gwiaździste wyższego rzędu

Сильно звездные функции высшего порядка

1. Introduction. In [3], D. Brannan and W. Kirwan defined the class $S^{\bullet}(a)$ of all function $f(z) = z + a_2 z^2 + \ldots$ analytic in the unit disc U for which

(1.1)
$$\left|\arg\frac{zf'(z)}{f(z)}\right| \leqslant a\pi/2 \quad z \in U, \ a > 0.$$

(Note that (1.1) implies that zf'(z)/f(z) is analytic and non-zero in U.) Functions in $S^*(a)$ are called strongly starlike of order a. The class $S^*(1)$ is the usual class of normalized univalent starlike functions and if a < 1, $S^*(a)$ consists only of bounded starlike functions [3]. The class $S^*(a)$, $0 < a \le 1$, has been studied extensively (e.g. [1], [3], [6], [7], [8], [9]).

In this note we consider the case a > 1. We obtain sharp estimates on distortion and coefficients, using extreme point and subordination techniques, the function f_a defined by

$$(1.2) f_a(z) = z \exp\left(\int\limits_0^z \left((1+t)/(1-t)\right)^a - 1\right) dt/t$$

being essentially the only extremal function.

2. Basic properties of $S^*(a)$.

Theorem 2.1. The extreme points of $\{\log f(z)/z: f \in S^*(\alpha)\}, \alpha \geqslant 1$, are precisely the functions $\log f(x_{\alpha}z)/xz$, |x|=1.

Proof. As noted in [3], $f \in S^{\bullet}(\alpha)$ if and only if

(2.1)
$$zf'(z)/f(z) = (p(z))^a,$$

where p(z) is subordinate to (1+z)/(1-z). By [2, Theorem 2.1], the extreme points of $\{p^a\}$ are precisely the function of the form $((1+xz)/(1-xz))^a$ |x|=1, for $a\geqslant 1$. The transformation

$$z(\log f(z)/z)' = (p(z))^a - 1$$

is linear and 1-1 from $\{\log f(z)/z: f \in S^*(a)\}$ onto $\{p^a\}$. The result now follows since extreme points of $\{\log f(z)/z: f \in S^*(a)\}$ are of the form

$$\log f(z)/z = \int_0^z \left[\left(\frac{1+xt}{1-xt} \right)^a - 1 \right] \frac{dt}{t} = \int_0^{xz} \left[\left(\frac{1+y}{1-y} \right)^a - 1 \right] \frac{dy}{y} = \log f_a(xz)/xz.$$

Corollary 2.2. Let $f \in S^*(\alpha)$, $\alpha \geqslant 1$, then

$$(2.2) f_a(-r) \leqslant |f(re^{i\theta})| \leqslant f_a(r),$$

$$(2.3) \qquad \big((1-r)/(1+r)\big)^a f_a'(-r)/r \leqslant |f'(re^{i\theta})| \leqslant \big(1+r/(1-r)\big)^a f_a(r)/r.$$

Proof. Inequality (2.2) follows upon exponentiation. To prove (2.3), note that by (2.1), if $z = re^{i\theta}$,

$$((1-r)/(1+r))^a \leq |zf'(z)|f(z)| \leq ((1+r)/(1-r))^a$$
.

Since $f_a(r) > r/(1-r)^2$ for a>1, f_a is not univalent in the unit disc U and thus the radius of univalence R_U of $S^*(a)$ is less than 1. The next three theorems give successively better lower bounds on R_U ; an upper bound is obtained in Corollary 3.2. The exact determination of R_U appears quite difficult since $S^*(a)$ is not a linear invariant family. We note that the ideas of Theorems 2.3 and 2.4 are essentially due to Stankiewicz who proved analogous results if a<1.

Theorem 2.3. If $f \in S^*(a)$ with $a \ge 1$, then f is convex for $|x| < r_c$, where

$$r_c = a + 1 - (a^2 + 2a)^{1/2}$$
.

The result is sharp with equality for $f = f_a$.

Proof. The proof given in [7] using a result of Causey and Merkes [4] is valid for all $a \ge 0$.

Theorem 2.4. If $f \in S^*(a)$ with $a \geqslant 1$, then f is starlike for $|z| < r_s$, where

$$r_s = \csc(\pi/2a) - \cot(\pi/2a).$$

The result is sharp, with equality for $f = f_a$.

Proof. Since zf'(z)/f(z) is subordinate to $((1+z)/(1-z))^a$,

(2.4)
$$|\arg zf'(z)|/f(z)| \leq a |\arg (1+z)/1-z|$$
.

A short calculation yields, with $z = re^{i\theta}$,

(2.5)
$$\arg(1+z)/(1-z) = \arctan(2r\sin\theta/(1-r^2)).$$

Combining (2.4) and (2.5) we have

$$|\arg zf'(z)|f(z)| \leqslant \arctan(2r/1-r^2).$$

The result now follows since the left hand side of (2.6) is less than $\pi/2$ for $r < r_s$. Clearly equality holds in all these inequalities if and only if $f(z) = x^{-1} f_a(xz)$.

Theorem 2.5. If $f \in S^*(a)$ with $a \ge 1$, then f is close-to-convex in $|z| < r_k$, where r_k is the radius of close-to-convexity of f_a .

Proof. Following an idea of Krzyż [5], we will determine

$$\min \arg \frac{zf'(z)}{z_0f'(z_0)}$$

where the minimum is taken over all $z = re^{i\theta}$ and $z_0 = re^{i\theta_0}$ with $|\theta| \le \pi$, $|\theta_0| \le \pi$.

It follows from (2.1) that

(2.7)
$$\arg \frac{zf'(z)}{z_0f'(z_0)} = a \arg \frac{P(z)}{P(z_0)} + \arg \frac{f(z)}{f(z_0)}$$
$$= a \arg \frac{P(z)}{P(z_0)} + \log \frac{z}{z_0} + \operatorname{Im} \left[\int_0^z \left(P^a(t) - 1 \right) \frac{dt}{t} - \int_0^{z_0} \left(P^a(t) - 1 \right) \frac{dt}{t} \right]$$

Since $\{P^a\}$ is rotationally invariant, the minimum of (2.7) depends only on $\theta - \theta_0$. Let θ_0 be fixed. Now $\int\limits_0^{\pi} \left(P^a(t) - 1\right) dt/t$ is the limit of sums of the form

$$\sum_{k=1}^n \left(P^a \left(\frac{kr}{n} \, e^{i\theta} \right) - 1 \right) / n \, .$$

Consequently, (2.7) is the limit of $\Phi_n(\log p^a(z))$ where φ_n is entire. Since P(z) is subordinate to (1+z)/(1-z), $\Phi_n\log P^a(z)$) attains its minimum for each z only if P(z)=(1+xz)/(1-xz), |x|=1. Let z_n be chosen so this minimum is $\Phi_n\log P^a(z_n)$. If M is the minimum of (2.7), there is a subsequence $\Phi_m\log P^a(z_m)$ for which z_m converges to z', x_m converges to x' and hence (2.7) is minimized when z=z' for the function P(z)=(1+x'z)/(1-x'z). This completes the proof.

We note that it is possible to compute numerical values of r_k for specific a using (2.5).

9. Coefficient bounds. In [1], Brannan, Clunie and Kirwan studied the coefficient problem for $S^*(a)$ if $0 < a \le 1$. They showed that

$$|a_2| \leqslant 2a \qquad (0 < a \leqslant 1)$$

$$|a_3| \leqslant a \quad (0 < a < 1/3)$$

$$|a_3| \leqslant 3a^2 \quad (1/3 < a \leqslant 1)$$

$$|a_3| \leqslant 1/3 \qquad \alpha = 1/3.$$

The extremal functions for (3.1) and (3.3) are the functions $f(z) = z + 2az^2 + 3a^2z^3 + \dots$ of (1.2) together with its rotations. Extremal functions for (3.2) and (3.4) are defined by

$$zf'(z)/f(z) = ((1+xz^2)/(1-xz^2))^a$$
 $|x| = 1$

and

$$zf'(z)|f(z)| = \lambda \left(\frac{1+xz}{1-xz}\right)^{\alpha} + (1-\lambda)\left(\frac{1+xz^2}{1-xz^2}\right)^{\alpha}, \quad |x| = 1, \ 0 \leqslant \lambda \leqslant 1.$$

In addition they showed that for each n, if a is sufficiently close to 1, $|a_n|$ is maximized by A_n , where

$$f_a(z) = z + \sum_{n=2}^{\infty} A_n z^n$$

We are able to solve completely the coefficient problem if $a \ge 1$.

Theorem 3.1. Let $f(z) = z + a_2 z^2 + ... \in S^*(a)$, $a \ge 1$. Then $|a_n| \le A_n$.

Proof. Let $(P(z))^{\alpha} = 1 + b_1 z + b_2 z^2 + \dots$ be the function defined by (2.1). By a result of Brannan, Clunie and Kirwan [2, Corollary 2.1], $|b_n| \leq B_n$, where

$$(3.6) \qquad ((1+z)/(1-z))^{\alpha} = 1 + B_1 z + B_2 z^2 + \dots$$

Comparing coefficients in (2.1) we obtain

$$(3.7) (n-1)a_n = b_1 a_{n-1} + b_2 a_{n-2} + \ldots + b_n.$$

Since $a_2 = b_1$, the result is true if n = 2. Suppose that $|a_k| \le A_k$, $2 \le k \le n-1$. Then from (3.6) and (3.7) we see that

$$(n-1)|a_n| \leq B_1 A_{n-1} + B_2 A_{n-2} + \ldots + B_n = A_n.$$

This completes the proof.

Corollary 3.2. $R_U \leqslant 1/a$.

Proof. $A_2 = 2a$.

Theorem 3.3. Let $g(z) = z + a_{m+1}z^{m+1} + \dots$ be an m-fold symmetric function in $S^{\bullet}(a)$, $a \ge 1$. Then

$$|a_{mk+1}|\leqslant C_{mk+1}$$
 $k=1,2,\ldots$

where $G(z) = z + C_{m+1}z^{m+1} + \dots$ is defined by

$$=\frac{zG'(z)}{G(z)}=\left(\frac{1+z^m}{1-z^m}\right)^a.$$

Proof. The proof is analogous to that of Theorem 3.1, using the fact that if Q(z) is an m-fold symmetric function with Q(0) = 1, $\operatorname{Re} Q(z) > 0$, then the coefficients of $(Q(z))^a$ are bounded by those of $\left(\frac{1+z^m}{1-z^m}\right)^a$.

REFERENCES

- [1] Brannan, D., Clunie, J. and Kirwan, W., Coefficient estimates for a class of starlike functions, Canad. J. Math., 22 (1970), 476-485.
- [2] ,, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. AI, 523 (1973), 18 pp.
- [3] Brannan, D. and Kirwan, W., On some clusses of bounded univalent functions, J. London Math. Soc., (2), 1 (1969), 431-443.
- [4] Causey, W. and Merkes, E., Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl., 31 (1970), 201-204.
- [5] Krzyż, J., The radius of close-to-convexity within the family of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20 (1962), 201-204.
- [6] Leach, R., On some classes of multivalent starlike functions, Trans. Amer. Math. Soc., 209 (1975), 267-273.
- [7] Stankiewicz, J., Some extremal problems for the class S_a, Ann. Univ. Mariae Curie-Skłodowska, Sect. A., 25 (1971), 101-107.
- [8] ,, Quelques problemes extremaux dans les classes des fonctions a-angulairement etoilees, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 20 (1966), 59-75.
- [9] ,, Some remarks concerning starlike functions, Bull. Acad. Polon. Sci. Sci. Math. Astronom, Phys., 23 (1970), 143-146.

STRESZCZENIE

W pracy autor bada tzw. funkcje mocno gwiaździste rzędu a, przy a > 1. Otrzymał on twierdzenia o zniekształceniu, oszacowanie współczynników, a także promień gwiaździstości i wypukłości dla funkcji rozważanej klasy.

РЕЗЮМЕ

В этой работе автор занимается так называемыми сильно звездообразными функциями порядка a, a>1. Получил он теоремы об искажению, оценку коэффициентов, а также радиус звездообразности и выпуклости для функции этого класса.