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CunbHo 3Be3aHble QYHKLUMH BLICHIErO NOpPAAKa

1. Introduction. In [3], D. Brannan and W. Kirwan defined the
class 8*(a) of all function f(z) = 2+ a,2%+... analytic in the unit disc U
for which

s s lnadr = )
(1.1) \ arg 7o | <an/2 zeU, a>0.
(Note that (1.1) implies that zf'(2)/f(z) is analytic and non-zero in U.)
Functions in 8*(a) are called strongly starlike of order a. The class 8°(1)
is the usual class of normalized univalent starlike functions and if a < 1,
8*(a) consists only of bounded starlike functions [3]. The class 8°*(a),
0 < a <1, has been studied extensively (e.g. [1], [3], [6], [7], [8], [9]).
In this note we consider the case o > 1. We obtain sharp estimates
on distortion and coefficients, using extreme point and subordination
techniques, the function f, defined by

(1.2) fu(2) = zexp( [ (1 +8)/(1 —t)]"—l)dt,lt

being essentially the only extremal funection.
2. Basic properties of S*(a).
Theorem 2.1. The extreme points of {logf(z)/z: f e 8%(a)}, a =1, are
precisely the functions logf(x,2)/xz, |x| = 1.
Proof. As noted in [3], f € 8*(a) if and only if
(2.1) of (2)[f(2) = (p(2))
where p(z) is subordinate to (1+2)/(1—2). By [2, Theorem 2.1], the ex-

treme points of {p°} are precisely the function of the form ((1 + zz)/(1 —z2))°
2| =1, for a > 1. The transformation

z(logf(2)/2)" = (p(2))"—1
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is linear and 1—1 from {logf(z)/z: f € 8*(a)} onto {p°}. The result now
follows since extreme points of {logf(z)/z: f e 8*(a)} are of the form

14at @ [ [[1+y dy
oasios = (2 ] % - L2 ]2 g

Corollary 2.2. Let f e 8*(a), a=> 1, then

(2.2) fa(=7) < If(re®)| < fo(r),
2.3) (A=n) A+ (=) r < |f (re”) < (L+7/X—7))fu(r)[r.

Proof. Inequality (2.2) follows upon exponentiation. To prove (2.3),
note that by (2.1), if z = re”,

(A =7)/A+7) < l2f " (@) [f(2)] < (L +7) /(L —7))

Since f,(r) > r/(1 —7)? for a > 1, f, is not univalent in the unit dise
U and thus the radius of univalence R;, of S*(a) is less than 1. The next
three theorems give successively better lower bounds on R,; an upper
bound is obtained in Corollary 3.2. The exact determination of R, appears
quite difficult since 8*(a) is not a linear invariant family. We note that
the ideas of Theorems 2.3 and 2.4 are essentially due to Stankiewicz who
proved analogous results if a < 1.

Theorem 2.3. If fe 8%(a) with a> 1, then f is convexr for |zx| < r,,
where

r, = a+1—(a’+ 2a)'~.
The result 13 sharp with equality for f = f,.

Proof. The proof given in [7] using a result of Causey and Merkes [4]
is valid for all a > 0.

Theorem 2.4. If fe 8%(a) with a>1, then f is starlike for |z| <r,,
where
r, = ¢s¢(m/2a) —cot(m/2a).

The result 18 sharp, with equality for f = f,.
Proof. Since zf’(z)/f(2) is subordinate to ((1-+2)/(1—2))%,

(2.4) largzf’(2)[f(2)| < alarg(1l +2)/1—=z)|.
A short calculation yields, with z = re®,
(2.5) arg(1+z)/(1 —2) = arctan (2rsin6/(1 —r2)).

Combining (2.4) and (2.5) we have
(2.6) largzf’(2)/f(z)| < arctan(2r /1 —r?),
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The result now follows since the left hand side of (2.6) is less than x/2
for r < r,. Clearly equality holds in all these inequalities if and only if
f(z) = a7 f (22).

Theorem 2.5. If fe8%(a) with a>1, then f is close-to-convex in
|2] < ry, where r, is the radius of close-to-converity of f,.

Proof. Following an idea of Krzyz [5], we will determine

mina,rgM
Zof ' (2o)
where the minimum is taken over all z = re® and 2z, = re' with |6] < =,
16| < 7.

It follows from (2.1) that

A& PE) . f@)
O el (et Ten BELEH, ek e}
P(2) z : i P dt

Since {P°} is rotationally invariant, the minimum of (2.7) depends only

on —6,. Let 0, be fixed. Now [ (P*()—1)dt/t is the limit of sums of
0

the form
'y (P“ (E e‘“) —1) n.
;éf n

Consequently, (2.7) is the limit of @, (logp“(z)) where ¢, is entire.
Since P(2) is subordinate to (1+2)/(1—2z), @,logP?(2)) attains its mini-
mum for each z only if P(z) = (1+a2)/(1 —x2), |z| = 1. Let 2, be chosen
80 this minimum is @,logP*(z,)). If M is the minimum of (2.7), there
is a subsequence @, logP(z,,)) for which z,, converges to z’, z,, converges
to 2’ and hence (2.7) is minimized when 2z = 2’ for the function P(z)
= (1+2'2)/(1 —2'2). This completes the proof.

We note that it is possible to compute numerical values of r, for
specific a using (2.5).

9. Coefficient bounds. In [1], Brannan, Clunie and Kirwan studied
the coefficient problem for S*(a) if 0 < a < 1. They showed that

(3.1) @] <2¢ (0<a<l)
(3.2) oy <a (0<a<1/3)
(3.3) las] <3a® (13<a<1)
(3.4) lag]| <1/3 a =1/3.

3 — Annales
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The extremal functions for (3.1) and (3.3) are the functions f(z) = z+

+ 2a2% + 3a%2® +... of (1.2) together with its rotations. Extremal functions
for (3.2) and (3.4) are defined by

#'(2)f(2) = (L+a2) /A —a?))* || =1
and

zf'{z}ff(z)='(1_m)° +(1- A)h”zz)a, ol =1, 0<A<1.

In addition they showed that for each n, if a is sufficiently close to 1, |a,|
is maximized by 4,, where

(3.5) fol2) =2+ D A,

Ne=2

We are able to solve completely the coefficient problem if a > 1.

Theorem 3.1. Let f(2) = 2z+a,2°+...€ 8%(a), a>1. Then |a,| <
< A,.

Proof. Let (P(2))* = 1+b,2+b,2°+... be the function defined by
(2.1). By a result of Brannan, Clunie and Kirwan [2, Corollary 2.1],
|b,| < B,,, where

(3.6) (L+2)/(L—2))" =1+B,2+Bs2" +....
Comparing coefficients in (2.1) we obtain
(3.7) (n—1)a, = b,a,_,+b.a,_,+...+b,.

Since @, = b,, the result is true if n = 2. Suppose that |a,| < 4,,
2< k<mn-—1. Then from (3.6) and (3.7) we see that

(n—1)|a,| < B,;A,_,+ByA4, ,+...+B, = A4,.
This completes the proof.
Corollary 3.2. R, < 1/a.
Proof. 4, = 2a.

Theorem 3.3. Let g(2) = z+@a,,,2""" +... be an m-fold symmetrio
function in S*(a), a > 1. Then

iamk—f—ll < Omk+1 k= 1, 2, oo
where G(2) = 2+Cpp 2™ +... is defined by

_ () (1427
G \1-z"]
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Proof. The proof is analogous to that of Theorem 3.1, using the
fact that if ¢ (2) is an m-fold symmetric function with @ (0) = 1, Re@(2) > 0,
1+42™\°
1—27)°

then the coefficients of (Q(z))" are bounded by those of (
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STRESZCZENIE
W pracy autor bada tzw. funkcjo mocno gwiazdziste rzedu a, przy a > 1. Otrzy-
mal on twierdzenia o znieksztalceniu, oszacowanie wspélezynnikéw, a takze promien
gwiazdzistodei i wypuklodei dla funkeji rozwazanej klasy.
PE3IOME
B 370#t paGoTe aBTOP 3aHHMAETCA TaK HA3bIBAEMBIMH CHIILHO 3Be31006pa3HbmMi GyHKLBAME

mopsaaka a, a>1. IToxyunn oH TeopeMsbl 06 HCKaKEeHHIO, OLEHKY KO3 (HUUAEHTOB, 8 TaKEe pagHyC
3Be31006pa3HOCTH M BbIMYKJOCTH AN (yHKUHH 3TOro knacca.






