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On the Location of Zeros of Polynomials
O rozmieszezeniu zer wielomianéw

O pacrnosnoXeHHH HYJCH MOJTMHOMOB

1. Introduction. The different results proved in this paper, though
not having very much in common have been put together as they all
deal with the location of zeros of polynomials. In Section 2 a classical
result of Cauchy is considered for a special class of polynomials. In Sec-
tion 3, extension of well-known Enestrom-Kakeya theorem is considered
for polynomials with complex coefficients. In Section 4, we obtain the
minimum number of zeros of a polynomial, which the unit disc will contain
provided the moduli of polynomial and its derivative satisfy certain
conditions.

2. A classical result of Cauchy on the location of zeros of polynomial
P(2) = a,2"+a,2" ' +... +a,z4a,,,
states that all the zeros are in the circle

2l <144,
where

]
Ll

A = Max
2<J<n+1

a,

Let us consider the polynomial p(z) with complex coefficients such
that

@yl < Iaj|(1+a/j)’ i=12,..,m
for some non-negative real number a. We prove
n+l
Theorem 1. Let p(z) = 3 a, 2" *+'(5 0) be a polynomial of degree
k=1
with complex coefficients such that

@4l < la)| (L +afj)y 3 =1, 2,..4m (1)
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for some non-negative real number a. Then p(z) has all its zeros in
2l/l+a

Il < S (2)

Proof of Theorem 1. From (1), it is easy to infer that

(1+a)
a,| < lay|
(1+a)(2+a)
2] < |
i (3)
6. < la |( +a)...(n+a)
n+1 1 ’n!
Now for |z| > 1, we have
[P(2)] = la,] [2]" — laa| 21" 7" — |ay| 21" 72 ... — @] |2l — 8,1,
l+a 1+a)(2+a >
= lay| [2|" — |a,] ( 1! : |z]u_1|—|a1|(;#| "= —

Q1+a)...(n+a)
ni

. — el

B 0 N @ta) . (k+a)l
— Ial”zl [l k'lzlk ]

k=1

1 (k 1 1\ "+
> |a‘1|[z|"|: 2 ( +a)k'|zlk+a) ] |a1”z|"[2_(1-'ﬁ' ] (4)

Now the right hand side of inequality (4) will be greater than zero if

21I1+a
2| > m? 1. (8)
Hence on combining (4) and (5), we see that p(z) has all its zeros in
21/1+a
2] < ST
and the theorem is proved.

3. The theorem of Enestrom and Kakeya [5, p. 136] mentioned
in the introduction states that if

a.=a, 1 =...2a,=20,=>0
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then the polynomial
f(2) = a,2"+a, 2" +...+ a2 + a2+ ag

has all its zeros in the unit circle. If we do not assume the coefficients
to be non-negative, the conclusion does not hold. However, we prove

Theorem 2. Let p(2) = Z’akz"( # 0) te a polynomial of degree n with

k=0
complex coefficients such that

larga, — Bl <a< =2,k =0,1,...,n
for some real B, and
|Gn| Z @p_y] = 18p_s] 2 <1t |G| = lay] = |agl,

then p(z) has all its zeros on or tnside the circle

el = 1+———2 @y, (6)

] &
For a = B = 0, this reduces to the Enestrom-Kakeya theorem.
Proof of Theorem 2. We may plainly assume g = 0. Let arga, = a,,
arga,_, = a,_,. Then
la,— @ _y1* = |la] 6% — a, [ 651 [
= |ay|* + |ay_,|* — 2 |ay| |ay_,| co8(a, —a,_,)
< a2+ |ay_, |2 — 2 |a;| |a;_,|co82a = (|a,| — |a,_,|)*+ 4|a,a,_,|8in%a.
Hence we have
la, — a;_,| < (la,| — lag_,[) +2|a,a,_,|'sina. (7)
Now consider
9(2) = (1—2)p(2) = —a,2"*'+ kzl(ak—ak_nz"wo
= —a,2"t' +P(2), say. (8)
For |z| =1, we have

n

IP(2)] < ) la—a,_y| + laol
k=1

< Y (loul — lay. 1n+2( Zla,,ak_u Jsina+la,l, (by (7))

=1

w

= |an|+2(2 |a,,ak_,|‘)sina.

k=1
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< lag| +2( 3 1a,0,,1') sina (9)

' ;¥
()
I & k=1

for (2| = 1. By the maximum modulus theorem (9) holds inside the unit

: S
circle as well. If R > 1 then = ¢ " lies inside the unit circle for every
real 6 and from (9) it follows that
P (Re”)| <{la,|+2( Y laa,_,\')sina} B"
k=1

for every R>1 and 6 real.
Thus for 2| = R>1

9(2)| = | —a,2""' +P(2)| > la,| B — {la,| +2( } la,a,_,})sina} B" > 0
ka1
if
R 1- 2sina p‘l r
S =3 ;. Ay |
ja,| &

k=1
From this the theorem follows.

It should be remarked here that an extension of Enestrom-Kakeya
theorem to polynomials with complex coefficients was obtained by Govil
and Rahman [3, Theorem 2]. But in some cases, Theorem 2 gives better
result than that obtained in case of Govil and Rahman, a8 the example

p(2) = 42° +3(V.856 +.12i)2* + 2(V.856 —.12i) 2% +.222 + 2(V .99 —.13)z +1
shows.
4. A result of Ankeny and Rivlin [1, Theorem 2] states that if p(z)

is a polynomial of degree n with real coefficients having all zeros of non-
-positive real part such that for some R > 1

Rk —{-R"

P(R)>p(1) —5—
k a non-negative integer, then p(z) has at least (k1) zeros in |z| < 1.
We instead, consider a relation between p’(1) and p(1), and prove

Theorem 3. If p(z) is a polynomial with real coefficients having all
the zeros with mon-positive real part and if

k
P'(1) > p(1) ";’ ,

k a non-negative integer, then p(z) has at least (k-+1) zeros in 2| < 1.
To prove the theorem, we need the following lemmas.
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Lemma 1. If f(z) is a polynomial of degree m, then
Max |f'(2)] < n Max |f(2)].
lel=1

|g]=1
This lemma is well known Bernstein Theorem [2]

Lemma 2. If g(z) is a polynomzial of degree n such that it has no zeros
in |2| <1, then

3

Max |f(2)| < 5 Max |f(2)].

o

lel=1 Z
This lemma is due to Lax [4].

Proof of Theorem 3. Suppose p(z) has m zeros in |z2| < 1 and m < k.
Let

p(z) = (z_zl) =3 (z_‘ m)(z—zm-H) see (z_zn)
and suppose |z| <1 (j =1,2,...,m). Put

g(2) = (2—2y) ... (2—2,)
and

h(z) = (2—Zms1) o (2—2,).
The polynomials p(z), g(z) and h(2) have positive coefficients. Hence
9'(1) < g()m (10)
and

n —
h'(1) < k(1)

(11)

according to Lemmas 1 and 2 respectively.
Thus
L) @A) g1

+m (by (10) and (11))

p(1)  h(Q)  g(1) = 2
_n+m /n+k_
I TR

giving thereby
+k
p’A)<p() ——

a contradiction establishing the theorem.

We may apply Theorem 3 to the polynomial 2 p(l [z) to get the
following.

Corollary 1. If p(2) is a polynomial with real coefficients and having
all the zeros with nonm-positive real part and if

q'(1) > q(1)[n—1]
then p(z) has no zeros in |z| < 1. Here q(z) denotes the polynomial 2" p(1/z).
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STRESZCZENIE
W pracy zawarte sg pewne rezultaty dotyczgco rozmieszczenia zer wielomia-
n4l
néw. Pierwszy dotyczy ograniczenia modulu zer wielomianu p(z) = 3} ape"~*+}, gdy
k=1

jego wspélezynniki spelniaja nieréwnoédei |a;4 ;] < (1+ afj)|a;l. Dalej udowodniono,
n

ze jozeli wapélozynniki wielomianu p(z) = } az* spelniaja warunki

=0
larga; — Bl < a < 7/2
a0l < lay| < ... < lag|
to wezystkie zera wielomianu p (¢) lezg w obszarze

2sina

o] < 14
|an!

|o a1 112

L1:

k=

PE3IOME

JT1a paboTa COOEPXKUT HEKOTOPBIE Pe3ybTAThl O PAaCMONIOKEHUIO Hy el nonnHoMOB. [lepBuiit
n+1

OTHOCHTCA K OTPaHHYEHHIO MOAY/IA HyJelk moiHHOMa p(2) = E a,z"~k+1 yorpa ero xoaddu-
k=1

LIMCHTRI MCTIOMHAIOT HEPAaBEHCTBA [4;4,| < (1+ afj)|a;l. TIoToM mokasaHo, ¥TO ecmm ko3ddu-

n
LIHEHTB! MONHHOM2 p(2) = Y a;.z* ucnomusior ycnosus |arga; —f| < a < 7/2
k=0

a0l < la1] < ... < lag],
TO BCE HYJIH MONMHWHOMA P(z) nexat B obnactu

"

28ina
I8 < 1+ Z lagay_,|'?
Jayl i




