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On the Full Solution of the Functional-Paratingent Equation
O pelnym rozwigzaniu réwnania paratyngensowo-funkcjonalowego

O monuom PELIEHHH d))'HKLlHOHaJleO-]’lapaT'AHFCHTHOI‘O YPABHCHHA

This note concerns the existence of a full solution of the functio-
nal-paratingent equation. We present the generalisation of our earlier
notes [3] and [4] in which we considered the problem of existence of
a solution for a paratingent equation with deviated argument.

I. Notations and definitions

Let us accept the following symbols.

p < 0 is a fixed number belonging to the real line R. R* = [0, ) c R.
E" denotes a m-dimensional Euclidean space with the norm |z| =
max = max(|o,|, ..., [x,|), where v = (z,, ..., ®,,).

Conv R™ is the family of all convex compact and nonempty subsets of
R"™ with the distance between them being understood in the Hausdorif
sense.

C is the space of all continuous functions g: [p, coc]—>R™ with topology
defined by an almost uniform convergence. It is well-known that C is
a metrizable locally convex linear topological space. [¢],, t > p, denotes
the function ¢ which is localized within the interval [p,t] and |g|, =
= max ¢(8) (i.e. [¢], is the best non-decreasing majorant of ¢ on [p, t]).

p=a=t
€ is the space of all functions [¢);, where peC and t > p, with the
metric being understood as a distance of graph (the graph being a subset
of R xR™) of these functions in the Hausdorff sense (a so-called graph
topology).
Having a function ¢eC and ¢ > p the set of all limit points

— (p_(ti)_(p_(sx_)
i, —8;



168 Wojciech Zygmunt

where 8;, t; = p, 8;—>1, t,—~t and 8, #t, i =1,2,... will be called para-
tingent of ¢ at the point ¢ and denoted by (Pgp)(t).
Taking only the limit points for which ¢ <s;, t <1t and t,—1, 8,1,
t; # 8 one obtains the right-hand paratingent (P ¢)(t) of ¢ at the point ¢.
Let F: R" x € >ConvR™ be a continuous mapping, let »: R"—R"
be a continuous function such that »(¢) > t and let [£],¢C. We shall deal
with the functional-paratingent equation

(1) (Pa)(t) < F(t, [£)), t>0
with the initial condition
(2) z(t) = &), p<t<O.
By the full solution of (1), which satisfies the condition (2), we mean
any function @eC such that i
(Pp)(t) = F(t, [@ly), t>0

(P ¢)(0) = F(0, [‘P]v(t))
and
Put |F(t, [z],)| = sup{z|: zeF (¢, [x],), (¢, [x],)eR" x €}
and let a and A be fixed constans such that 0 < a < 1and 4 > max[1,[£],].

II. Theorem. If the mapping F satisfies the condition
(3) I (8, [],)I < M (8) + N (8)([x].)°,
where the functions M and N are non-negative and continuous, and if the
function v satisfies the inequality
(4) ad(v(t)) < A(t)+e ' for teR”
where

¢
A(t) = [ [M(s)+N(s)]ds,

then there exists a full solution of equation (1) which satisfies the inmitial
condition (2). Moreover this solution satisfies the inequality

(5) lp(t)] < Aexpl[eA(t)] for teR™.
First we shall prove some Lemmas.

III. Lemma 1. Suppose that the function f: R* x @—R™ satisfies the
following conditions
(i) for each fized teR*, f is continuous in respect to [z],, [z],€C,
(ii) for each fized [z),¢C, f is Lebesque measurable with respect to teR",
(i) 17, [@)] < M(0)+N (1)([2),)° for each (t, [¢])eR" x C.
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Then there exists at least one solution in the Caratheodory sense of the
equation

(6) z'(t) = f(t, [z)y)y, t=0

which satisfies the initial condition (2) for p <t < 0 and, moreover, the

inequality (5) for t > 0.

(By solution in the Caratheodory sense of (6) we mean any absolutely con-

tinuous function ¢: R*+—R™ satisfying (6) almost everywhere in R™).
Proof. Let K denote a family of all functions belonging to € and

satisfying the following three conditions

(7) lp(t)) < AexpfeA(l)] for t=0,
t+h
(8) p(t+h)—g(t)| < A [ fexpled(s)]}ds for t>0,
t
and A > 0,
(9) p(t) = £(t) for p<t<0.

We see at once that this family is a nonempty compact and convex
subset of the space C.
Let us consider the operator D: C+—C defined by formula

&ty forp<t<o,
Dg)(t) = G
i £0)+ [ (s, [pl)ds  for t=>0.
[

At first we shall show that D is continuous. Let ¢, ¢;eC and ¢,—g,
i=1,2,.... Let us fix T > 0. Then the sequence {g,} is uniformly con-

vergent to a function ¢ on the interval [0, T*], where T° = max »(t).
o<t<T
Let us denote

B = sgp(lwllr-)"

w;(t) = f(t, [gily)y 0<t< ]
' v Ly 2455 6

T
v(l) = M()+BN(t), 0<t<T
Each of the functions w; is integrable on [0, T].
Furthermore, for each te[0, 7] we have

[w; (1) < (t)
and

w;(t)—>w(t) = f(t, el t=1,2,....
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Therefore, in view of well known theorems in the theory of real functions,

T
f[w,-(t)—w(t)ldt—>0, i=1,2,...

On the other hand for each te[0, T']

¢

(D) (1) — (D) (1)) < [ [0;(8) —0(3)|ds

T
< [ i) —w(t)dt-0, i=1,2,...
(1]

Hence it follows that the sequence {Dg;} uniformly converges to a function
Dg on [0, T']. Since T was arbitrary and (Dg,) (1) = £(t) for p <t <0,
the sequence of functions {Dg,} is uniformly convergent to Dg on each
compact subinterval of interval [p, oc). Thus Dg,—~Dyg in the space C.
This means that the operator D is continuous. Besides D maps the set
K < C into itself.

Indeed, if ¢¢K, then firsty (Dg)(t) = &(t) for p <t < 0, and by
conditions (3), (8) and (4) we have

t+h

(Dg)(t+h)— (D) < [ 1f(3, [g)ye)lds <

t+h t+h

< f [ M (8) +N (8)([@le)"1ds < f {M(8)+A"N (3)(exp e (v(3))])") ds <
¢ t

t+h t+h

< A4 [ |L(s)exp[aed(v(s))]}ds < [ {L(s)expled(s)+1]ds
t ]

t+h
=Af {expleA(s))|}'ds for t >0 and h >0,
¢
where L(8) = M(s)+N(8).
Hence we obtain

t
(D) (1) < [(Dg)(0)| + A [ {expled(s)]} ds <

< A +A{exp[eA(t)]—1} = Aexp[eA(t)] for t=0.

Consequently DgpeK.



On the full solution of the functional... 171

So we see that the operator D fulfills all the hypotheses of the well-
-known Schauder’s-Tichonov’s theorem on a fixed point. Therefore, there
exists a function pe K such that ¢ = Dp what means that

@' (1) = f(t, [¢lgq) for almost every ¢ =0
p(t) = &(t) for p<t<O
and obviously
lp(t)| < Aexp[edA(t)] for t>0.

Our lemma is thus proved.

Lemma 2. There erists a sequence of sets A <« R , n =0,1,2,...
such that

(10) ANnA =0 if i#j,
(11) U4, =R
n=20
(12) A wul(a,b)nd,)>0 for =u=0,1,2,...
(a,b)cRT

u being the Lebesque measure.

Proof. By lemma 1 in [3] there exists a sequence of sets B, — (0,1)
such that

a) B,nB, =@ if i #j,
b) U B, =10,1)
n=0
c) A ul(a,/)nB,]>0 for =n =0,1,2,....
(a,8)<[0,1)

Now let us put
A, =q(B,), n=0,1,...,

where 7: [0,1)>R" is a function defined by 7(f) = tg »;—t for te[0, 1).

Taking advantage of the properties a) — c¢) it can easily be shown that
the sets A, satisfy (10) — (12).
Indeed:

A;nA; =n(B)Nn(B)) = n(B;NB)) =9(0) =0 if i #j,

oo

(3 A3 =2 n(OOB,,) — u((0, 1)) = B".

n=0 n=0
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To prove (12) let us notice that for arbitrary interval (a, b) = R* there
exists exactly one interval (a,p) < [0,1) such that 7((a, ) = (a,b).
Then

(e, d)n4,) = u(n((a, A)n(B,)) = u(nl(e, B)nB,))

= [ 7@ds>0, n=01,2,..,
(a.B)~ Bn
as u[(a, B)NB,] > 0, which completes the proof of the lemma.

Lemma 3. If the absolutely continuous function g: R*+—R™ satisfies
the condition

(13) g'(t)y = F(t, (9], for almost every t> 0
then

(14) (Pg)(t) = F(t, (9 for every t > 0
and

(15) (P 9)(0) = F(0, [gl)-

The proof is omitted because it is analogical to the proof of the
Lemma 2 in [3].

IV. The proof of the theorem. Let A,, n = 0,1, 2, ..., be asequence
of sets satisfying (10) — (12). By lemma 5.2 in [1] there exists a sequence
of continuous selections f,: R*—R™, n = 0,1, 2, ..., such that f, (¢, [z],)e
eF(t, [z],) for every (t,[r],)eR"xC, n =0,1,2,..., and the set
{fn(t, [],)}3_, is dense in F(t, [x],) for each (¢, [x],)eR™ xC.

Let us put

[t [2)) = [ (¢4 [2],)  iE (¢, [2))ed, xC.

The function f has the following properties

a) for each fixed teR", f is continuous in [z],, [#],€C,

b) for each fixed [z].¢C, f is Lebesque measurable with respect to teR",
e) If(t, [z])] < M (t) + N (t)([x),) for every (t, [z],)eR" x G.

The properties a) and ¢) do not need to be explained. To shown b) let
us notice that f can be written in the following form

f(t, [«],) = supg,(t, [«],) +intg,(t, [x],),
where

fn(t7 [w]v)! if tf“lni

t, [z],) =
gulty [21) = , if t¢d,,

and supg,(,) = (supg,(,), ..., supg'(,)) (analogically inf).
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Now if is casy to see that f is measurable because all the functions g, are
measurable.

Therefore, by lemma 1, there exists a function ¢eC such that
¢'(1) = f(t, [plyy) ae in R
and

p(t) = &(t) for p<t<O.
Hence

¢ (eF (L, [9)y) ae in R
and, as before,
p(t) = £(t) for p<t<O0.

By lemma 3 we have

(Pe)(t) = F(t, [p)y) for every t> 0
and

(P @)(0) = F(O, [l)-
Now we shall prove that F(t, [¢],) = (Pe)(t), t> 0,

F(o, [‘P]v(o)) < (P+‘P)(0)-

To do this let us fix > 0 and choose arbitrary zeF (i, [¢],;). Since the
set {f, (¢, [pl,4)}n=o 18 dense in F(t, [p],;) we can choose a subsequence

Jor £ =0,1,2,..., such that
(16) ifnk(‘-y [q’]ru'}} -zl < 275

On the other hand, from the continuity of the functions f, and measurable
density of the sets A, (ef. (12)) it follows that there exists a sequence
t,eRt, k =0,1,2,..., satisfying the following conditions

teed,, lim t, =1t
koo

a7) ? (te) = fa, (bes [9e)
and
(18) fae s @) —Fa (65 0Ll < 275, k& =0,1,2,....

Now in view of (17) we can choose another sequence s,eR™, £k = 0,1, 2, ...
such that |s, —t,| < 27% s, #1, and

I_‘P(sk)—‘l’(tk)

|
—'fnk(tk’ [‘P]v(tk))‘ <2, k=01,2,..
8k — b
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From (16) and (18) we shall obtain
8.) —o(t
2l TRE) woky sigmet ol o, pigil
8 — I I

which means that ze(Pg)(t) (or ze(P*g)(0) if ¢ = 0).

Thus F(Z, [plm) = (Pe)(t) (or F(0, [pl) = (P*¢)(0).
Since ¢ was arbitrary, we have

F(t, (@) < (Pp)(t), t >0

F(0, [¢lw) = (P ¢)(0).
Finally there is

(Pg)(t) = F(t, [‘P]v(t)) for t > 0,
(PT¢)(0) = F(0, [¢])

and obviously
p(t) =&@) for p<t<O,

which completes the proof of our theorem.
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STRESZCZENIE

W pracy udowodniono twierdzenie o istnieniu pelnego rozwigzania
rownania paratyngensowego z przesunietym argumentem

(1) (Px)(t) = F(t, [#],4), 0 <1,

L]

z warunkiem poczatkowym

(2) z(t) = &(t), p<t<O.
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PE3IOMLE

B pa60Te JOKa3aHa TeopeMa O CYLIECTBOBAHUM II0JJHOIro peINEeHUuA
NMApPAaTHHTCHTHOTO0 YPAaBHEHUA C OTKIOHAKIINM aprymMeHToM

(1) (Pz)(t) = F(t, [z]y), 0T,
¢ Ha4YaJbHbLIM yCJ]OBllCM
(2) x(t) = &), p<t<0.

ITounbiM penlenneM ypasHenusa (1), yIOBIeTBOPAIOUIUM YCIOBHIO (2)
Ha3biBaeM Kakayl ¢QyHkuuio ¢ € C Takylo, uto (Pe)(t) = F(t, [ply),
0<t.



