ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL.	XXIX, 20	SECTIO A	1975
			The second

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej, Lublin

WOJCIECH ZYGMUNT

On the Full Solution of the Functional-Paratingent Equation

. . . .

O pełnym rozwiązaniu równania paratyngensowo-funkcjonałowego

О полном решении функционально-паратингентного уравнения

This note concerns the existence of a full solution of the functional-paratingent equation. We present the generalisation of our earlier notes [3] and [4] in which we considered the problem of existence of a solution for a paratingent equation with deviated argument.

I. Notations and definitions

Let us accept the following symbols.

p < 0 is a fixed number belonging to the real line R. $R^+ = [0, \infty) \subset R$. R^m denotes a m-dimensional Euclidean space with the norm $|x| = \max = \max (|x_1|, \ldots, |x_m|)$, where $x = (x_1, \ldots, x_m)$.

Conv \mathbb{R}^m is the family of all convex compact and nonempty subsets of \mathbb{R}^m with the distance between them being understood in the Hausdorff sense.

C is the space of all continuous functions $g: [p, \infty] \to \mathbb{R}^m$ with topology defined by an almost uniform convergence. It is well-known that *C* is a metrizable locally convex linear topological space. $[\varphi]_t, t \ge p$, denotes the function φ which is localized within the interval [p, t] and $\|\varphi\|_t = \max_{p \le s \le t} \varphi(s)$ (i.e. $[\varphi]_t$ is the best non-decreasing majorant of φ on [p, t]).

 \mathfrak{C} is the space of all functions $[\varphi]_t$, where $\varphi \in C$ and $t \ge p$, with the metric being understood as a distance of graph (the graph being a subset of $R \times R^m$) of these functions in the Hausdorff sense (a so-called graph topology).

Having a function $\varphi \in C$ and $t \ge p$ the set of all limit points

$$x=rac{arphi\left(t_{i}
ight)-arphi\left(s_{i}
ight)}{t_{i}-s_{i}}$$

where $s_i, t_i \ge p, s_i \rightarrow t, t_i \rightarrow t$ and $s_i \neq t_i, i = 1, 2, ...$ will be called paratingent of φ at the point t and denoted by $(P\varphi)(t)$.

Taking only the limit points for which $t \leq s_i$, $t \leq t_i$ and $t_i \rightarrow t_i$, $s_i \rightarrow t_i$ $t_i \neq s$ one obtains the right-hand paratingent $(P^+\varphi)(t)$ of φ at the point t.

Let $F: R^+ \times \mathfrak{C} \rightarrow \operatorname{Conv} R^m$ be a continuous mapping, let $\nu: R^+ \mapsto R^+$ be a continuous function such that v(t) > t and let $[\xi]_0 \in \mathbb{C}$. We shall deal with the functional-paratingent equation

$$(1) \qquad (Px)(t) \subset F(t, [x]_{r(t)}), \ t \geq 0$$

with the initial condition

(2)
$$x(t) = \xi(t), \ p \leq t \leq 0.$$

By the full solution of (1), which satisfies the condition (2), we mean any function $\varphi \in C$ such that

$$egin{aligned} &(Parphi)(t) = F(t, [arphi]_{r(t)}), \ t > 0 \ & (P^+arphi)(0) = F(0, [arphi]_{r(t)}) \end{aligned}$$

and

$$\varphi(t) = \xi(t), \quad p \leq t \leq 0.$$

Put $||F(t, \lceil x \rceil_{p})|| = \sup\{|z|: z \in F(t, \lceil x \rceil_{p}), (t, \lceil x \rceil_{p}) \in \mathbb{R}^{+} \times \mathbb{C}\}$ and let a and A be fixed constants such that $0 < a \le 1$ and $A \ge \max[1, [\xi]_0]$.

II. Theorem. If the mapping F satisfies the condition

(3)
$$||F(t, [x]_v)|| \leq M(t) + N(t)([x]_v)^a$$

where the functions M and N are non-negative and continuous, and if the function v satisfies the inequality

(4)
$$\alpha \Lambda(\nu(t)) \leq \Lambda(t) + e^{-1} \quad for \ t \in \mathbb{R}$$

where

$$A(t) = \int_0^t [M(s) + N(s)] ds,$$

then there exists a full solution of equation (1) which satisfies the initial condition (2). Moreover this solution satisfies the inequality

(5)
$$|\varphi(t)| \leq A \exp[e\Lambda(t)]$$
 for $t \in \mathbb{R}^+$.

First we shall prove some Lemmas.

III. Lemma 1. Suppose that the function $f: \mathbb{R}^+ \times \mathfrak{C} \to \mathbb{R}^m$ satisfies the following conditions

(i) for each fixed $t \in \mathbb{R}^+$, f is continuous in respect to $[x]_n$, $[x]_n \in \mathbb{C}$,

(ii) for each fixed $[x]_{v} \in \mathbb{C}$, f is Lebesgue measurable with respect to $t \in \mathbb{R}^{+}$, (iii) $|f(t, [x]_v| \leq M(t) + N(t)([x]_v)^a$ for each $(t, [x]_v) \in \mathbb{R}^+ \times \mathbb{C}$.

Then there exists at least one solution in the Caratheodory sense of the equation

(6)
$$x'(t) = f(t, [x]_{\nu(t)}), \quad t \ge 0$$

which satisfies the initial condition (2) for $p \leq t \leq 0$ and, moreover, the inequality (5) for $t \geq 0$.

(By solution in the Caratheodory sense of (6) we mean any absolutely continuous function φ : $R^+ \mapsto R^m$ satisfying (6) almost everywhere in R^+).

Proof. Let K denote a family of all functions belonging to C and satisfying the following three conditions

(7)
$$|\varphi(t)| \leq A \exp[e \Lambda(t)] \quad \text{for } t \geq 0,$$

(8)
$$|\varphi(t+h)-\varphi(t)| \leq A \int_{t}^{t+h} \{\exp\left[e\Lambda(s)\right]\} ds \quad \text{ for } t \geq 0,$$

and h > 0,

(9)
$$\varphi(t) = \xi(t) \quad \text{for } p \leq t \leq 0.$$

We see at once that this family is a nonempty compact and convex subset of the space C.

Let us consider the operator $D: C \mapsto C$ defined by formula

At first we shall show that D is continuous. Let $\varphi, \varphi_i \in C$ and $\varphi_i \to \varphi$, $i = 1, 2, \ldots$. Let us fix $T \ge 0$. Then the sequence $\{\varphi_i\}$ is uniformly convergent to a function φ on the interval $[0, T^*]$, where $T^* = \max_{\substack{0 \le t \le T}} v(t)$.

Let us denote

$$B = \sup(\|\varphi\|_{T^{\bullet}})^a$$

$$egin{aligned} &w_i(t) = f(t, [arphi_i]_{r(t)}), & 0 \leqslant t \leqslant T \ &v(t) = M(t) + BN(t), & 0 \leqslant t \leqslant T \end{aligned} \ i = 1, 2, \dots, \end{aligned}$$

Each of the functions w_i is integrable on [0, T]. Furthermore, for each $t \in [0, T]$ we have

$$|w_i(t)| \leqslant v(t)$$

and

$$w_i(t) \rightarrow w(t) = f(t, [\varphi]_{w(t)}), \quad i = 1, 2, \dots$$

Therefore, in view of well known theorems in the theory of real functions,

$$\int_{0}^{T} |w_{i}(t) - w(t)| dt \rightarrow 0, \quad i = 1, 2,$$

On the other hand for each $t \in [0, T]$

$$\begin{aligned} |(D\varphi_i)(t) - (D\varphi)(t)| &\leq \int_0^t |w_i(s) - w(s)| \, ds \\ &\leq \int_0^T |w_i(t) - w(t)| \, dt \to 0, \quad i = 1, 2, \dots \end{aligned}$$

Hence it follows that the sequence $\{D\varphi_i\}$ uniformly converges to a function $D\varphi$ on [0, T]. Since T was arbitrary and $(D\varphi_i)(t) = \xi(t)$ for $p \leq t \leq 0$, the sequence of functions $\{D\varphi_i\}$ is uniformly convergent to $D\varphi$ on each compact subinterval of interval $[p, \infty)$. Thus $D\varphi_i \rightarrow D\varphi$ in the space C. This means that the operator D is continuous. Besides D maps the set $K \subset C$ into itself.

Indeed, if $q \in K$, then firsty $(D\varphi)(t) = \xi(t)$ for $p \leq t \leq 0$, and by conditions (3), (8) and (4) we have

$$|(Darphi)(t+h)-(Darphi)(t)|\leqslant \int\limits_t^{t+h}|f(s\,,\llbracketarphi
ces_{s})|\,ds\leqslant$$

 $\leqslant \int_{t}^{t+h} \left[M(s) + N(s)([\varphi]_{r(s)})^{a} \right] ds \leqslant \int_{t}^{t+h} \left\{ M(s) + A^{a}N(s)\left(\exp\left[eA\left(\nu(s)\right)\right]\right)^{a} \right\} ds \leqslant \\ \leqslant A \int_{t}^{t+h} \left\{ L(s)\exp\left[aeA\left(\nu(s)\right)\right] \right\} ds \leqslant \int_{t}^{t+h} \left\{ L(s)\exp\left[eA\left(s\right) + 1\right] ds \right\}$

$$=A\int\limits_t^{t+h}\left\{\exp\left[e\Lambda(s)
ight)
ight\}'ds ext{ for }t\geqslant 0 ext{ and } h>0,$$

where L(s) = M(s) + N(s). Hence we obtain

$$egin{aligned} |(Darphi)(t)| &\leqslant |(Darphi)(0)| + A \int \limits_0 \{\exp\left[e arL(s)
ight]\}' ds \leqslant \ &\leqslant A + A \{\exp\left[e arL(t)
ight] - 1\} = A \exp\left[e arL(t)
ight] \quad ext{ for } t \geqslant 0 \,. \end{aligned}$$

Consequently $D\varphi \in K$.

So we see that the operator D fulfills all the hypotheses of the wellknown Schauder's-Tichonov's theorem on a fixed point. Therefore, there exists a function $\varphi \in K$ such that $\varphi = D\varphi$ what means that

$$arphi'(t)=f(t,[arphi]_{*(t)}) ext{ for almost every } t\geqslant 0$$
 $arphi(t)=\xi(t) ext{ for } p\leqslant t\leqslant 0$

and obviously

 $|\varphi(t)| \leq A \exp[e\Lambda(t)]$ for $t \geq 0$.

Our lemma is thus proved.

Lemma 2. There exists a sequence of sets $A \subset R$, n = 0, 1, 2, ... such that

(10)
$$A \cap A = \emptyset$$
 if $i \neq j$

(11)
$$\bigcup_{n=0}^{\infty} A_n = R^{-1}$$

(12)
$$\bigwedge_{(a,b)\in R^+} \mu((a,b)\cap A_n) > 0 \quad for \quad n = 0, 1, 2, ...$$

μ being the Lebesque measure.

Proof. By lemma 1 in [3] there exists a sequence of sets $B_n \subset (0,1)$ such that

a)
$$B_i \cap B_j = \emptyset$$
 if $i \neq j_j$
b) $\bigcap_{i=1}^{\infty} B_i = [0, 1)$

c)

$$\bigwedge_{(a,eta)\in [0,1)}\mu[(a,eta)\cap B_n]>0 \quad ext{ for } \quad n=0,1,2,\dots \;.$$

Now let us put

 $A_n = \eta(B_n), \ n = 0, 1, ...,$

where $\eta: [0, 1) \rightarrow R^+$ is a function defined by $\eta(t) = tg \frac{\pi}{2} t$ for $t \in [0, 1)$. Taking advantage of the properties a) -c) it can easily be shown that the sets A_n satisfy (10) - (12). Indeed:

$$egin{aligned} &A_i \cap A_j = \eta(B_i) \cap \eta(B_j) = \eta(B_i \cap B_j) = \eta(\emptyset) = \emptyset ext{ if } i
eq j, \ &igcolor &$$

To prove (12) let us notice that for arbitrary interval $(a, b) \subset \mathbb{R}^+$ there exists exactly one interval $(a, \beta) \subset [0, 1)$ such that $\eta((a, \beta)) = (a, b)$. Then

$$egin{aligned} \muig((a\,,\,b)\cap A_nig)&=\muig(\etaig((a\,,\,eta)ig)\cap\etaig(B_n)ig)&=\muig(\etaig[(a\,,\,eta)\cap B_nig]ig)\ &=\int\limits_{(a\,,\,eta)\cap B_n}\eta'ig(s)ds>0\,,\quad n\,=0,\,1,\,2,\,\ldots,\end{aligned}$$

as $\mu[(a, \beta) \cap B_n] > 0$, which completes the proof of the lemma.

Lemma 3. If the absolutely continuous function $g: R^+ \mapsto R^m$ satisfies the condition

(13)
$$g'(t) \subset F(t, [g]_{r(t)})$$
 for almost every $t \ge 0$

then

(14) $(Pg)(t) \subset F(t, [g]_{\nu(t)})$ for every t > 0

and

(15)
$$(P^+g)(0) \subset F(0, [g]_{\nu(0)})$$

The proof is omitted because it is analogical to the proof of the Lemma 2 in [3].

IV. The proof of the theorem. Let A_n , n = 0, 1, 2, ..., be a sequence of sets satisfying (10) - (12). By lemma 5.2 in [1] there exists a sequence of continuous selections $f_n: \mathbb{R}^+ \mapsto \mathbb{R}^m$, n = 0, 1, 2, ..., such that $f_n(t, [x]_v) \in \mathbb{R}^+(t, [x]_v)$ for every $(t, [x]_v) \in \mathbb{R}^+ \times \mathbb{C}$, n = 0, 1, 2, ..., and the set $\{f_n(t, [x]_v)\}_{n=0}^{\infty}$ is dense in $F(t, [x]_v)$ for each $(t, [x]_v) \in \mathbb{R}^+ \times \mathbb{C}$. Let us put

$$f(t, [x]_v) = f_n(t, [x]_v) \quad \text{if} \quad (t, [x]_v) \in A_n \times \mathfrak{C}.$$

The function f has the following properties

a) for each fixed $t \in R^+$, f is continuous in $[x]_v$, $[x]_v \in \mathbb{C}$,

b) for each fixed $[x]_{v} \in \mathbb{C}$, f is Lebesque measurable with respect to $t \in \mathbb{R}^{+}$, c) $|f(t, [x]_{v})| \leq M(t) + N(t)([x]_{v})$ for every $(t, [x]_{v}) \in \mathbb{R}^{+} \times \mathbb{C}$.

The properties a) and c) do not need to be explained. To shown b) let us notice that f can be written in the following form

$$f(t, [x]_v) = \sup g_n(t, [x]_v) + \inf g_n(t, [x]_v),$$

where

$$g_n(t, [x]_v) = \begin{cases} f_n(t, [x]_v), & \text{if } t \in A_n, \\ 0, & \text{if } t \notin A_n, \end{cases}$$

and $\sup g_n(,) = (\sup g_n^1(,), \ldots, \sup g_n^m(,))$ (analogically inf).

Now if is easy to see that f is measurable because all the functions g_n are measurable.

Therefore, by lemma 1, there exists a function $\varphi \in C$ such that

 $\varphi'(t) = f(t, [\varphi]_{r(t)})$ a.e. in R^+

and

 $\varphi(t) = \xi(t)$ for $p \leq t \leq 0$.

Hence

 $\varphi'(t) \in F(t, [\varphi]_{\nu(t)})$ a.e. in R^+

and, as before,

 $\varphi(t) = \xi(t) \quad \text{for } p \leq t \leq 0.$

By lemma 3 we have

 $(P\varphi)(t) \subset F(t, [\varphi]_{r(t)})$ for every t > 0

and

$$(P^+\varphi)(0) \subset F(0, [\varphi]_{\nu(0)}).$$

Now we shall prove that $F(t, [\varphi]_{r(t)}) \subset (P\varphi)(t), t > 0$,

$$F(0, [\varphi]_{\nu(0)}) \subset (P^+ \varphi)(0).$$

To do this let us fix $\bar{t} \ge 0$ and choose arbitrary $z \in F(\bar{t}, [\varphi]_{r(\bar{t})})$. Since the set $\{f_n(\bar{t}, [\varphi]_{r(\bar{t})})\}_{n=0}^{\infty}$ is dense in $F(\bar{t}, [\varphi]_{r(\bar{t})})$ we can choose a subsequence

$$egin{aligned} f_{n_k}, \ k &= 0, 1, 2, \ldots, \ ext{such that} \ (16) & |f_{n_k}(ar{t}, [arphi]_{r(ar{t})}) - z| < 2^{-k}. \end{aligned}$$

On the other hand, from the continuity of the functions f_n and measurable density of the sets A_n (cf. (12)) it follows that there exists a sequence $t_k \in \mathbb{R}^+$, $k = 0, 1, 2, \ldots$, satisfying the following conditions

(17)
$$t_k \in A_k, \lim_{k \to \infty} t_k = \bar{t}$$
$$\varphi'(t_k) = f_{n_k}(t_k, [\varphi]_{\nu(t_k)})$$

and

(18)
$$|f_{n_k}(t_k, [\varphi]_{\mathsf{P}(t_k)}) - f_{n_k}(\tilde{t}, [\varphi]_{\mathsf{P}(\tilde{t})})| < 2^{-k}, \quad k = 0, 1, 2, \dots$$

Now in view of (17) we can choose another sequence $s_k \in R^+$, k = 0, 1, 2, ... such that $|s_k - t_k| < 2^{-k}$, $s_k \neq t_k$ and

$$\left|\frac{|\varphi(s_k) - \varphi(t_k)|}{s_k - t_k} - f_{n_k}(t_k, [\varphi]_{r(t_k)})\right| < 2 \ , \qquad k = 0, \, 1, \, 2, \, \dots$$

From (16) and (18) we shall obtain

$$\left| rac{arphi(s_k) - arphi(t_k)}{s_k - t_k} - z
ight| < 3 \cdot 2^{-k}, \quad k = 0, \, 1, \, 2, \, ...$$

which means that $z \in (P\varphi)(\overline{t})$ (or $z \in (P^+\varphi)(0)$ if $\overline{t} = 0$). Thus $F(\overline{t}, [\varphi]_{r(\overline{t})}) \subset (P\varphi)(\overline{t})$ (or $F(0, [\varphi]_{r(0)}) \subset (P^+\varphi)(0)$). Since \overline{t} was arbitrary, we have

$$egin{aligned} F(t,\,[arphi]_{*(t)}) &\subset (Parphi)(t), \,\, t > 0 \ &\\ F(0,\,[arphi]_{*(0)}) &\subset (P \;\;arphi)(0). \end{aligned}$$

Finally there is

$$egin{aligned} (Parphi)(t) &= F(t, [arphi]_{r(t)}) & ext{ for } t > 0\,, \ & (P^+arphi)(0) &= F(0\,, [arphi]_{r(0)}) \end{aligned}$$

and obviously

 $\varphi(t) = \xi(t) \quad \text{for} \quad p \leqslant t \leqslant 0,$

which completes the proof of our theorem.

REFERENCES

- [1] Michael E., Continuous selections I, Ann. of Math. ser. 2, 63, Nr 2 (1956), 361-382.
- [2] Ważewski T., Sur une condition equivalente a l'equation an contingent, Bull. Acad. Polon. Sci., Sér. sci. math. astr. et phys., 9 (1961), 865-867.
 [2] Acad. Polon. Sci., Sér. sci. math. astr. et phys., 9 (1961), 865-867.
- [3] Zygmunt W., On the full solution of the paratingent equations, Ann. Univ. M. Curie-Skłodowska, Sect. A, 26 (1972), 103-108.
- [4] Zygmunt W., On a certain paratingent equation with deviated argument, ibidem,

Sect. A, 28 (1974), 127-135

STRESZCZENIE

W pracy udowodniono twierdzenie o istnieniu pełnego rozwiązania równania paratyngensowego z przesuniętym argumentem

(1)
$$(Px)(t) \subset F(t, [x]_{r(t)}), \ 0 \leq t,$$

z warunkiem początkowym

(2)
$$x(t) = \xi(t), \ p \leq t \leq 0.$$

174

РЕЗЮМЕ

В работе доказана теорема о существовании полного решения паратингентного уравнения с отклоняющим аргументом

(1)
$$(P x)(t) \subset F(t, [x]_{p(t)}), \ 0 \leq t,$$

с начальным условнем

(2)
$$x(t) = \xi(t), \ p \leq t \leq 0.$$

Полным решением уравнения (1), удовлетворяющим условию (2) называем каждую функцию $\varphi \in C$ такую, что $(P\varphi)(t) = F(t, [\varphi]_{r(t)}), 0 \leq t$.