AN NALES

UNIVERSITATIS MARIAECURIE-SKEODOWSKA LUBLIN - POLONIA

VOL. XXIX, 20
SECTIO A

Instytut Matematyki, Uniwersytet Maril Curie-Sklodowskioj, Lublin

WOJCIECH ZYGMUNT

On the Full Solution of the Functional-Paratingent Equation

O pełnym rozwiazaniu równania paratyngensowo-funkejonalowego
О полном решении функционально-паратлнгентного уравнения
This note concerns the existence of a full solution of the functio-nal-paratingent equation. We present the generalisation of our earlier notes [3] and [4] in which we considered the problem of existence of a solution for a paratingent equation with deviated argument.

I. Notations and definitions

Let us accept the following symbols.
$p<0$ is a fixed number belonging to the real line $R . R^{+}=[0, \infty) \subset R$. $R^{\prime \prime \prime}$ denotes a m-dimensional Euclidean space with the norm $|x|=$ $\max =\max \left(\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right)$, where $x=\left(x_{1}, \ldots, x_{m}\right)$.
Conv R^{m} is the family of all convex compact and nonempty subsets of R^{m} with the distance between them being understood in the Hausdorff sense.
C is the space of all continuous functions $g:[p, \infty] \rightarrow R^{m}$ with topology defined by an almost uniform convergence. It is well-known that C is a metrizable locally convex linear topological space. $[\varphi]_{\ell}, t \geqslant p$, denotes the function φ which is localized within the interval $[p, t]$ and $\|\varphi\|_{t}=$ $=\max \varphi(s)$ (i.e. $[\varphi]_{\ell}$ is the best non-decreasing majorant of φ on $[p, t]$).
\mathfrak{C} is the space of all functions $[\varphi]_{t}$, where $\varphi \in C$ and $t \geqslant p$, with the metric being understood as a distance of graph (the graph being a subset of $R \times R^{m}$) of these functions in the Hausdorff sense (a so-called graph topology).

Having a function $\varphi \in C$ and $t \geqslant p$ the set of all limit points

$$
x=\frac{\varphi\left(t_{i}\right)-\varphi\left(s_{i}\right)}{t_{i}-s_{i}}
$$

where $s_{i}, t_{i} \geqslant p, s_{i} \rightarrow t, t_{i} \rightarrow t$ and $s_{i} \neq t_{i}, i=1,2, \ldots$ will be called paratingent of φ at the point t and denoted by $(P \varphi)(t)$.

Taking only the limit points for which $t \leqslant s_{i}, t \leqslant t_{i}$ and $t_{i} \rightarrow t, s_{i} \rightarrow t$, $t_{i} \neq s$ one obtains the right-hand paratingent $\left(P^{+} \varphi\right)(t)$ of φ at the point t.

Let $F: R^{+} \times \mathbb{C} \rightarrow \operatorname{Conv} R^{m}$ be a continuous mapping, let $\nu: R^{+} \mapsto R^{+}$ be a continuous function such that $\nu(t)>t$ and let $[\xi]_{0} \in \mathbb{C}$. We shall deal with the functional-paratingent equation

$$
\begin{equation*}
(P x)(t) \subset F\left(t,[x]_{n(t)}\right), t \geqslant 0 \tag{1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(t)=\xi(t), p \leqslant t \leqslant 0 . \tag{2}
\end{equation*}
$$

By the full solution of (1), which satisfies the condition (2), we mean any function $\varphi \in C$ such that

$$
\begin{gathered}
\left(P_{\varphi}\right)(t)=F\left(t,[\varphi]_{\nu(t)}\right), t>0 \\
\left(P^{+} \varphi\right)(0)=F\left(0,[\varphi]_{v(t)}\right)
\end{gathered}
$$

and

$$
\varphi(t)=\xi(t), \quad p \leqslant t \leqslant 0 .
$$

Put $\left\|F^{\prime}\left(t,[x]_{v}\right)\right\|=\sup \left\{|z|: z \in F\left(t,[x]_{v}\right),\left(t,[x]_{v}\right) \in R^{+} \times \mathbb{C}\right\}$ and let α and A be fixed constans such that $0<\alpha \leqslant 1$ and $A \geqslant \max \left[1,[\xi]_{0}\right]$.
II. Theorem. If the mapping F satisfies the condition

$$
\begin{equation*}
\left\|\boldsymbol{F}\left(t,[x]_{v}\right)\right\| \leqslant M(t)+N(t)\left([x]_{]_{r}}\right)^{a}, \tag{3}
\end{equation*}
$$

where the functions M and N are non-negative and continuous, and if the function v satisfies the inequality

$$
\begin{equation*}
a \Lambda(\nu(t)) \leqslant \Lambda(t)+e^{-1} \quad \text { for } t \in R^{+} \tag{4}
\end{equation*}
$$

where

$$
\Lambda(t)=\int_{0}^{t}[M(s)+N(s)] d s,
$$

then there exists a full solution of equation (1) which satisfies the initial condition (2). Moreover this solution satisfies the inequality

$$
\begin{equation*}
|\varphi(t)| \leqslant A \exp [e \Lambda(t)] \quad \text { for } t \in R^{+} . \tag{5}
\end{equation*}
$$

First we shall prove some Lemmas.
III. Lemma 1. Suppose that the function $f: R^{+} \times \mathbb{C} \hookrightarrow R^{m}$ satisfies the following conditions
(i) for each fixed $t \in R^{+}, f$ is continuous in respect to $[x]_{v},[x]_{v} \in \mathbb{C}$,
(ii) for each fixed $[x]_{v} \in \mathbb{C}$, f is Lebesque measurable with respect to $t \in R^{+}$,
(iii) $\mid f\left(t,[x]_{v} \mid \leqslant M(t)+N(t)\left([x]_{r}\right)^{a}\right.$ for each $\left(t,[x]_{r}\right) \in R^{+} \times \mathbb{C}$.

Then there exists at least one solution in the Caratheodory sense of the equation

$$
\begin{equation*}
x^{\prime}(t)=f\left(t,[x]_{v(t)}\right), \quad t \geqslant 0 \tag{6}
\end{equation*}
$$

which satisfies the initial condition (2) for $p \leqslant t \leqslant 0$ and, moreover, the inequality (5) for $t \geqslant 0$.
(By solution in the Caratheodory sense of (6) we mean any absolutely continuous function $\varphi: R^{+} \mapsto R^{m}$ satisfying (6) almost everywhere in R^{+}).

Proof. Let K denote a family of all functions belonging to C and satisfying the following three conditions

$$
\begin{equation*}
|\varphi(t)| \leqslant A \exp [e \Lambda(t)] \quad \text { for } t \geqslant 0 \tag{7}
\end{equation*}
$$

$$
\begin{align*}
|\varphi(t+h)-\varphi(t)| \leqslant A \int_{t}^{t+h}\{\exp [e \Lambda(s)]\} d s \quad \text { for } t \geqslant 0 \tag{8}\\
\quad \text { and } h>0
\end{align*}
$$

$$
\begin{equation*}
\varphi(t)=\xi(t) \quad \text { for } p \leqslant t \leqslant 0 . \tag{9}
\end{equation*}
$$

We see at once that this family is a nonempty compact and convex subset of the space C.

Let us consider the operator $D: C \mapsto C$ defined by formula

$$
\left(D_{\varphi)}(t)=\left\{\begin{array}{l}
\xi(t) \quad \text { for } p \leqslant t \leqslant 0, \\
\xi(0)+\int_{i}^{0} f\left(s,[\varphi]_{\nu(s)}\right) d s \quad \text { for } t \geqslant 0 .
\end{array}\right.\right.
$$

At first we shall show that D is continuous. Let $\varphi, \varphi_{i} \in C$ and $\varphi_{i} \rightarrow \varphi$, i $=1,2, \ldots$ Let us fix $T \geqslant 0$. Then the sequence $\left\{\varphi_{i}\right\}$ is uniformly convergent to a function φ on the interval $\left[0, T^{*}\right]$, where $T^{*}=\max _{0 \leqslant \downarrow \leq T} v(t)$.

Let us denote

$$
\begin{aligned}
& \quad B=\sup _{i}\left(\|\varphi\|_{T^{*}}\right)^{a} \\
& w_{i}(t)=f\left(t,\left[\varphi_{i}\right]_{r(t)}\right), \quad 0 \leqslant t \leqslant T \\
& v(t)=M(t)+B N(t), \quad 0 \leqslant t \leqslant T \quad i=1,2, \ldots .
\end{aligned}
$$

Each of the functions w_{i} is integrable on $[0, T]$. Furthermore, for each $t \in[0, T]$ we have

$$
\left|w_{i}(t)\right| \leqslant v(t)
$$

and

$$
w_{i}(t) \rightarrow w(t)=f\left(t,[\varphi]_{v(t)}\right), \quad i=1,2, \ldots
$$

Therefore, in view of well known theorems in the theory of real functions,

$$
\int_{0}^{T}\left|w_{i}(t)-w(t)\right| d t \rightarrow 0, \quad i=1,2, \ldots
$$

On the other hand for each $t \in[0, T]$

$$
\begin{aligned}
\left|\left(D \varphi_{i}\right)(t)-(D q)(t)\right| & \leqslant \int_{0}^{t}\left|w_{i}(s)-w(s)\right| d s \\
& \leqslant \int_{0}^{T}\left|w_{i}(t)-w(t)\right| d t \rightarrow 0, \quad i=1,2, \ldots
\end{aligned}
$$

Hence it follows that the sequence $\left\{D \varphi_{i}\right\}$ uniformly converges to a function $D \varphi$ on $[0, T]$. Since T was arbitrary and $\left(D \varphi_{i}\right)(t)=\xi(t)$ for $p \leqslant t \leqslant 0$, the sequence of functions $\left\{D \varphi_{i}\right\}$ is uniformly convergent to $D \varphi$ on each compact subinterval of interval $[p, \infty)$. Thus $D \varphi_{i} \rightarrow D \varphi$ in the space C. This means that the operator D is continuous. Besides D maps the set $K \subset C$ into itself.

Indeed, if $q \in K$, then firsty $\left(D_{\varphi}\right)(t)=\xi(t)$ for $p \leqslant t \leqslant 0$, and by conditions (3), (8) and (4) we have

$$
\begin{gathered}
\left|\left(D_{\varphi}\right)(t+h)-\left(D_{\varphi}\right)(t)\right| \leqslant \int_{i}^{t+h}\left|f\left(s,[\varphi]_{\rho(s)}\right)\right| d s \leqslant \\
\left.\leqslant \int_{i}^{t+h}\left[M(s)+N(s)\left([\varphi]_{\varphi(s)}\right)^{a}\right] d s \leqslant \int_{i}^{t+h}\left\{M(s)+A^{a} N(s) \mid \exp [e \Lambda(v(s))]\right)^{a}\right\} d s \leqslant \\
\leqslant A \int_{i}^{t+h}\left\{L(s) \exp [\alpha e \Lambda(v(s)) \mid\} d s \leqslant \int_{i}^{t+h}\{L(s) \exp [e \Lambda(s)+1] d s\right. \\
\left.=A \int_{i}^{t+h}\{\exp \mid e \Lambda(s)) \mid\right\}^{\prime} d s \quad \text { for } t \geqslant 0 \text { and } h>0,
\end{gathered}
$$

where $L(8)=M(s)+N(s)$.
Hence we obtain

$$
\begin{aligned}
\left|\left(D_{\varphi}\right)(t)\right| & \leqslant\left|\left(D_{\varphi}\right)(0)\right|+A \int_{0}^{t}\{\exp [e \Lambda(s)]\}^{\prime} d s \leqslant \\
& \leqslant A+A\{\exp [e \Lambda(t)]-1\}=A \exp [e \Lambda(t)] \quad \text { for } t \geqslant 0 .
\end{aligned}
$$

Consequently $D_{\varphi \in K}$.

So we see that the operator D fulfills all the hypotheses of the well--known Schauder's-Tichonov's theorem on a fixed point. Therefore, there exists a function $\varphi \in K$ such that $\varphi=D_{\varphi}$ what means that

$$
\begin{array}{cl}
\varphi^{\prime}(t)=f\left(t,[\varphi]_{p(t)}\right) & \text { for almost every } t \geqslant 0 \\
\varphi(t)=\xi(t) & \text { for } p \leqslant t \leqslant 0
\end{array}
$$

and obviously

$$
|\varphi(t)| \leqslant A \exp [e \Lambda(t)] \quad \text { for } t \geqslant 0 .
$$

Our lemma is thus proved.
Lemma 2. There exists a sequence of sets $A \subset R, n=0,1,2, \ldots$ such that

$$
\begin{gather*}
A \cap A=\emptyset \quad \text { if } \quad i \neq j, \tag{10}\\
\bigcup_{n=0}^{\infty} A_{n}=R^{+} \tag{11}\\
\wedge_{(a, b) \subset R^{+}} \mu\left((a, b) \cap A_{n}\right)>0 \quad \text { for } n=0,1,2, \ldots
\end{gather*}
$$

μ being the Lebesque measure.
Proof. By lemma 1 in [3] there exists a sequence of sets $B_{n} \subset(0,1)$ such that
a)

$$
B_{i} \cap B_{j}=\emptyset \text { if } i \neq j,
$$

b)

$$
\bigcup_{n=0}^{\infty} B_{n}=[0,1)
$$

c)

$$
\wedge_{(a, \beta) \subset[0,1)} \mu\left[(a, \beta) \cap B_{n}\right]>0 \quad \text { for } \quad n=0,1,2, \ldots
$$

Now let us put

$$
A_{n}=\eta\left(B_{n}\right), n=0,1, \ldots,
$$

where $\eta:[0,1) \rightarrow R^{+}$is a function defined by $\eta(t)=\operatorname{tg} \frac{\pi}{2} t$ for $t \in[0,1)$. Taking advantage of the properties a) - c) it can easily be shown that the sets A_{n} satisfy (10) - (12).
Indeed:

$$
\begin{gathered}
A_{i} \cap A_{j}=\eta\left(B_{i}\right) \cap \eta\left(B_{j}\right)=\eta\left(B_{i} \cap B_{j}\right)=\eta(\text { Ø })=\emptyset \text { if } i \neq j, \\
\bigcup_{n=0}^{\infty} A_{n}=\bigcup_{n=0}^{\infty} \eta\left(B_{n}\right)=\eta\left(\bigcup_{n=0}^{\infty} B_{n}\right)=\eta([0,1))=R^{+} .
\end{gathered}
$$

To prove (12) let us notice that for arbitrary interval $(a, b) \subset R^{+}$there exists exactly one interval $(\alpha, \beta) \subset[0,1)$ such that $\eta((\alpha, \beta))=(a, b)$. Then

$$
\begin{aligned}
\mu\left((a, b) \cap A_{n}\right) & =\mu\left(\eta((a, \beta)) \cap \eta\left(B_{n}\right)\right)=\mu\left(\eta\left[(\alpha, \beta) \cap B_{n}\right]\right) \\
& =\int_{(0, \beta) \sim B n} \eta^{\prime}(s) d s>0, \quad n=0,1,2, \ldots,
\end{aligned}
$$

as $\mu\left[(\alpha, \beta) \cap B_{n}\right]>0$, which completes the proof of the lemma.
Lemma 3. If the absolutely continuous function $g: R^{+} \mapsto R^{m}$ satisfies the condition

$$
\begin{equation*}
g^{\prime}(t) \subset F\left(t,[g]_{r(t)}\right) \text { for almost every } t \geqslant 0 \tag{13}
\end{equation*}
$$

then

$$
\begin{equation*}
(P g)(t) \subset F\left(t,[g]_{v(t)}\right) \text { for every } t>0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P^{+} g\right)(0) \subset F\left(0,[g]_{v(0)}\right) . \tag{15}
\end{equation*}
$$

The proof is omitted because it is analogical to the proof of the Lemma 2 in [3].
IV. The proof of the theorem. Let $A_{n}, n=0,1,2, \ldots$, be a sequence of sets satisfying (10) - (12). By lemma 5.2 in [1] there exists a sequence of continuous selections $f_{n}: R^{+} \mapsto R^{m}, n=0,1,2, \ldots$, such that $f_{n}\left(t,[x]_{v}\right) \epsilon$ $\boldsymbol{e} F\left(t,[x]_{v}\right)$ for every $\left(t,[x]_{v}\right) \in R^{+} \times \mathbb{C}, \quad n=0,1,2, \ldots$, and the set $\left\{f_{n}\left(t,[x]_{v}\right)\right\}_{n=0}^{\infty}$ is dense in $\boldsymbol{F}\left(t,[x]_{c}\right)$ for each $\left(t,[x]_{v}\right) \in R^{+} \times \mathbb{C}$.
Let us put

$$
f\left(t,[x]_{v}\right)=f_{n}\left(t,[x]_{v}\right) \quad \text { if } \quad\left(t,[x]_{v}\right) \in A_{n} \times \mathbb{C} .
$$

The function f has the following properties
a) for each fixed $t \in R^{+}, f$ is continuous in $[x]_{v},[x]_{v} \in \mathbb{C}$,
b) for each fixed $[x]_{r} \in \mathbb{C}, f$ is Lebesque measurable with respect to $t \in R^{+}$,
c) $\left|f\left(t,[x]_{v}\right)\right| \leqslant M(t)+N(t)\left([x]_{v}\right)$ for every $\left(t,[x]_{v}\right) \in R^{+} \times \mathbb{C}$.

The properties a) and c) do not need to be explained. To shown b) let us notice that f can be written in the following form

$$
f\left(t,[x]_{v}\right)=\sup _{n} g_{n}\left(t,[x]_{v}\right)+\inf _{n} g_{n}\left(t,[x]_{v}\right),
$$

where

$$
g_{n}\left(t,[x]_{v}\right)= \begin{cases}f_{n}\left(t,[x]_{v}\right), & \text { if } t \in A_{n}, \\ 0, & \text { if } t \not A_{n},\end{cases}
$$

and $\sup _{n} g_{n}()=,\left(\sup _{n} g_{n}^{1}(),, \ldots, \sup _{n} g_{n}^{n}(),\right)$ (analogically $\left.\inf _{n}\right)$.

Now if is easy to see that f is measurable because all the functions g_{n} are measurable.
Therefore, by lemma 1, there exists a function $\varphi \in C$ such that

$$
\varphi^{\prime}(t)=f\left(t,[\varphi]_{\gamma(\theta)}\right) \quad \text { a.e. in } R^{+}
$$

and

$$
\varphi(t)=\xi(t) \quad \text { for } \quad p \leqslant t \leqslant 0 .
$$

Hence

$$
\varphi^{\prime}(t) \in F\left(t,[\varphi]_{\varphi(t)}\right) \quad \text { a.e. in } \boldsymbol{R}^{+}
$$

and, as before,

$$
\varphi(t)=\xi(t) \quad \text { for } p \leqslant t \leqslant 0 .
$$

By lemma 3 we have

$$
\left(P_{\varphi}\right)(t) \subset F\left(t,[\varphi]_{\varphi(t)}\right) \quad \text { for every } t>0
$$

and

$$
(P \varphi)(0) \subset F\left(0,[\varphi]_{\varphi(0)}\right) .
$$

Now we shall prove that $F\left(t,[\varphi]_{(t)}\right) \subset\left(P_{\varphi}\right)(t), t>0$,

$$
F\left(0,[\varphi]_{v(0)}\right) \subset\left(P^{+} \varphi\right)(0) .
$$

To do this let us fix $\bar{t} \geqslant 0$ and choose arbitrary $z \in F^{\prime}\left(\bar{t},[\varphi]_{\rho(\bar{l})}\right)$. Since the set $\left\{f_{n}\left(\bar{t},[\varphi]_{\nu(\bar{t})}\right)\right\}_{n=0}^{\infty}$ is dense in $F\left(\bar{t},[\varphi]_{\varphi(\bar{l})}\right)$ we can choose a subsequence $f_{n_{k}}, k=0,1,2, \ldots$, such that

$$
\begin{equation*}
\left|f_{n_{k}}\left(\bar{t},[\varphi]_{r(\bar{\theta})}\right)-z\right|<2^{-k} . \tag{16}
\end{equation*}
$$

On the other hand, from the continuity of the functions f_{n} and measurable density of the sets A_{n} (cf. (12)) it follows that there exists a sequence $t_{k} \in R^{+}, k=0,1,2, \ldots$, satisfying the following conditions

$$
\begin{gather*}
t_{k} \in A_{k}, \lim _{k \rightarrow \infty} t_{k}=\bar{t} \\
\varphi^{\prime}\left(t_{k}\right)=f_{n_{k}}\left(t_{k},[\varphi]_{v\left(t_{k}\right)}\right) \tag{17}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|f_{n_{k}}\left(t_{k},[\varphi]_{v\left(t_{k}\right)}\right)-f_{n_{k}}\left(\bar{t},[\varphi]_{v(\bar{l})}\right)\right|<2^{-k}, \quad k=0,1,2, \ldots \tag{18}
\end{equation*}
$$

Now in view of (17) we can choose another sequence $s_{k} \epsilon R^{+}, k=0,1,2, \ldots$, such that $\left|s_{k}-t_{k}\right|<2^{-k}, s_{k} \neq t_{k}$ and

$$
\left|\frac{\mid \varphi\left(s_{k}\right)-\varphi\left(t_{k}\right)}{s_{k}-t_{k}}-f_{n_{k}}\left(t_{k},[\varphi]_{v\left(t_{k}\right)}\right)\right|<2, \quad k=0,1,2, \ldots
$$

From (16) and (18) we shall obtain

$$
\left|\frac{\varphi\left(s_{k}\right)-\varphi\left(t_{k}\right)}{s_{k}-t_{k}}-z\right|<3 \cdot 2^{-k}, \quad k=0,1,2, \ldots
$$

which means that $z_{\epsilon}\left(P_{\varphi}\right)(\bar{t})$ (or $z_{\epsilon}\left(P^{+} \varphi\right)(0)$ if $\left.\bar{i}=0\right)$. Thus $F\left(\bar{t},[\varphi]_{\varphi(\bar{l})}\right) \subset\left(P_{\varphi}\right)(\bar{t})\left(\right.$ or $\left.F\left(0,[\varphi]_{\varphi(0)}\right) \subset\left(P^{+} \varphi\right)(0)\right)$. Since \bar{t} was arbitrary, we have

$$
\begin{gathered}
F\left(t,[\varphi]_{v(t)}\right) \subset(P \varphi)(t), t>0 \\
F\left(0,[\varphi]_{r(0)}\right) \subset(P \varphi)(0) .
\end{gathered}
$$

Finally there is

$$
\begin{gathered}
(P \varphi)(t)=F\left(t,[\varphi]_{\gamma(t)}\right) \quad \text { for } t>0 \\
\left(P^{+} \varphi\right)(0)=F\left(0,[\varphi]_{\varphi(0)}\right)
\end{gathered}
$$

and obviously

$$
\varphi(t)=\xi(t) \quad \text { for } \quad p \leqslant t \leqslant 0
$$

which completes the proof of our theorem.

REFERENCES

[1] Michael E., Continuous selections I, Ann. of Math. ser. 2, 63, Nr 2 (1956), 361-382.
[2] Ważewski T., Sur une condition equivalente a l'equation an contingent, Bull. Acad. Polon. Sci., Sér. sci. math. astr. et phys., 9 (1961), 865-867.
[3] Zygmunt W., On the full solution of the paratingent equations, Ann. Univ. M. Curie-Sklodowska, Sect. A, 26 (1972), 103-108.
[4] Zygmunt W., On a certain paratingent equation with deviated argument, ibidem, Sect. A, 28 (1974), 127-135

STRESZCZENIE

W pracy udowodniono twierdzenie o istnieniu pełnego rozwiązania równania paratyngensowego z przesuniętym argumentem

$$
\begin{equation*}
(P x)(t) \subset F\left(t,[x]_{p(t)}\right), 0 \leqslant t, \tag{1}
\end{equation*}
$$

z warunkiem początkowym

$$
\begin{equation*}
x(t)=\xi(t), p \leqslant t \leqslant 0 . \tag{2}
\end{equation*}
$$

PEЗЮME

В работе доказана теорема о существовании полного решения паратингентного уравнения с отклоняющим аргументом

$$
\begin{equation*}
(P x)(t) \subset F\left(t,[x]_{q(t)}\right), 0 \leqslant t, \tag{1}
\end{equation*}
$$

с начальным условнем
(2)

$$
x(t)=\xi(t), p \leqslant t \leqslant 0 .
$$

Полным решением уравнения (1), удовлетворяюшим условию (2) называем наждую функцию $\varphi \in C$ такую, что $\left(P^{\prime} \varphi\right)(t)=\boldsymbol{F}^{\prime}\left(t,[\varphi]_{r(t)}\right)$, $0 \leqslant t$.

