ANNALES

UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLIN - POLONIA

VOI. XXIX, 18
SECTIO A
1975

Instytut Matematyki, Uniwersytet Maril Curie-Sklodowakiej, Lublin

J OZEF WANIURSKI

A Note on Extremal Properties for Certain Family of Convex Mappings

Whanności ekstremalne pewnej rodziny odwzorowań wypukłych
Экстремальные качества некоторого семейства выпуклых отображений

1. Introduction

Let \mathbb{S}^{c} denote the class of functions $f(z)$ regular and univalent in the unit disk $K_{1}\left(K_{r}=\{z:|z|<r\}\right)$, with $f(0)=0, f^{\prime}(0)=1$ and such that the image domain $f\left(K_{1}\right)$ under every f belonging to \mathcal{S}^{c} is convex.

It is well-known that $K_{1 / 2} \subset f\left(K_{1}\right)$ for any $f \in \mathbb{S}^{c}$. However, if $f(z)$ $\neq z(1-\varepsilon z)^{-1},|\varepsilon|=1$, there exists $R, 1 / 2<R<1$ such that

$$
\begin{equation*}
K_{R} \subset f\left(K_{1}\right) \tag{1.1}
\end{equation*}
$$

Thus, the studying of the class $S^{c}(R), 1 / 2<R<1$, of all functions $f \in S^{c}$ which satisfy the condition (1.1) seems to be interesting.

In the paper [2] J. Krzyz investigated the class $C(M), M>1$ of all functions $f(z)$ belonging to S^{c} and satisfying

$$
\begin{equation*}
f\left(K_{1}\right) \subset K_{M} \tag{1.2}
\end{equation*}
$$

He determined precise bounds for

$$
\begin{equation*}
|f(z)| ;\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| ;\left|a_{2}\right|=\frac{1}{2}\left|f^{\prime \prime}(0)\right|(f \in C(M)) \tag{1.3}
\end{equation*}
$$

using the Hadamard's variational method.
Let $\delta(M)$ denote the so-called Koebe constant for the class $C(M)$, and let $C(R, M) ; \delta(M)<R<1<M<\infty$ denote the subclass of $C(M)$ of all functions $f(z)$ satisfying

$$
\begin{equation*}
K_{R} \subset f\left(K_{1}\right) \subset K_{M} \tag{1.4}
\end{equation*}
$$

Adopting the method used in [2] we can also find the estimates of the functionals (1.3) in the class $C(R, M)$.

Hence, we shall also obtain the bounds of the functionals (1.3) in the class $S^{c}(R)=\bigcup_{M>1} C(R, M)$.
This problem was investigated in my Ph. D. thesis submitted to the Faculty of Mathematics, Physics and Chemistry of Maria Curie-Skłodowska University in Lublin.

2. Main result

Let us put

$$
\begin{equation*}
G(z)=\frac{4}{(2+a)^{a}} \frac{[\alpha(1+z)+2 \lambda(z)]^{a}}{[1+z+\lambda(z)]^{2}} \frac{z}{(1-z)^{a}}, \tag{2.1}
\end{equation*}
$$

where $\lambda(z)=\left[1+\left(\alpha^{2}-2\right) z+z^{2}\right]^{1 / 2}, \quad 0<\alpha<2$,

$$
\begin{equation*}
F(z)=\int_{0}^{z} \frac{G(\xi)}{\xi} d \xi . \tag{2.2}
\end{equation*}
$$

The function G maps the unit disk K_{1} onto a starshaped domain being the union of the disk K_{e}, where

$$
\begin{equation*}
\varrho=4\left[(2-a)^{2-a}(2+a)^{2+a}\right]^{-1 / 2} \tag{2.3}
\end{equation*}
$$

and the angle $\left\{w:|\operatorname{Arg} w|<a^{\pi / 2}\right\}$, (see [4]).
Examining the behaviour of the boundary of $G\left(K_{1}\right)$ under the transformation (2.2) we find that $F\left(K_{1}\right)$ is a convex circular domain D_{F} symmetric w.r.t. the real axis whose boundary consists of an are situated on the boundary of the disk K_{R}, where

$$
\begin{equation*}
R=\int_{-1}^{0} \frac{G(t)}{t} d t \tag{2.4}
\end{equation*}
$$

and two half a lines (or segments) starting from the end points of that are and tangent to the boundary of K_{R}.

After some calculations we get the following formula:

$$
\begin{equation*}
R=R(a)=16 a \int_{\alpha}^{\frac{1}{\alpha}} t^{a} \frac{(2+a) t^{2}+2-a}{\left[(2+a)^{2} t^{2}-(2-a)^{2}\right]^{2}} d t \tag{2.5}
\end{equation*}
$$

with

$$
q=\sqrt{\frac{2-\alpha}{2+\alpha}}
$$

Clearly, the function $F(z)$ defined by (2.2) belongs to $S^{c}(R)$ with R given by (2.5).

Moreover, the function $F(z)$ has interesting extremal properties. We now give one of them.

Theorem 1. Suppose that $f \in \mathbb{S}^{C}(R), 1 / 2<R<1$. Then

$$
-F(-|z|) \leqslant|f(z)| \leqslant F(|z|) .
$$

3. Proof of Theorem 1

Let $U=U(R, M), \delta(M)<R<1<M$, denote the family of closed convex domains D containing the disk K_{R} included in the closed circle K_{M} and such that the inner conformal radius $r(0, D)=1$.

Obviously, for any domain $D \in U$ there exists $f \in C(R, M)$ such that $\overline{f\left(K_{1}\right)}=D$.

Let $g(w, \eta ; D)$ denote the classical Green's function of the domain D with the pole η. By the compactness of the family U, there exist two extremal domains $D_{0}, d_{0} \in U$, such that

$$
\begin{gather*}
\sup _{D \in U} g(0, \eta ; D)=g\left(0, \eta ; D_{0}\right) \tag{3.1}\\
\inf _{D \in U} g(0, \eta ; D)=g\left(0, \eta ; d_{0}\right) \text { provided }|\eta|<R . \tag{3.2}
\end{gather*}
$$

As pointed out by J. Krzyż [2] the problem of determining the extremum of the functional $\left|f\left(r e^{i i}\right)\right|$ in the class $C(R, M)$ is equivalent to that of finding the domains $D_{0}, d_{0} \in U$ which are satisfying (3.1); (3.2) resp.

In other words, if $\overline{\Phi\left(K_{1}\right)}=D_{0}$, then

$$
|\eta|=\sup _{f, \theta}\left|f\left(r e^{i \theta}\right)\right|=\sup _{0}\left|\Phi\left(r e^{i \theta}\right)\right|
$$

and if $\overline{\varphi\left(K_{1}\right)}=d_{0}$, then

$$
|\eta|=\inf _{f, \theta}\left|f\left(r e^{i 0}\right)\right|=\inf _{0}\left|\varphi\left(r e^{i 0}\right)\right|,|\eta|<R .
$$

Henceforth, we shall find the domains D_{0}, d_{0}, using the Hadamard's variational formulas [3] p. 46.

$$
\begin{gather*}
\delta g(w, \eta ; D)=\frac{1}{2 \pi} \int_{L} \frac{\partial}{\partial n_{\xi}} g(\xi, w ; D) \frac{\partial}{\partial n_{\xi}} g(\xi, \eta ; D) \delta n(s) d s, \tag{3.3}\\
\delta \gamma(w ; D)=\frac{1}{2 \pi} \int_{L}\left[\frac{\partial}{\partial n_{\xi}} g(\xi, w, D)\right]^{2} \delta n(s) d s, \tag{3.4}
\end{gather*}
$$

where $\gamma(w ; D)$ denotes the Robin's constant, L is the boundary of D and $\partial / \partial n_{s}$ is the derivative in the direction of the inward normal $n(8)$
$=\operatorname{tp}(s)$. The above given formulas are valid when the boundary L of the convex domain D consists of a finite system of analytic arcs, whereas the function $p(8)$ is bounded and continuous except perhaps, a finite number of points. If the normal vector $n(s)=t p(s)$ is directed outside D then $p(8)>0$; otherwise $p(8)<0$.

Taking into consideration the relation between the function $h(w)$ which conformally maps $D \backslash L(D \in U)$, onto the disk K_{1} with $h(0)=0$, and the Green's function of D we bring the formulas (3.3) and (3.4) to a form more convenient for our purposes (see [2]):

$$
\begin{gather*}
\delta g(0, \eta ; D)=\frac{1}{2 \pi} \int_{L}\left|h^{\prime}(w)\right|^{2} X(w) \delta n(s) d s, \tag{3.5}\\
\delta \gamma(0 ; D)=\frac{1}{2 \pi} \int_{L}\left|h^{\prime}(w)\right|^{2} \delta n(s) d s, \tag{3.6}
\end{gather*}
$$

where

$$
X(w)=\left(1-|h(w)|^{2}\right)|h(w)-h(\eta)|^{-2} .
$$

We also shall use the following
Lemma 1 [2]. Suppose that the boundary L of the domain D is a Jordan curve and let the points A, B, C divide L into three arcs which do not degenerate to points. Then we can always choose two arcs: L_{1}, L_{2} that for any arcs l_{1}, l_{2};
$l_{1} \subset L_{1}, l_{2} \subset L_{2}$ the inequality

$$
\begin{equation*}
\max _{w o l_{2}} X(w)<\min _{w d d_{1}} X(w) \tag{3.7}
\end{equation*}
$$

holds.
In order to determine the domain D_{0} we introduce the family $U_{n} \subset U$ of closed convex polygonal domains D_{n} with at most n vertices. Clearly $\bigcup_{n=1}^{\infty} U_{n}$ is dense in U. By the compactness of the family U_{n} there exists an extremal domain \tilde{D}_{n} such that

$$
g\left(0, \eta ; \tilde{D}_{n}\right)=\sup g\left(0, \eta ; D_{n}\right) ; D_{n} \in U_{n} .
$$

The same technique as in [2] leads to the following characterisation of the extremal polygonal domain \tilde{D}_{n}.

Lemma 2. The polygon \tilde{D}_{n} has exactly n vertices. At most one vertex of \tilde{D}_{n} situated inside K_{M} joins two sides neither tangent to the boundary of K_{R}.

Let now the sequence $\left\{D_{n}\right\}, D_{n} \in U_{n}$, be convergent in the sense of kernel convergence to the domain D_{0} having the extremal property (3.1) in U.

Then

$$
\lim _{n \rightarrow \infty} g\left(0, \eta ; D_{n}\right)=g\left(0, \eta ; D_{0}\right)
$$

On the other hand, for each $n \geqslant 3$

$$
g\left(0, \eta ; D_{n}\right) \leqslant g\left(0, \eta ; \tilde{D}_{n}\right) \leqslant g\left(0, \eta ; D_{0}\right)
$$

This implies that there exists a subsequence $\left\{\tilde{D}_{n_{k}}\right\}$ convergent to $\tilde{D}_{0} \in U$ and such that

$$
g\left(0, \eta ; \tilde{D}_{0}\right)=g\left(0, \eta ; \tilde{D}_{0}\right)
$$

Let I_{0}^{\prime} denote the boundary of D_{0}. According to Lemma 2, Γ_{0} consists of the segments and the circular arcs situated on the boundary of K_{M} or K_{R}.

We shall use here the method of eliminating those domains which have not the extremal property (3.2). The idea of eliminating is following: Consider a domain $D \in U$ and let $D_{t}, 0<t<T$, be the domain formed from D by certain deformation of the boundary ∂D where $D_{t} \rightarrow D$ as $t \rightarrow 0$. If $D_{\ell} \in U$ and $g\left(0, \eta ; D_{\ell}\right)>g(0, \eta ; D)$ then the domain D evidently cannot have the extremal property (3.2).

We now prove that Γ_{0} cannot contain more than two straight line segments. Suppose contrary to this that Γ_{0} contains three segments. Hence $\Gamma_{0}=\bigcup_{k=1} \Gamma_{k}$ and each Γ_{k} contains one segment. In view of Lemma 1 we can chose two segments l_{1}, l_{2} such that the condition (3.7) is satisfied. We deform now the boundary of the domain D using the deformation described in [2] by shifting l_{1} outside whereas l_{2} is turned inside D, so that the domain D_{t} obtained from D after deformation should belong to the family U. On the arc l_{1} we have $\delta n(s)>0$, whereas $\delta n(s)<0$ on l_{2} and $\delta n(s)=0$ on the remaining part of the boundary. From the formula (3.6) we get

$$
\begin{aligned}
-0 & =\gamma\left(0 ; D_{t}\right)-\gamma(0 ; D)=\frac{1}{2 \pi} \int_{l_{1}+l_{2}}\left|h^{\prime}(w)\right|^{2} \delta n(s) d s+o(t), \\
\delta n(s) & =t p(s) .
\end{aligned}
$$

Dividing both sides of the latter equality by t and making $t \rightarrow 0$, we obtain

$$
\begin{equation*}
\int_{l_{1}}\left|h^{\prime}(w)\right|^{2} p(s) d s=\int_{l_{2}}\left|h^{\prime}(w)\right|^{2}[-p(s)] d s \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8) we have:

$$
\int_{i_{1}}\left|h^{\prime}(w)\right|^{2} X(w) \delta n(s) d s>\int_{l_{2}}\left|h^{\prime}(w)\right|^{2} X(w)[-\delta n(s)] d s
$$

which means that $\delta g(0, \eta ; D)>0$ and also

$$
\Delta g=g\left(0, \eta ; D_{i}\right)-g(0, \eta ; D)>0 \text { for } 0<t<T
$$

Using the same reasoning as above and the method of deformation of the convex domain described in [2] we find that Γ_{0} is composed of two stright line segments and two arcs situated on δK_{R} and ∂K_{M}, resp.

The domain d_{0} which minimizes the Green's function can be determined by an analogous argument (cf. [2]). It appears that $d_{0}=\tilde{L}_{0}$ and in both cases the extremal domain is the same irrespective of the choice of the number η. Thus we have the characterisation of the extremal domain \tilde{D}_{0} apart from rotations about $w=0$. It is convenient to have the domain \tilde{D}_{0} symmetric w.r.t. the real axis.

Remark. The solution of the problems (3.1); (3.2) can be extended on the limiting case $M=\infty$. By the above remark the proof of Theorem 1 is complete.

4. Conclusions

Suppose that $f \in C(R, M)$, and $\eta=f(z), D=f\left(K_{1}\right)$. Then $r(\eta ; D)$ $=\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|$. Let us put $\gamma(\eta ; D)=\log r(\eta ; D)$. In view of (3.4) we obtain the following expression for the variation of the Robin's constant of D :

$$
\begin{equation*}
\delta \gamma(\eta ; D)=\frac{1}{2 \pi} \int_{L}\left|\varphi^{\prime}(w)\right|^{2} X^{2}(w) \delta n(s) d s \tag{4.1}
\end{equation*}
$$

The formula (4.1) is valid if L consists of a finite system of analytic arcs. The function $X^{2}(w)$ has similar property of monotonity like $X(w)$. By analogous argumentation as in sect. 3 one can prove

Theorem 2. If $f \in \mathbb{S}_{R}^{c}, D_{F}=F\left(\boldsymbol{K}_{1}\right)$ (F is defined by (2.2)) then

$$
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leqslant r\left(|f(z)| ; D_{F}\right)
$$

and for $|f(z)| \leqslant R$

$$
r\left(-|f(z)| ; D_{F}\right) \leqslant\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|
$$

(cf. [2]).
Let $\boldsymbol{F}(z)=z+A_{2} z^{2}+\ldots$ be the function given by (2.2). Since \boldsymbol{F} is extremal in the problem $\max \left|f\left(r e^{i t}\right)\right|, f \in S^{c}(R),\left|A_{2}\right|$ is also extromal in the problem $\sup \left|a_{2}\right|, a_{2}=\frac{1}{2}\left|f^{\prime \prime}(0)\right|, f \in S^{c}(R)$ (see [1], p. 8).

Thus we have
Theorem 3. If $f(z)=z+a_{2} z^{2}+\ldots \epsilon \mathbb{S}^{c}(R)$ then

$$
\left|a_{2}\right| \leqslant\left(\frac{\alpha}{2}\right)^{2}
$$

From (2.5) we have $R(1)=\frac{4}{9}+\frac{16}{27} \ln 2=0,855 \ldots$. If $R>R(1)$ then R corresponds to a with $0<\alpha<1$. Hence, the right inequality of theorem 1 as well as (2.1), (2.2) give

Theorem 4. Suppose that $R>R(1), f \in S^{c}(R)$. Then

$$
|f(z)| \leqslant R\left(\cos \alpha \frac{\pi}{2}\right)^{-1}, z \in K_{1}
$$

We recall that a, R are connected by (2.5).

REFERENCES

[1] Hayman W.K., Multivalent Functions, Cambridge 1958.
[2] Krzy ż J., Distorlion Theorems for Bounded Convex Functions II, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 14 (1960), 7-18.
[3] Nehari Z., Conformal mapping, New York 1952.
[4] Sheil-Sinail T., Starlike Univalent Functions, Proc. London Math. Soc., 21 (1970), 577-613.

STRESZCZENIE

Niech \mathcal{S}^{c} oznacza klasę funkcji regularnych i jednolistnych w kole jodnostkowym $K_{1}\left(K_{r}=\{z \in \mathbb{C}:|z|<r\}\right)$ i takich że dla każdoj funkcji $f \in \mathbb{S}^{c} f(0)=f^{\prime}(0)-1=0$, oraz $f\left(K_{1}\right)$ jest obszarem wypukłym płaszczyzny zespolonej C.

Oznaczmy przez $\mathbb{S}^{C}(R)$ podklasa klasy \mathbb{S}^{C} funkcji f społniajacych warunek

$$
K_{R} \subset f\left(K_{1}\right), \quad \delta(M)<R<1
$$

W pracy wyznaczono ekstremum funkcjonalów:

$$
|f(z)|,\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|,\left|a_{2}\right|=\frac{1}{2}\left|f^{\prime \prime}(0)\right|, f \in \mathbb{S}^{c}(R)
$$

(Twierdzenia: 1, 2, 3).
Rozważane ekstrema realizujo funkcja określona wzorom (2.2).
Ponadto wykazano, zee jeśli $f \in \mathbb{S}^{c}(R)$ i $R>\frac{4}{9}+\frac{16}{27} \ln 2$, to $|f(z)|$ $<M(R), z \in K_{1}$
(Twierdzenic 4).

PE ЗЮME

Пусть \mathbb{S}^{c} обозначает класс равномерных и однолистных функций в единичном круге $K_{1}\left(K_{r}=\{z \in \mathbf{C}:|z|<r\}\right)$ а таких же для каждой функции $f \in \mathbb{S}^{c} f(0)=f^{\prime}(0)-1=0, f\left(K_{1}\right)$ является выпуклым пространством комплексной плоскости C. Обозначим через $S^{c}(R)$ нодкласс \mathbb{S}^{c} функции f выполняя условия

$$
K_{R} \subset f\left(K_{1}\right), \delta(M)<R<1 .
$$

В работе онределено экстремум функционалов:

$$
|f(z)|,\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|,\left|a_{2}\right|=\frac{1}{2}\left|f^{\prime \prime}(0)\right|, f \in \mathbb{S}^{c}(R)
$$

(теорема: 1, 2, 3)
Обсуждаемые экстремумы реализует функция представлена формулой (2.2). Ноказано, что если $f \in S^{c}(R)$ и $R>\frac{4}{9}+\frac{16}{27} \ln 2$ тогда $f(z) \mid$ $<M(R), z \in K_{1}$ (Теорема 4).

