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1. Introduction

Let Sc denote the class of functions f(z) regular and univalent in 
the unit disk K1(Kr — {z: |«| < r}), with /(0) = 0, /'(0) = 1 and such 
that the image domain f(Ki) under every f belonging to Sc is convex.

It is well-known that Kllicf(K1) for any feSc. However, if f(z) 
z(l — ez)~l, |e, = 1, there exists R, 1/2 < E< 1 such that

(1.1)

Thus, the studying of the class SC(R), 1/2 < JS< 1, of all functions feSc 
which satisfy the condition (1.1) seems to be interesting.

In the paper [2] J. Krzyż investigated the class C(M), M > 1 of 
all functions f(z) belonging to Sc and satisfying

(1.2) f(Ki) <= KM-

He determined precise bounds for

(1.3) |/(«)|; (l-kl2)l/'(2)l; |o.l = il/"(0)|(AU(Jf)),

using the Hadamard’s variational method.
Let <3(J/) denote the so-called Koebe constant for the class C(M), 

and let C(R, Jf); d(M) < R< 1 < M < oo denote the subclass of C(M) 
of all functions f(z) satisfying

(1.4) Kr c /(^i) c

Adopting the method used in [2] we can also find the estimates 
of the functionals (1.3) in the class C(R, M).
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Hence, we shall also obtain the bounds of the functionals (1.3) in the
class 8C(R) = \JC(R,M).

M>1

This problem was investigated in my Ph. D. thesis submitted to the 
Faculty of Mathematics, Physics and Chemistry of Maria Curie-Sklo- 
dowska University in Lublin.

2. Main result

Let us put

(2.1)
4 [a(l + z) + 22(z)]“ z 

(2 + o)a [l + «+A(«)]a (!—«)“ ’

where X(z) — [l + (a2 — 2)« + z2]1/2, 0< a< 2,

(2.2)

The function G maps the unit disk onto a starshaped domain 
being the union of the disk KQ, where

(2.3) q = 4 [(2 - o)2-°(2 + o)2+“]-1/2

and the angle {w: |Argw| < a"12}, (see [4]).
Examining the behaviour of the boundary of G(KX) under the transfor­
mation (2.2) we find that is a convex circular domain DF symmetric
w.r.t. the real axis whose boundary consists of an arc situated on the 
boundary of the disk Klt, where

-1

and two half a lines (or segments) starting from the end points of that 
arc and tangent to the boundary of KR.

After some calculations we get the following formula:
X

= R(a) = 16a | taR(2.5)

with

(2 + a)t2 + 2-a 
[(2 + a)2/2—(2 — a)2]2

-i/HZ.

r 2 + a

dt,

Clearly, the function F(z) defined by (2.2) belongs to SC(E) with R given 
by (2.5).
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Moreover, the function F(z) has interesting extremal properties. 
We now give one of them.

Theorem 1. Suppose that feSc(R), l/2< Ji< 1. Then 

-P(-|«|)< |/(«)|< J>|).

3. Proof of Theorem 1

Let TJ — U(R, M), <5(Mj < .R < 1 < M, denote the family of closed 
copvex domains D containing the disk KI{ included in the closed circle 
Km and such that the inner conformal radius r(Q,D) =1.

Obviously, for any domain DeU there exists feC(R, M) such that 
№) = !>•

Let g(w,r];D) denote the classical Green’s function of the domain 
D with the pole g. By the compactness of the family U, there exist two 
extremal domains Do, doe U, such that

(3.1) sup<7(0, »7; D) = g(0, jy; Do),
Bet/

(3.2) inf <7(0, rj) D) =g(O,rr,do) provided \g\<R.
DiV

As pointed out by J. Krzyz [2] the problem of determining the 
extremum of the functional \f(re'l)\ in the class C(R, M) is equivalent 
to that of finding the domains Z>0, doeU which are satisfying (3.1); (3.2) 
resp.

In other words, if 0(A1) = Do, then

|j?| = sup|/(re<9)| = sup|0(r?(,)| 
f,o e

and if (p(Kx) — d0, then

|»7l = inf \f(rei0)\ = inf |g.(re’°)|, \g\< R. 
f,e o

Henceforth, we shall find the domains Z>0, d0, using the Hadamard’s 
variational formulas [3] p. 46.

(3.3) hg(w,g-,D) = ~ J’-^-g(^,»>;R)—g((,g;J))3n(s)ds,
71 L

(3.4) <$y(w; D) = ~- j w’ *>)] hn(s)ds,

where y(w,D) denotes the Robin’s constant, L is the boundary of D 
and d/dn^ is the derivative in the direction of the inward normal n(s)
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— tp(s). The above given formulas are valid when the boundary L of 
the convex domain D consists of a finite system of analytic arcs, whereas 
the function p(s) is bounded and continuous except perhaps, a finite 
number of points. If the normal vector n(s) = <p(s) is directed outside 
D then p(s) > 0; otherwise p(s) < 0.

Taking into consideration the relation between the function h(w) 
which conformally maps D\L(DeU), onto the disk K± with ft(0) = 0, 
and the Green’s function of D we bring the formulas (3.3) and (3.4) to 
a form more convenient for our purposes (see [2]):

(3.5) ^(O,»j;D) =~ f \h'(w)\2X(w)6n(s)ds,

L

(3.6) <5y(0; D) = J* \h'(w)\26n(s)ds,
71 L

where
X(w) = (l-\h(w)\2}\h(w)-h(r,)\~2.

We also shall use the following
Lemma 1 [2]. Suppose that the boundary L of the domain D is a Jordan 

curve and let the points A, B, G divide L into three arcs which do not dege­
nerate to points. Then we can always choose two arcs: Lt, L2 that for any 
arcs Jlt

Zj <= Lj, l2 <= L2 the inequality

(3.7) maxT(w) < minZ(w) 
wcZ2

holds.
In order to determine the domain Do we introduce the family c U

of closed convex polygonal domains Dn with at most n vertices. Clearly 
00

(J Un is dense in U. By the compactness of the family Un there exists
n=»l
an extremal domain Dn such that

3(0^5 A) = supfir(O, y, D„); DneUn.

The same technique as in [2] leads to the following characterisation of 
the extremal polygonal domain Dn.

Lemma 2. The polygon Dn has exactly n vertices. At most one vertex 
of Dn situated inside KM joins two sides neither tangent to the boundary 
of KR.

Let now the sequence {Dn}, Dnt Un, be convergent in the sense 
of kernel convergence to the domain Do having the extremal property
(3.1) in U.
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Then
lim0(O, p-, D„) = g(0, v-Do).
n >00

On the other hand, for each n > 3

<7(0, »?;-»„) < <7(0, rf, A) < <7(0,»?; Do).

This implies that there exists a subsequence {Dnk} convergent to DoeTJ 
and such that

<7(0,»?; A) = 0(0,»?; A)-

Let r0 denote the boundary of Do. According to Lemma 2, Fo con­
sists of the segments and the circular arcs situated on the boundary of 
Km or ^lf

We shall use here the method of eliminating those domains which 
have not the extremal property (3.2). The idea of eliminating is following: 
Consider a domain DeU and let Dt, 0< t< T, be the domain formed 
from D by certain deformation of the boundary dD where Dt^-D as 
<-►0. If Dte U and g(0, rtf Dt) > g(0, p-, D) then the domain D evidently 
cannot have the extremal property (3.2).

We now prove that r0 cannot contain more than two straight line 
segments. Suppose contrary to this that ro contains three segments.

3

Hence Fo = U A and each rk contains one segment. In view of Lemma 1
k=i

we can chose two segments l2 such that the condition (3.7) is satisfied. 
We deform now the boundary of the domain D using the deformation 
described in [2] by shifting outside whereas l2 is turned inside D, so 
that the domain Dt obtained from D after deformation should belong to 
the family U. On the arc lr we have dn(s) > 0, whereas <5w(s)< 0 on 
l2 and dn(s) = 0 on the remaining part of the boundary. From the for­
mula (3.6) we get

'0 = y(0;A)-y(0;H) = ~ f lh'(w)^dn(s)d8 + 0(t), 

ll+,2

6n(s) = tp(s).
Dividing both sides of the latter equality by t and making t->0, we obtain

(3.8) J \h'(w)\2p(s)ds = J |A'(w)l2[-p(s)]ds.
h <2

From (3.7) and (3.8) we have:

J \h'(w)\2X(w) dn(s)ds > J A(w)[ — <5n(s)]ds,
h <2
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which means that <5</(0, y, D) > 0 and also

A/ = 9(0, 'll Dt)-9(0, y,D)>0 for 0< << T.

Using the same reasoning as above and the method of deformation of 
the convex domain described in [2] we find that f0 is composed of two 
stright line segments and two arcs situated on bKR and dKM, resp.

The domain d0 which minimizes the Green’s function can be deter­
mined by an analogous argument (cf. [2]). It appears that <l0 = L>„ and 
in both cases the extremal domain is the same irrespective of the choice 
of the number rj. Thus we have the characterisation of the extremal 
domain Do apart from rotations about w = 0. It is convenient to have 
the domain _D0 symmetric w.r.t. the real axis.

Eemark. The solution of the problems (3.1); (3.2) can be extended 
on the limiting case M = oo. By the above remark the proof of Theorem 1 
is complete.

4. Conclusions

Suppose that feC(R,JH), and rj = f(z), D = f(Kf). Then r(»j;Z>) 
= (1—|«|a) |/'(^)l- us Put y(»?;-D) = logr(?7; D). In view of (3.4) we 
obtain the following expression for the variation of the Robin’s constant 
of D:

(4.1) <5y(w; D) = —— f |ç>'(w)|2JL2(w)<5»(s)ds.
2tt J

L

The formula (4.1) is valid if L consists of a finite system of analytic arcs. 
The function X2(w) has similar property of monotonity like X(w). By 
analogous argumentation as in sect. 3 one can prove

Theorem 2. If feSR, DF = J’(jBl'i) (F is defined by (2.2)) then 

(l-\z\')\f'(z)\^r(\f(z)}-, Df)

and for |/(«)| < R

r(-\f(e)\i DF)^(l-\z\2)\f'(z)\.
(cf. [2]).

Let F(z) — z+A2z2 + ... be the function given by (2.2). Since F 
is extremal in the problem max |/(re’‘)|, feSc(R), |J.2| is also extremal 
in the problem sup|a2|, a2 = ||/"(0)|, feSc(R) (see [1], p. 8).

Thus we have
Theorem 3. If f(z) = z + a2z2F ...eSc(R) then
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4 16
From (2.5) we have -B(l) = ——ln2 = 0,855.... If B > 72(1)

<7 Zi t
then B corresponds to a with 0 < a < 1. Hence, the right inequality of 
theorem 1 as well as (2.1), (2.2) give

Theorem 4. Suppose that B > B(l), feSc(B). Then 

l/(«)l< 22 (cosay) , ZeK,.

We recall that a, B are connected by (2.5).
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STRESZCZENIE

Niech Sc oznacza klasę funkcji regularnych i jednolistnych w kole 
jednostkowym K1 (Kr = {zeC: |«| < r}) i takich że dla każdoj funkcji 
feSc f(Q) = /'(0) —1 = 0, oraz f(Kx) jest obszarem wypukłym płaszczyzny 
zespolonej C.

Oznaczmy przez SC(B) podklasą klasy Sc funkcji f spełniających 
warunek

7fflC/(A\), d(M)<B<l.

W pracy wyznaczono ekstremum funkcjonałów:

\f(z)\, (1-|*I*)I/'(*)I, KI = il/''(0)l, A^(R)

(Twierdzenia: 1,2,3).
Rozważane ekstrema realizuje funkcja określona wzorem (2.2).

4 16
Ponadto wykazano, że jeśli feSr(B) i —+-^yln2, to |/(2)l

At (B), Ze Ki \
(Twierdzenie 4).
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РЕЗЮМЕ

Пусть <8С обозначает класс равномерных и однолистных функций 
в единичном круге Кх (Кг = {г еС: |г| < г}) а таких же для каждой 
функции / е 8е/(0) = /'(0) —1 = 0,/(Кх) является выпуклым прост­
ранством комплексной плоскости С. Обозначим через 8С(Е) подкласс 8е 
функции / выполняя условия .

с/(Кх), д(К)< Е< 1.

В работе онределено экстремум функционалов:

1/(*)1, (1-И2)1Л*)1, К1 = *|/"(0)|, / <#С(-В)

(теорема: 1,2,3)
Обсуждаемые экстремумы реализует функция представлена фор- 

4 16
мулой (2.2). Показано, что если / е (8е(Л) и Е > — + — 1п2 тогда /(г)| 

< Л/(Е), геК, (Теорема 4).


