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1. Introduction

Let 8¢ denote the class of functions f(z) regular and univalent in
the unit disk K,(K, = {z: |z2| < r}), with f(0) = 0, f'(0) =1 and such
that the image domain f(K,) under every f belonging to S° is convex.

It is well-known that K,, c f(K,) for any feS°. However, if f(2)
+ 2(1—egz)”!, |e| =1, there exists E, 1/2< R < 1 such that

(1.1) K, < f(K,).

Thus, the studying of the class 8°(R), 1/2 < R < 1, of all functions feS°
which satisfy the condition (1.1) seems to be interesting.

In the paper [2] J. Krzyz investigated the class C(M), M > 1 of
all functions f(z) belonging to S8° and satisfying

(1.2) f(K,) © Ky.
He determined precise bounds for

(1.3) If(2)]; (1—1212)f"(2)]5 laal = 21" (0)(feC (D)),

using the Hadamard’s variational method.

Let 8(M) denote the so-called Koebe constant for the class C(M),
and let (R, M); 6(M)< R< 1< M < oo denote the subclass of C(M)
of all functions f(z) satisfying

(1.4) Ky c f(K,) = Ky.

Adopting the method used in [2] we can also find the estimates
of the functionals (1.3) in the class C(R, M).
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Hence, we shall also obtain the bounds of the functionals (1.3) in the
class S°(R) = \UC(R, M).

M>1

This problem was investigated in my Ph. D. thesis submitted to the
Faculty of Mathematics, Physics and Chemistry of Maria Curie-Sklo-
dowska University in Lublin.

2. Main result

Let us put

4  [a(l+2)+21(2)]° =
(2+a)® [D+z+1())2F (1—2)7
where A(z) = [1+(a*—2)z+2°]"}, O0<a< 2,

(2.1) G(2) =

z
G
(2.2) F2) = f-ﬂdf.
; &
The function G maps the unit disk K, onto a starshaped domain
being the union of the disk K,, where

(2.3) o = 4[(2—a)* %2+ a)*T] 1"

and the angle {w: |Argw| < a™}, (see [4]).

Examining the behaviour of the boundary of G(K,) under the transfor-
mation (2.2) we find that # (/) is a convex circular domain Dy symmetric
w.r.t. the real axis whose boundary consists of an arc situated on the
boundary of the disk K, where

(2.4) B = fg-iﬁdt

-1

and two half a lines (or segments) starting from the end points of that
arc and tangent to the boundary of Kpy.
After some calculations we get the following formula:

i

(2.5) R = R(a) = 16a "‘ n (24+a)24+2—a

at,
(2 + a)?t*— (2 — a)?]?

. 2—a
with q=l/2+ .
a

Clearly, the function F(z) defined by (2.2) belongs to 8°(R) with R given
by (2.5).
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Moreover, the function F'(z) has interesting extremal properties.
We now give one of them.

Theorem 1. Suppose that feS°(R), 1/2< R< 1. Then
—F(—l2)) < 1f(2)] < F(Jz]).

3. Proof of Theorem 1

Let U = U(R, M), 6(M)< R<1< M, denote the family of closed
convex domains D containing the disk Ky included in the closed circle
K_M and such that the inner conformal radius (0, D) = 1.

Obviously, for any domain DeU there exists feC(R, M) such that
f(K,y) = D.

Let g(w, n; D) denote the classical Green’s function of the domain
D with the pole 7. By the compactness of the family U, there exist two
extremal domains D,, dye U, such that

(3.1) sup g(0, n; D) = ¢(0, 5; D),
DeU
(3.2) infg(0, ; D) = g(0, n; dy) provided |»| < R.
DeU

As pointed out by J. Krzyz [2] the problem of determining the
extremum of the functional |f(re”)| in the class C(R, M) is equivalent
to that of finding the domains Dy, d,e U which are satisfying (3.1); (3.2)
resp.

In other words, if #(K,) = D,, then

In| = sup|f(re’)] = Sl;plﬂb(re“’)l
1,0

and if ¢(K,) = d,, then
Iyl = inf |f(re”)| = ilgfltp(fe"’)l, Inl < R.
1.0

Henceforth, we shall find the domains Dy, d,, using the Hadamard’s
variational formulas [3] p. 46.

1 0 0
(33)  dg(w, 0 D) = 5= [ 5-(6, 03 D)5 -(¢, n; D) dn(s)ds,
;o

(3.4) by(w; D) = - j[ 4 .rns_.w,D)]'an(s)ds,

2n o .
i £

where y(w; D) denotes the Robin’s constant, L is the boundary of D
and d/dn. is the derivative in the direction of the inward normal =(s)
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= tp(s). The above given formulas are valid when the boundary L of
the convex domain D consists of a finite system of analytic arcs, whereas
the function p(s) is bounded and continuous except perhaps, a finite
number of points. If the normal vector n(s) = tp(s) is directed outside
D then p(s) > 0; otherwise p(8) < 0.

Taking into consideration the relation between the function & (w)
which conformally maps D\L(DeU), onto the disk K, with h(0) = 0,
and the Green’s function of D we bring the formulas (3.3) and (3.4) to
a form more convenient for our purposes (see [2]):

1
(3.5) 09(0, 75 D) = - f I’ (10)[2 X () on (s)ds,
L

1

2n

(3.6) 0703 D) = [ W )*on(s)ds,
L

where
X () = (1~ |h()[) [k () — ()| 7"

We also shall use the following

'Lemma 1 [2]. Suppose that the boundary L of the domain D 18 a Jordan
curve and let the points A, B, C divide L into three arcs which do not dege-
nerate to points. Then we can always choose two arcs: L,, L, that for any
arcs 1,, ly;

l, e L, l, = L, the inequality

(3.7) max X (w) < min X (w)
wel Wfl
holds. i
In order to determine the domain D, we introduce the family U, c U
of closed convex polygonal domains D, with at most n vertices. Clearly
(UU, is dense in U. By the compactness of the family U, there exists

n=1
an extremal domain D, such that

9(0, n; D,) = supg(0,9; D,); D,eU,.

The same technique as in [2] leads to the following characterisation of
the extremal polygonal domain D,.

Lemma 2. The polygon D, has exactly n vertices. At most one vertew
of D, situated inside K, joins two sides neither tangent to the boundary
of Kg.

Let now the sequence {D,}, D,eU,, be convergent in the sense
of kernel convergence to the domain D, having the extremal property
(3.1) in U.
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Thoen
limg(0, n; D,) = ¢(0, n; D,).

7n-+00

On the other hand, for each n >3
g(0,7;D,) < g(0, 95 D,) < g(0, 7; Dy).

This implies that there exists a subsequence {an} convergent to Dye U
and such that

9(0, n; Dg) = g(0, 7; Dy).

Let I'y denote the boundary of D,. According to Lemma 2, I', con-
sists of the segments and the circular arcs situated on the boundary of
K, or K,.

We shall use here the meothod of eliminating those domains which
have not the extremal property (3.2). The idea of eliminating is following:
Consider a domain DeU and let D, 0 <t< T, be the domain formed
from D by certain deformation of the boundary 01 where D,—~>D as
t—0. If D,eU and ¢(0, n; Dy) > g(0, n; D) then the domain D evidently
cannot have the extremal property (3.2).

We now prove that Iy cannot contain more than two straight line
segments. Suppose contrary to this that I'y contains three segments.

3

Hence I’y = | JI', and each I, contains one segment. In view of Lemma 1
k=1

we can chose two segments [,, I, such that the condition (3.7) is satisfied.
We deform now the boundary of the domain D using the deformation
described in [2] by shifting I, outside whereas [, is turned inside D, so
that the domain D, obtained from D after deformation should belong to
the family U. On the arc I, we have dn(s) > 0, whereas dn(s)< 0 on
l, and dn(s) = 0 on the remaining part of the boundary. From the for-
mula (3.6) we get

1

2n

-0 = »(0; D,)— y(0; D) f I (10)[2 6n.(3) ds + o (2),

ll+’2

on(s) = tp(s).
Dividing both sides of the latter equality by ¢t and making ¢t—>0, we obtain

(3.8) J W w)sp(a)ds = [ 1K (w)[—p(s)]ds.
4 Iy

From (3.7) and (3.8) we have:
f]h’(w)]ZX(w)én(s)ds> f;;r{-w}:rX(w)[_5n(s)]ds,
HY Iy
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which means that ég(0, n; D) > 0 and also
Ag = ¢(0,7; D)—g(0,n; D)> 0 for 0<t<T.

Using the same reasoning as above and the method of deformation of
the convex domain described in {2] we find that I'; is composed of two
stright line segments and two ares situated on 6K, and 0K ,,, resp.

The domain d, which minimizes the Green’s function can be deter-
mined by an analogous argument (cf. [2]). It appears that d, = D, and
in both cases the extremal domain is the same irrespective of the choice
of the number 7. Thus we have the characterisation of the extremal
domain D, apart from rotations about w = 0. It is convenient to have
the domain D, symmetric w.r.t. the real axis.

Remark. The solution of the problems (3.1); (3.2) can be extended
on the limiting case M = oc. By the above remark the proof of Theorem 1
is complete.

4. Conclusions

Suppose that feC(R, M), and 7 = f(z), D = f(K,). Then r(n; D)
= (1—[21®)|f"(2)|. Let us put y(n; D) = logr(n; D). In view of (3.4) we
obtain the following expression for the variation of the Robin’s constant
of D:

1
(4.1) ylns Dy=<— f|<P'(w)|2X’(w)5”(8)‘1s
L

The formula (4.1) is valid if L consists of a finite system of analytic arcs.
The function X*(w) has similar property of monotonity like X (w). By
analogous argumentation as in sect. 3 one can prove

Theorem 2. If feS%, Dp = F(R,) (I is defined by (2.2)) then

(1— 212 If"(2)] < (If(2)]; Dy)
and for |f(2)| <R
—1f(2)1; Dg) < A —121)1f"(2)I.
(ef. [2]).

Let F(z) =2-+A,22+ ... be the function given by (2.2). Since F
is extremal in the problem max |f(re¥)|, feS°(R), |4,| is also extremal
in the problem sup |a,|, a, = }[f"'(0)|, feS°(R) (see [1], p. 8).

Thus we have

Theorem 3. If f(2) = 2+ a,2*+ ... eS°(R) then

2
las] < (3)
2
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' 4 16
From (2.5) we have R(l) = _ —:—?1n2 = 0,856.... If R> R(1)
o Zi

then R corresponds to a with 0 < a << 1. Hence, the right inequality of
theorem 1 as well as (2.1), (2.2) give

Theorem 4. Suppose that R > R(1), feS°(R). Then

If(2) < R(cos«z%) y 2¢K,.

We recall that a, R are connected by (2.5).

REFERENCES

1] Hayman W.K., Multivalent Functions, Cambridge 1958.

[2] Krzyz J., Distortion Theorems for Bounded Convex Functions 11, Ann. Univ. Mariae
Curie-Sklodowska, Sect. A, 14 (1960), 7-18.

[3] Nehari Z., Conformal mapping, New York 1952.

[4] Sheil-Smail T., Starlike Univalent Functions, Proc. London Math. Soc., 21 (1970),
577-613.

STRESZCZENIE

Niech 8° oznacza klase funkeji regularnych i jednolistnych w kole
jednostkowym K, (K, = {zeC: |z| < r}) i takich ze dla kazdej funkecji
fe8° f(0) = f'(0)—1 = 0, oraz f(K,) jest obszarem wypuklym plaszczyzny
zespolonej C.

Oznaczmy przez S8°(R) podklasa klasy 8° funkeji f spelniajacych
warunek

Kpc f(K,), oM<R<LI.

W pracy wyznaczono ekstremum funkcjonalow:
If(2), (L—1212)1f"(2)], las] = }1f"(0)], feS°(R)

(Twierdzenia: 1,2, 3).
Rozwazane ekstrema realizuje funkcja okreslona wzorem (2.2).

4 16
Ponadto wykazano, ze jesli feS°(R) i K > a2t 2*7-1112, to_|f(2)]

< M(R), zeK, \
(Twicrdzenice 4).
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PE3IOME

Ilycth 8° o6Go3navaer KiacC paBHOMEPHBIX M OJHOJMCTHBIX (yHKLMIA
B enunu4HoM Kpyre K, (K, = {z ¢ C: |2| < r}) a Takux e NIA KamKaoMh
dyuxumn f e S°f(0) = f(0)—1 =0, f(K,) ABIAETCA BHILYKlbIM HPOCT-
paHcTBOM KoMmiutekcHoit miockoctu C. OGoanauum yepe3 S°(R) nogknace S°
$yHKUMM [ BBINOJHAA YCIOBUA .

Ky < f(K,)), 6(M)< R<1.
B paGote oHpeneneHo 3KCTpeMyM (YHKLHMOHAJOB:
If(@), A—=[IDIf(2)], as] = 31f7(0)], f « 8(R)

(Teopema: 1, 2, 3)
O6cy:xmaeMble dKCTpPeMyMbl peanu3ayeT QyHKUMA NpencraBieHa gop-

- 4 16
Mydoii (2.2). IlokasaHo, uto eciiu f e S (R)u R > ? + £ In2 Torma f(2)|
< M(R), z e K, (Teopema 4).



