ANNALES

UNIVERSITATIS MARIAE CURIE-SK£ODOWSKA LUBLIN - POLONIA

VOL. XXIX, 16
SECTIO A
1975

Inatytut Matematyki, Uniwersytot Maril Curie-Sklodowskioj, Lublin

ZBIGNIEWSWIETOCHOWSKI

On Second Order Cauchy's Problem in a Hilbert Space with Applications to the Mixed Problems for Hyperbolic Equations, II

O zadaniu Cauchy'ego drugiego rzędu w przestrzeni Hilberta z zastosowaniom do zadaú mieszanych dla równań hiperbolicznych, II

О задаче Коши второго порядка в гильбертовом пространстве с приложением к смешанным задачам для уравнений гиперболического типа, II

The purpose of this paper is to give some applications of the results of Theorems 1 and 2 of the previous paper [6].
I. Let Ω be a bounded domain in R^{n}, and let S be the boundary of Ω. We shall use the notation of [6] and the following ones:
$D(\Omega)=$ the space of all complex-valued tested functions on Ω equipped with the usual topology,
$(D)^{\prime} \Omega=$ the conjugate space of $D(\Omega)$, i.e. the space of distributions in the sense of L. Schwartz on Ω,
$L^{2}(\Omega)=$ the Hilbert space of classes of complex-valued measurable and square-integrable functions over Ω with the usual scalar product $((u, v))=\int_{\delta} u(x) \overline{v(x)} d x$ and the norm $\|u\|=((u, u))^{1 / 2}$,
$H^{k}(\Omega)=$ the Hilbert space of elements of $L^{2}(\Omega)$ having the distributional derivatives of order $\leqslant k$, square-integrable over Ω, with the scalar product $((u, v))_{k}=\sum_{|a|<k}\left(\left(D^{a} u, D^{a} v\right)\right)$ and the norm $\|u\|_{k}$ $=((u, u))_{k}^{1 / 2}$,
$H_{0}^{k}(\Omega)=$ the completion of $D(\Omega)$ in the norm of $H^{k}(\Omega)$,
$\langle f, u\rangle=$ the value of $f \in D^{\prime}(\Omega)$ at the point $u \in D(\Omega)$,
$B^{k}(\Omega)=$ the set of all functions on Ω such that their partial derivatives of order $\leqslant k$ exist and are continuous and bounded.

II. A mixed problem with the boundary condition of the Dirichlet type.

Consider a hyperbolic equation of second order

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+\sum_{i=1}^{n} a_{i}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial t}-\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}}=0 \tag{1}
\end{equation*}
$$

where the cocfficients are real-valued functions belonging to $B^{2}((0, T) \times \Omega)$. We assume that $\sum_{i, k=1}^{n} a_{i k}(t, x) \xi_{i} \xi k \geqslant d \sum_{i=1}^{n} \xi_{i}^{2}$ and $a_{i j}(t, x)=a_{j i}(t, x)$ for all $(t, x) \in(0, T) \times \Omega$ and $\left(\xi_{1}, \ldots, \xi_{n}\right) \in R^{n}$.

Our problem is to obtain a solution $u(t, x)$ of (1) on $(0, T) \times \Omega$, $u(t, \cdot) \epsilon H_{0}^{-}$for every $t_{\epsilon}\langle 0, T\rangle$, satisfying

$$
\left\{\begin{array}{l}
u(0, x)=u_{0}(x) \tag{2}\\
\frac{\partial u}{\partial t}(0, x)=u_{1}(x) \\
u(t, x)=0 \text { for }(t, x) \epsilon\langle 0, T\rangle \times S
\end{array}\right.
$$

for any given initial data $u_{0}(x), u_{1}(x)$.
The derivatives in (1) in t are taken in the sense of the norm in H_{0}^{-} while in x_{1}, \ldots, x_{n} in the distributional sense. The second condition of (2) means that $u(t, \cdot)_{\epsilon} H_{0}^{1}(\Omega)$ for every $t_{\epsilon}\langle 0, T\rangle$.

The existence and the uniqueness of the solution of $(1)-(2)$ under some assumption on $u_{0}(x), u_{1}(x)$ will follow from Theorem 1 of [6]. In order to apply this theorem we set:

$$
H=L^{2}(\Omega), H^{+}=H_{0}^{1}(\Omega), H_{i}^{+}=H_{0}^{1}(\Omega)
$$

with the scalar product and the norm defined by the formulae

$$
\begin{gathered}
((u, v))_{t}^{+}=\int_{\Omega} u(x) \overline{v(x)} d x+\int_{\Omega} \sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial u(x)}{\partial x_{i}} \frac{\partial \overline{v(x)}}{\partial x_{k}}, \\
\|u\|_{t}^{+}=\left(((u, u))_{t}^{+}\right)^{1 / 2} .
\end{gathered}
$$

By the definition of the operator $\Lambda_{0}(t)\left([6]\right.$, Lemma $\left.5^{\circ}\right)$ we have:

$$
\left\{\begin{array}{l}
\left.D\left(\Lambda_{0}(t)\right)=\left\{u \in H_{t}^{+}: \sup \left\{((u, v))_{t}^{+}\right\}: v \in H_{i}^{+},\|v\| \leqslant 1\right\}<\infty\right\} \tag{3}\\
\left(\left(\Lambda_{0}(t) u, v\right)\right)=((u, v))_{t}^{+} .
\end{array}\right.
$$

Now we explain the sense of (3) in the present case. Let $v \in D(\Omega)$ We have:

$$
\begin{gathered}
\left\langle\Lambda_{0}(t) u, \bar{v}\right\rangle=((u, v))_{t}^{+}=\int_{i} u(x) \overline{v(x)} d x+\int_{S} \sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial u(x)}{\partial x_{i}} \frac{\partial \overline{v(x)}}{\partial x_{k}} d x \\
=\left\langle u-\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} a_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right), \bar{v}\right\rangle
\end{gathered}
$$

Hence the conditions:

$$
\left\{\begin{array}{l}
u \in D\left(\Lambda_{0}(t)\right) \\
\left.\left(\left(\Lambda_{0}(t) u, v\right)\right)=(u, v)\right)_{t}^{+}, v \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

are equivalent to the following ones

$$
\begin{aligned}
& {\left[\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} a_{i k}(t, x) \frac{\partial u(x)}{\partial x_{i}}\right)\right] \epsilon L^{2}(\Omega)} \\
& \Lambda_{0}(t) u=u-\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} a_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right)
\end{aligned}
$$

in the sense of $D^{\prime}(\Omega)$ for every $t \in\langle 0, T\rangle$.
From the equality $\left(\left(\Lambda_{0}(t) u, v\right)\right)_{\ell}^{-}=((u, v))$ for $u \in D\left(\Lambda_{0}(t)\right), v \in H^{+}$, and from the inequality $|((u, v))| \leqslant\|u\|_{\ell}^{+}\|v\|_{\varepsilon}^{-}$for $u \in H^{+}, v \in H$ it follows that $\Lambda_{0}(t)$ is a continuous operator, mapping $D\left(\Lambda_{0}(t)\right)$ into H_{i}^{-}, and since $D\left(\Lambda_{0}(t)\right)$ is a dense subset in $H_{t}^{+}, \Lambda(t)=$ the closure of $\Lambda_{0}(t)$ in H_{ℓ}^{-}is an element from $L\left(H_{0}^{+}, H_{0}^{-}\right)$, satisfying

$$
\Lambda(t) u=u-\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} a_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right)
$$

in the sense of $D^{\prime}(\Omega)$. Write (1) in an equivalent form

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}+\left(\sum_{i=1}^{n} a_{i}(t, x) \frac{\partial}{\partial x_{i}}\right) \frac{d u}{d t}-\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}}=0 \tag{4}
\end{equation*}
$$

and put:

$$
\begin{gathered}
B(t) u=\left(\sum_{i=1}^{n} a_{i}(t, x) \frac{\partial}{\partial x_{i}}\right) u \\
S(t) u=-\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}}+\sum_{i, k=1}^{n}\left(\frac{\partial}{\partial x_{k}}\left(Q_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right)-u .\right.
\end{gathered}
$$

Setting $S(t)=P(t)-1$, we see $P(t)$ is the first order differential operator. Writing (4) is the form

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}+(\Lambda(t)+S(t)) u+B(t) \frac{d u}{d t}=0 \tag{5}
\end{equation*}
$$

We shall prove that the hypotheses (1.1)-(1.3) of Theorem 1 of paper [6] are fulfilled.

Ad (1.2). Let $u \in D(\Omega), v \in H^{+}$. We have

$$
\begin{aligned}
&|((B(t) u, v))|=\left|\int_{D} \sum_{i=1}^{\top} a_{i}(t, x) \frac{\partial u}{\partial x_{i}} \bar{v} d x\right| \leqslant \sum_{i=1}^{n}\left(\int_{S} a_{i}^{2}(t, x)\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x\right)^{1 / 2} \times \\
& \times\left(\int_{D}|v|^{2} d x\right)^{1 / 2} \leqslant c_{1}\|u\|_{0}^{+}\|v\|
\end{aligned}
$$

and

$$
|((B(t) u, v))|=\left|-\int_{s} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}(t, x) \bar{v}\right) u d x\right| \leqslant c_{2}\|u\|\|v\|_{0}^{+} .
$$

Since

$$
\left.\|B(t) u\|_{0}^{-}=\sup \{\|(B(t) u, v)) \mid: v \in H^{+},\|v\|_{0}^{+} \leqslant 1\right\},
$$

thus for $u \in D(\Omega)$ we obtain

$$
\|\boldsymbol{B}(t) u\|_{0}^{-} \leqslant \boldsymbol{c}_{2}\|u\|_{0}
$$

From the density of $D(\Omega)$ in $H=L^{2}(\Omega)$, after extension by continuity we come to conclusion that $B(t) e L\left(H, H_{0}^{-}\right)$.

Ad (1.3). For every $u \in D(\Omega)$ we have

$$
\begin{gathered}
((B(t) u, u))=-\int_{D} \sum_{i=1}^{n} \frac{\partial}{\partial X_{i}}\left(a_{i}(t, x) \bar{u}\right) u d x=-\int_{S} \sum_{i=1}^{n} \frac{\partial a_{i}(t, x)}{\partial x_{i}}|u|^{2} d x+ \\
-\int_{S} \sum_{i=1}^{n} a_{i}(t, x) \frac{\partial \bar{u}}{\partial x_{i}} u d x=-\int_{\delta} \sum_{i=1}^{n} \frac{\partial a_{i}(t, x)}{\partial x_{i}}|u|^{2} d x-((u, B(t) u)) .
\end{gathered}
$$

Thus

$$
2 \operatorname{Re}((B(t) u, u))=-\int_{\Omega} \sum_{i=1}^{n} \frac{\partial a_{i}(t, x)}{\partial x_{i}}|u|^{2} d x
$$

and

$$
|\operatorname{Re}((B(t) u, u))| \leqslant c_{3}\|u\|^{2} .
$$

Let $u \epsilon H^{+}$. From the density of $D(\Omega)$ in H_{0}^{+}it follows that there exists a sequence $u_{n} \in D(\Omega)$ such that $\left\|u_{n}-u\right\|_{0}^{+} \rightarrow \mathbf{0}$. Of course also $\left\|u_{n}-u\right\| \rightarrow 0$. By the inequality $|((B(t) u, v))| \leqslant c_{1}\|u\|_{0}^{+}\|v\|$ we see $B(t) \in L\left(H_{0}^{+}, H\right)$, hence $\left\|B(t) u_{n}-B(t) u\right\| \rightarrow 0$. Finally, the passage to the limit when $n \rightarrow \infty$ in the inequality $\left|\operatorname{Re}\left(\left(B(t) u_{n}, u_{n}\right)\right)\right| \leqslant c_{3}\left\|u_{n}\right\|^{2}$ gives us the required one:

$$
|\operatorname{Re}((B(t) u u))| \leqslant c_{3}\|u\|^{2} \text { for every } u \in H^{+} \text {and } t \in\langle\boldsymbol{0}, T\rangle .
$$

Ad (1.1). We can write

$$
P(t) u=\sum_{i=1}^{n} e_{i}(t, x) \frac{\partial u}{\partial x_{i}},
$$

where the coefficients $c_{i}(t, x)$ forms the combination of the derivatives of $a_{i k}(t, x)$. Thus we see $S(t) \epsilon L\left(H_{0}^{+}, H\right)$.
The weakly continuously differentiability of the functions $t \rightarrow S(t)$ and $t \rightarrow B(t)$ follows from the forms of the operators $S(t)$ and $B(t)$ and from the properties of the cocfficients $a_{i}(t, x)$ and $a_{i k}(t, x)$.

Hence all hypotheses of Theorem 1 are fulfilled. Moreover, bearing in mind Remark of [6] we see that the solution of problem (1)-(2) has the property:

$$
u(t, \cdot) \epsilon C^{0}\left(\langle 0, T\rangle ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(\langle 0, T\rangle ; L^{2}(\Omega)\right) \cap C^{2}\left(\langle 0, T\rangle ; H_{0}^{-}\right) .
$$

Remark 1. Note, that H_{0}^{-}one can regard as the antiadjoint space of H^{+}(cf. [2], p. 45). In our case when $H^{+}=H_{0}^{1}(\Omega)$, the corresponding antiadjoint space is denoted by $H^{-1}(\Omega)$ (cf. [5]).

Applying Theorem 1 of [6] we have just proved the following
Theorem A. For given initial data $\left\{u_{0}(x), u_{1}(x)\right\} \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ there exists one and only one solution $u(t, x)$ of (1)-(2) such that

$$
u(t, \cdot) \epsilon C_{0}\left(\langle 0, T\rangle ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left(\langle 0, T\rangle ; L^{2}(\Omega)\right) \cap C^{2}\left(\langle 0, T\rangle ; H^{-1}(\Omega)\right) .
$$

Remark 2. Theorem 1 can be applied to more general equation, namely to the following one:

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t^{2}}+\sum_{i=1}^{n} a_{i}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial t}-\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}}+b(t, x) \frac{\partial u}{\partial t}+ \\
+\sum_{i=1}^{n} c_{i}(t, x) \frac{\partial u}{\partial x_{i}}+c(t, x) u=0
\end{gather*}
$$

Putting

$$
\begin{gathered}
S_{1}(t) u=S(t) u+\sum_{i=1}^{n} c_{i}(t, x) \frac{\partial u}{\partial x_{i}}+c(t, x) u, \\
B_{1}(t) u=B(t) u+b(t, x) u,
\end{gathered}
$$

one can oasy check the conditions (1.1)-(1.3) of Theorem 1.

III. A mixed problem with the boundary condition of the transversal type.

In this section we consider again a mixed problem for hyperbolic equations of second order. The domain Ω and the equation are the same as they were in Section II. But we require now S to be sufficiently smooth, more precisely, Ω is an interior domain of the compact surface S of class C^{∞} in R^{n}.

Our problem is to obtain $u(t, x) ; u(t, \cdot) \epsilon H^{1}(\Omega)$ for $t \epsilon\langle 0, T\rangle$, a solution of the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+\sum_{i=1}^{n} a_{i}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial t}-\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}}=0 \tag{i}
\end{equation*}
$$

and for given initial data $\left\{u_{0}(x), u_{1}(x)\right\}$ satisfying

$$
\left\{\begin{array}{l}
u(0, x)=u_{0}(x) \tag{ii}\\
\frac{\partial u}{\partial t}(0, x)=u_{1}(x)
\end{array}\right.
$$

and

$$
\begin{equation*}
\sum_{i, k=1}^{\Gamma} a_{i, k}(t, x) \frac{\partial u}{\partial x_{i}} \eta_{k}=-a(t, x) u, \text { for }(t, x) \in\langle 0, T\rangle \times \mathcal{S}, \tag{iii}
\end{equation*}
$$

where $a(t, x)$ is given real-valued, continuous, non-negative function on $\langle 0, T\rangle \times S$ and $\left\{\eta_{k}\right\}_{1}^{n}$ denotes the normal exterior vector with respect to surface S.

The derivatives in (i) in t are taken in the sense of the norm in $L^{2}(\Omega)$ whereas in x_{1}, \ldots, x_{n} in the distributional one.

In order to prove the existence and the uniqueness of the solution of (i) -(iii) we shall apply Theorem 2 of [6].

To do this we need the following assumptions:
a)

$$
\sum_{i=1}^{n} a_{i}(t, x) \eta_{i}(x)=0 \text { for }(t, x) \epsilon\langle 0, T\rangle \times \mathbb{S}
$$

b)

$$
\sum_{i, k=1}^{n} a_{i k}(0, x) \frac{\partial u_{0}}{\partial x_{i}} \eta_{k}(x)+a(0, x) u_{0}=0 \text { for } x \in S
$$

Set: $H=L^{2}(\Omega), H^{+}=H^{1}(\Omega), H_{t}^{+}=H^{1}(\Omega)$ with the scalar product and the norm defined by formulae:

$$
\begin{gathered}
((u, v))_{t}^{+}=\int_{s} u(x) \overline{v(x)} d x+\int_{S} \sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial u(x)}{\partial x_{i}} \frac{\partial \overline{v(x)}}{\partial x_{k}} d x+ \\
+\int_{\dot{S}} a(t, x) u(x) \overline{v(x)} d \sigma \\
\|u\|_{l}^{+}=\left(((u, u))_{t}^{+}\right)^{1 / 2}
\end{gathered}
$$

Let $A_{0}(t)$ be as it was in Lemma 5° of [6]. And again it is easy to see that the conditions:

$$
\left\{\begin{array}{l}
u \in D\left(\Lambda_{0}(t)\right) \\
\left(\left(\Lambda_{0}(t) u, v\right)\right)=((u, v))_{\imath}^{+}, u \in D\left(\Lambda_{0}(t)\right), v \in H^{1}(\Omega)
\end{array}\right.
$$

imply the following ones:
(iv)

$$
\left\{\begin{array}{l}
{\left[\sum_{i, k=1}^{n} \frac{\partial}{\partial x_{k}}\left(a_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right)\right] \epsilon L^{2}(\Omega)} \\
A_{0}(t) u=u-\sum_{i, k=1}^{n} \frac{\partial}{\partial x_{k}}\left(a_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right)
\end{array}\right.
$$

in the sense of $D^{\prime}(\Omega)$. Let $u, v \in D(\bar{\Omega})$. We have
(v)

$$
\begin{gathered}
\int_{\dot{\Delta}}-\sum_{i, k=1}^{n} \frac{\partial}{\partial x_{k}}\left(a_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right) \bar{v} d x=\int_{D} \sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial u}{\partial x_{i}} \frac{\partial \bar{v}}{\partial x_{k}} d x+ \\
-\int_{S}\left(a_{i k}(t, x) \frac{\partial u}{\partial x_{i}} \eta_{k}\right) \bar{v} d \sigma
\end{gathered}
$$

Thus for every $u, v \in D(\bar{\Omega})$ from the equality $\left(\left(\Lambda_{0}(t) u, v\right)\right)=((u, v))_{t}^{+}$it follows that

$$
\begin{equation*}
\int_{S}\left[a(t, x) u+\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial u}{\partial x_{i}} \eta_{k}\right] \bar{v} d \sigma=0 \tag{vi}
\end{equation*}
$$

Hence, for every $u \in D(\bar{\Omega}) \cap D\left(\Lambda_{0}(t)\right)$ we have
(vii) $\left\{\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial u}{\partial x_{i}} \eta_{k}+a(t, x) u\right\}_{/ \mathbb{S}}=0$ in the sense of $L^{2}(S)$

Putting

$$
\begin{gathered}
S(t) u=-\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{k}}+\sum_{i, k=1}^{n} \frac{\partial}{\partial x_{k}}\left(o_{i k}(t, x) \frac{\partial u}{\partial x_{i}}\right)-u \\
B(t) u=\sum_{i=1}^{n} a_{i}(t, x) \frac{\partial u}{\partial x_{i}}
\end{gathered}
$$

the equation (i) takes the form

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}+\left(\Lambda_{0}(t)+S(t)\right) u+B(t) \frac{d u}{d t}=0 \tag{viii}
\end{equation*}
$$

Now we have to prove the conditions (2.1) - (2.3) of Theorem 2 of [6] are fulfilled.

The conditions (2.1) and (2.2) one verifies similarly as in Section II. Ad (2.3). For any $u \in D(\bar{\Omega})$ we have

$$
\begin{aligned}
& ((B(t) u, u))=\int_{\Omega} \sum_{i=1}^{n} a_{i}(t, x) \frac{\partial u}{\partial x_{i}} \bar{u} d x-\int_{\Omega} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}(t, x) \bar{u}\right) u d x+ \\
& \quad+\int_{S} \sum_{i=1}^{n} a_{i}(t, x)|u|^{2} \eta_{i} d \sigma=-((u, B u))-\int_{\Omega} \sum_{i=1}^{n} \frac{\partial a_{i}(t, x)}{\partial x_{i}}|u|^{2} d x
\end{aligned}
$$

Thus, for any $u \in D(\bar{\Omega})$ the inequality $|\operatorname{Re}((B(t) u, u))| \leqslant c_{1}\|u\|^{2}$ holds. By the density of $D(\bar{\Omega})$ in $H^{1}(\Omega)$ and by the inequality $\|u\| \leqslant\|u\|_{0}^{+}$for $u \in H^{1}(\Omega)$, condition (2.3) is proved.

Theorem 2 assures the existence and the uniqueness of the solution $u(t, x)$ of problem (i) -(iii) such that $\left(u(t), u^{\prime}(t)\right) \in D\left(A_{2}(t)\right)=D\left(\Lambda_{0}(t)\right) \times$ $\times \boldsymbol{H}^{1}(\Omega)$. Moreover, with the aid theorems of regularity we aro able to prove that $u(t)$ (more precisely $u(t, \cdot))$ belongs to $H^{2}(\Omega)$.
Really, let us put
(ix)

$$
\left\{\begin{array}{l}
H_{l}^{2}(\Omega)=\left\{u \epsilon H^{2}(\Omega):\left[\sum_{i, k=1}^{n} a_{i k}(t, x) \frac{\partial u}{\partial x_{i}} \eta_{k}+a(t, x) u\right]_{/ S}=0\right\}, \\
D\left(\tilde{A}_{2}(t)\right)=H_{l}^{2}(\Omega) \times H^{1}(\Omega), \\
\tilde{A}_{2}(t)\binom{u}{v}=\left(\begin{array}{cc}
0 \\
-\Lambda(t)-S(t), & B(t)
\end{array}\right)\binom{u}{v}, \text { for }\binom{u}{v} \in D\left(\tilde{A}_{2}(t)\right) .
\end{array}\right.
$$

The following lemma ([3], p. 345, Lemma 2.3) holds
Lemma. There exists a constant $\lambda_{1}>0$ such that for any $\lambda>\lambda_{1}$ the operator $\left(\lambda-\tilde{A}_{2}(t)\right)$ is a bijective mapping from $H_{l}^{2}(\Omega) \times H^{1}(\Omega)$ onto $H^{1}(\Omega) \times$ $\times L^{2}(\Omega)$ and the following estimate holds

$$
\left\|\left(\lambda-\tilde{d}_{2}(t)\right)^{-1}\right\|_{I^{1}(\Omega) \times L^{2}(\Omega)} \leqslant \frac{1}{\lambda-\lambda_{1}}
$$

It has been proved in Lemma 2 of [6] that there exists a constant λ_{0} such that for any $|\lambda|>\lambda_{0},\left(\lambda-A_{2}(t)\right)$ is a bijective mapping from $D\left(A_{2}(t)\right)$ onto $H^{+} \times H .\left(=H^{1}(\Omega) \times L^{2}(\Omega)\right.$ in the present case). By (ix), $A_{2}(t)$ is an extension of $\tilde{A}_{2}(t)$, whereas by Lemma 2 it follows that $A_{2}(t)$ $=\tilde{A}_{2}(t)$, hence $D\left(A_{2}(t)\right)=H_{t}^{2}(\Omega) \times H^{1}(\Omega)$.

The obtained result permits us to take the equality (iii) in the sense of the norm in $H^{1 / 2}(S)$ (for the spaces $H^{k}(S)$ and the tracetheorems cf. for instance [1] and [5].)

By (6°) of Theorem 2 it follows

$$
u(t, \cdot)_{\epsilon} C^{1}\left(\langle 0, T\rangle ; H^{1}(\Omega)\right) \cap C^{2}\left(\langle 0, T\rangle ; L^{2}(\Omega)\right) .
$$

Furthermore,

$$
\left(u^{\prime}(t), u^{\prime \prime}(t)\right)=A_{2}(t)\left(u(t), u^{\prime}(t)\right) \epsilon C^{0}\left\langle\langle 0, T\rangle ; H_{0}^{+} \times L^{2}(\Omega)\right),
$$

hence, by known estimates (cf. [3], p. 343)

$$
\|\boldsymbol{u}\|_{H^{2}(\Omega)}^{2} \leqslant c_{1}\left(\left\|\sum_{i, j=1}^{n} a_{i j}(t, x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right\|^{2}+\|u\|^{2}+\left\|\sum_{i, j=1} a_{i j}(t, x) \frac{\partial u}{\partial x_{j}} \eta_{i}\right\|_{H^{1 / 2}(S)}^{2}\right) .
$$

we see that $u(t, \cdot) \epsilon C^{0}\left(\langle 0, T\rangle ; H^{2}(\Omega)\right)$.
And, in this way, we have proved the following
Theorem B. Given $\left\{u_{0}(x), u_{1}(x)\right\} \in H^{2}(\Omega) \times H^{1}(\Omega)$, if the conditions a) and b) are satisfied then there exists one and only one solution $u(t, x)$ of the problem (i)-(iii) such that

$$
u(t, \cdot) \epsilon C^{0}\left(\langle 0, T\rangle ; H^{2}(\Omega)\right) \cap C^{1}\left(\langle 0, T\rangle ; H^{1}(\Omega)\right) \cap C^{2}\left(\langle 0, T\rangle ; L^{2}(\Omega)\right) .
$$

REFERENCES

[1] Aubin J.P., Approximation of elliptic boundary-value problems, New York-London Sydney - Toronto 1972.
[2] Березанский Ю. М., Разложение по собственным функциям самосопряженных операторов, Киев 1965.
[3] Ikawa M., A mixed problem for hyperbolic equations of second order with uon--homogeneous Neumann type boundary condition, Osaka J. Math. 6 (1969), 339-374.
[4] Ikawa M., On the mixed problem for hyperbolic equations of second order with Neumann boundary condition, Osaka J. Math. 7 (1970), 203-223.
[5] Lions J. L., Problems aux limites non homogenses et applications, vol. I, Paris 1968.
[6] Swietochowski Z., On Second Order Cauchy's Problem in a Hilbert Space with Applications to the Mixed Problems for Hyperbolic Equations, I, Ann. Univ. M. Curio--Skłodowska, Sect. A, (to appcar).

STRESZCZENIE

W pracy tej podajo się niektóre zastosowania twierdzeń uzyskanych w I do zadań mieszanych dla równań cząstkowych typu hiperbolicznego. Uzyskuje się twierdzenia dotyczące istnienia i jednoznaczności rozwiązania zadań brzegowych typu Dirichleta i typu transwersalnego.

PEЗIOME

В настоящей работе приводятся некоторые применения теорем, полученных в I части к смешанным задачам для гиперболических уравнений с частными производными. Здесь получаются теоремы, касающиеся проблемы существования и единственности решения граничных задач типа Дирихле и трансверсального типа.

