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I. Preliminaries

This section, unfortunately long, is devoted to the preliminary notions,
lemmas and Theorem 1°.

A. If X and Y are Banach spaces then by X*, Y* we denote the
conjugate spaces of X and Y respectively and by L(X, Y) — the space
of all lincar bounded operators from X to Y.

B. L(X, Y)-valued functions. An L(X, Y)-valued function ¢4 (t),
tela, by is called (n times) strongly continuously differentiable on (a, b),
if the function ¢ >A (t)z is (n times) strongly continuously differentiable
in the sense of the norm in Y, for any xeX; it is called (n times) weakly
continuously differentiable on (a, b), if for any r¢X the function t—A (t)x
i8 (n times) continuously differentiable in the weak sense.

C. Green’s operator. Let X be a Banach space and let A4 (t), te<0, T)
be a family of linear operators whose domaines D(A (1)) and ranges R(4 (1))
contain in X, D(A(t)) being dense in X for any te{0, T).

Consider the first order Cauchy’s problem

[d—ﬂ — A@W)a(t), for te(0,T),
(I)
la: (0) = x,,

for given initial data =,.
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An L(X, X)-valued function (¢,s)—-@(t,s) defined on the triangle

0 <s<1t<Tis called the Green operator of the problem (I) if

(II) G(8,8) =1 for any se{0, T);

(IIT) G(t,8)@(s,7r) =G(t,r) for 0 <r <s<t<T;

(IV) an X-valued function (¢, 8)—>G(?, s)x is continuous in the sense of
the norm in X for any 0 <s<t<T and any zeX;

(V) G(t,8)D(A(s)) = D(A(?)) for 0 < s<t<T and, for any $¢<0,T)
and weD(A(s)), the function t—>G (¢, s)z is continuously differen-
tiable in the sense of the norm in X on (s, T) and satisfies the
equation d/dtG(t,s)z = A(t)G(t, s)x.

The following theorem (Kisynski, [2], p. 312), playing an important
role in our treatment, holds:
D. Theorem 1°. Let X be a Banach space equipped with the norm ||-||

and let A(1), te(0,T) be the family of linear operators, D(A(t)) < X,

R(A(t) = X. Suppose that the following conditions are satisfied:

(1°) D(A(t)) is dense in X;

(2°) there exists a family of norms | |, te(0,T), equivalent to the given
norm || ||, such that |||x|, — |z|,| < k|||t —s|, k¥ = const.,, 0 <s, t<T,
reX and,

(3°) there exists a constant A, > 0, such that R(A—eA(t)) = X and |iz—
—eA ()l > (A—A) lall, for & = £1, 4> Ay, T D(A(1));

(4°) there exists a family of linear bounded and invertible operators R(t)
mapping X onto X, such that a function t—R(t) is twice weakly con-
tinuously differentiable on <0, T)> and (R(T))"'D(A(t)) = ¥ = const.
for any te(0,T);

(8°) for any xzeY, the function t»(R(t))“A(t)R(t)m 18 weakly continuously
differentiable on 0,1,

then there exists one and only one Green operator of problem (I) having the

following properties:

(IT)° (¢, 8)—>G(t,s) is an L(X, X)-valued function, strongly continuous on
the quadrat 0 <s, t<T;

(III)° G(s,8) = 1 for se(0,T>,

(IV)® G(t,8)G(8,7) =@Q(t,r) for 0 <r,8,t<T;

(V)° G(t,8)D(A(s)) = D(A(t)) for 0<3, t<T and, for any 8¢{0,T)
and weD(A(8)), the function t—~G (t, 8)x is continuously differentiable
in the sense of the norm in X on (0,T) and satisfies d[dtG(t,s)x

= A(t)G(t, s)x.
If the conditions (1°) —(5°) of Theorem 1° are satisfied for E(t) =1
and, if the space Y is equipped with the norm ||| ||| under which Y be-
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comes a Banach space and [ly[| < k|||y||| for any yeY, then the operator

G(t,s) has the following additio nal properties:

(VI)° an L(Y, Y)-valued function (¢, s)—>G(t,s) is strongly continuous
on the quadrat 0 <s, t < T;

(VII)’an L(Y, X)-valued function (¢, s)>G(t, 8) is strongly continuously
differentiable on the quadrat 0 <&, ¢t < T and satisfies the equa-
tions: d/dtG(t,s) = A(t)G(t,s), d/dsG(t, s) = —G(t,s)A(s), for
0<s, t<T.

E. Hypotheses (x). Let H be a Hilbert space with the scalar product
((,)) and let H* be lincar and dense subset of H. Futhermore, let ((,));
be the scalar product on H* for te{0, T) such that H* with ((,)); con-
stitute a Hilbert space H;” with the topology not weaker than the topology
induced in H" by H.

Assume moreover that forany ze H* and y e H* the function t—>((z, ¥))i
is n times (n > 1) continuously differentiable on <0, T)

F. The following lemmas (cf. [2], pp. 319 —322, also [1], p. 45 and
[5], pp. 9—14) will be necessary in further considerations.

Lemma 1°. The equality ((z,9)) = (Q(t)=z,y)),, =,yeH", te0,T>
defines an L(H,, H; )-valued function, n times weakly continuously diffe-
rentiable on (0, T>. For fived te{0,T) the operator Q(t) is Hermitian
with infQ(t) > 0 in Hj.

Lemma 2°. There exists a constant 0 < a < 1, such that

d .l
a |zl < el < a” il ! o Il | < oVl

|

|

Jor any xeH™ and te{0, T).

Lemma 3°. The equality ((z,y)) = ((Jo(t)2, )", z<H, yeH*, defines
an invertible, Hermitian operator J,(t)eL(H, H}), the image J,(t)(H")
i8 dense in H,. Moreover we have: '

o ()2l = sup{|((z, y))|: yeH ", lyli" <1}, for zeH, te0, T).

Lemma 4°. Setting |lz|; = |Jo(t)zl," for te0,T> and xeH we
define the space H, as the completion of H 1in the norm . We
have:

(4.1) H c H,, the topology of H is not weaker than the topology induced

in H by H;

(4.2) if by J(t) we denote the extension of J,(t) (by continuity), then J(t)
is an isometry which maps H; onto H; and, for any te(0,T) the
equality J(t) = (Q(t))~'J (0) holds;
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(4.3) for any te<0, T the space H, has the structure of Hilbert space under
the scalar product:

((z, 9) = (W), J(O)y)) = Q)T (0)x, J(0)y));

(4.4) there exists a constant 0 < f < 1, such that the estimates

|
I

B Izl < izl < B~ llelly s \ uwn, < Bl

for any xeH; and te{0,T)> hold;
(4.5) the inequality ((«,y))| < || |lz|; holds for xeH", yeH, tel0,T).
Thus the form (z,y)—>((x,y)) has the extension by continuity on the
set (HxH)U(H" xH;)u(H; xH"). We have ((z,y)) = ((x, J()y))/
= ((J @) 'z, y), for veH", yeH;, te(0, T).
Lemma 3°. The conditions

D(A(t) = [weH*: sup{j((x, y): yeH", lyl < 1} < oo}
((Ao t)CL‘, y)) = (((L‘, Y) )t y for x‘-D(Ao(t))y yeH"

define in the space H an invertible, self-adjoint, positive operator A,(t).
We have D(A,(t)) = (Q(t))“D(Ao(O)) and Ag(t) = (Jo(t) " =
= 4,(0)Q (1) for te(0, T>.

Lemma 6°. Denote by A(t) the closure of A,(t) in H;. A(t) is an in-
vertible, self-adjoint, positive operator in H; . D(A(t)) = HY, A(t) = (J (1))~
= A(0)Q(t), for any te(0,T)>.

II. Second order Cauchy’s problem in a Hilbert space

Suppose that the hypotheses (x) of Section I are fulfilled and the

following conditions:

(1.1) t—>8(t) is an L(H,, H)-valued, weakly continuously differentiable
function on <0, 7,

(1.2) t—B(t) is an L(H, H; )-valued, weakly continuously differentiable
function on <0, T),

(1.3) there exists a constant b > 0, such that an inequality Re((B(t)w, a:))
< b|lz||* holds, for any zeH "~ and te0,T)
Consider second order Cauchy’s problem

d2
l ;;f) (A +8(1)a( +B(t)———(—)-_0 tec0, T,

(1.4) |
z(0) = x,, % (0) = z,.
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We shall treat it as first order problem in ¢ in the space H x H;. To
this end we put
D(4,(t) = H* xH,

i A4,() (2, 2,) = (24, —(A(t) +8(1) )xO—B(t)wl) for (wo’ml)‘D(Al(t))’

and we consider the problem

I dX (t)
dat
X(0) = Xy, Xo = (24, )

(1.6) = A,(t)X(t) for te(0,T),

in the space H xH, .

We can state

Theoremn 1. If the hypotheses (x) (n = 1) and (1.1) —(1.3) are satisfied
then there exists one and only one Green operator of problem (1.6) having
the following properties:

(1°) (¢, 8)—>G(t,s) i8 an L(H xH,, H x Hy)-valued, strongly continuous
function on the quadrat 0 <s, t < T,

(2°) G(8,8) =1 for 8¢<0,T);

(3°) G(t,8)G(s,7) =G(t,7) for 0<s8nt<T;

(4°) GQ(t,8)(H" xH) = H" xH, for 0<38, t<T and, (t,38)—>G(t,s) 18 an
L(H; xH, H{ x H)-valued, strongly continuous function on the quadrat
0<s I<T

(5°) (t,8)—>G(t,8) is an L(H; xH, H x Hy)-valued, strongly continuously
differentiable on the quadrat 0 < 8, t < T function, satisfying the equa-
tions

d i
— G, 8) = 4,06, 9), —‘;?G(t,s) — _G(t, 3)A,(3), for 0<s,t<T.

Before we prove Theorem 1, we will state Theorem 2, which is con-
nected with the same problem under some modified assumptions. Namely
NnoOw we assume:

(2.1) t—>8(t) is an L(H;, H)-valued, weakly continuously differentiable
function on <0, T,

(2.2) t->B(t) is an L(H, H)-valued, weakly continuously differentiable
function on <0, T),

(2.3) there exists a constant b, such that the inequality
|IRe((B(t)z, x))| < b|x|* holds for any z<H ™ and te{0, T).
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As before, we consider second order Cauchy’s problem (1.4) and
by setting

D(A42(1) = {(mo, @)t ToeH", ByeH", [(A(t)+8(t) 7o+ B(t)ay|e H,

2.4
o l A,y (t)(wo, 2,) = (‘”1, —(A(t) + S(t))xo —B(t)z,), for (z,, xl)GD(Az(t))y

we obtain the first order problem equivalent to

aX (1)
3 | =~ = 40X, te0, T,
(2.5)
l X(0) = X,,
which is treated in the space H, x H.

Theorem 2. If we assume that the hypotheses (x) (n = 2) and (2.1) —(2.3)
are satisfied, then there exists one and only one Green operator of problem
(2.5) having the properties (2°) —(4°) of Theorem 1 and the following one:
(6°) G(t,s)D(A;(s)) = D(A,(t)) for 0 <s, t<T and, for any zeD(A,(t))
and se{0,T), t—>G(t,s)x is continuously differentiable in the sense of
the norm in H x H function, satisfying d|dtG(t, s)x = A,(1)G(t, s)z.

Theorems 1 and 2 are suggested by professor J. Kisynski operator
formulations which strenghten the theorems of Lions on weak solutions
of some differential equations in a Hilbert space expressing by means
of bilinear forms (cf. [5], pp. 150 —159). The strengthening is that here
we get solutions with strong continuous derivatives (belonging to H, H~
and so on) while Lions has analogous derivatives but in the distributional
sensc. Both cases of equations with constant (independent of t) operators
were given in Lions’ paper [4].

The proofs of Theorems 1 and 2 will be based on the following lemmas.

Lemma 1. A4ssume that hypotheses (*), (1.1) and (1.3), and either (1.2)
or (2.2) are satisfied. Then for. every te(0,T)> and real A, |1| > A, (where

1 g2 1/2
)
2 a

a being a constant as in Lemma 2°, s being a constant not less than the
norm of S(t) in the space L(H,, H)), the operator P(t, 1) = A(t) +8(t)+
+ AB () + A* belongs to the space L(H,, Hy), is invertible and R(P(t, A)) =
H-,

Proof. From Lemmas 4° and 6° of Section I it follows

(P(t, Dz, 2) = ((2, 2) +(SW)z, z) + A(B ()2, 2)) + 12((z, 2)).
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Thus for every 4, |A] > i, we have

Re((P(t, Az, ) > a(l@l ) — s |zl Il + 2] (14] — b) |lz]?
= e(”z”:)z S0 [TIM_(-IJ— bj)m- ll2lly” — (U'“ﬂ = b})‘f’ |u*i|]-
82

> e(llzli")?, for te(0,T), zeH" and e=ag—-———— >0
e(llzlly )5, €< Yy L€ £ a 4|l|(ll|—b)>

Consequently
(7°)

for every rel 4, |A| > 4,, there exists a constant & > 0

such that Re((P(t, )z, z)) = & (lzly)? for every te(0,T)> and aeH".
Fix te(0,T) and A¢R, |A] > 4,. By (7°) and Lemma 4° we have

1P (t, A)zlly llzls = |((P(t, 1), o)) = ex(lelly ),
hence

IP(t, Mxlly = ellzlly for aeH™,

Since P(t, ))eL(H, H; ), thus R(P(t, l)) is closed in H,. It remains to
prove the density of R(P(t, 4)) in the space H,. Suppose that R(P(t, 4))
is not demse in H,, then there exists =z eH,, z, # 0, such that
((P(t, Az, wo))o‘ =0 for every z¢H" and, by Lemma 4° we have
(P (2, M)¥os 3a)) = ((P(2, H)¥o, @o))s = O, Where 0 + y, = J (0)z,e H*, what
is contradiction of (7°). Lemma is proved.

Lemma 2. Assuming that the hypotheses of Theorem 1 are fulfilled
then for every te(0,T) and real 4,

1 82 N
Al > A = —(b+(—+b2) )
2 a

the operators (ﬂ. —A,(t)) and (A —A4,(t)) are invertible and
R(A—A,(t) = HxH™, R(A—A,(t)) = H* xH.
Proof. Consider the equation

(8°) (2 _Al(t)) (Toy 1) = (Yos Y1),

where te(0,T) and A¢R, |A| > A, are fixed, (¥,,%,) i8 a given element
from H xH~, (x,, z,)eD(A,(t)) = H* xH being the unknown. Since
B(t)eL(H, H; ), then by (1.5) the equation (8°) is equivalent to the follow-
ing system

o P(t, )y =y, +B(t)Yo+ Yo
9
ry = Axy—Yo.

9 — Annales t. XXIX, 1975
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Lemma 1 assures the existence and the uniqueness of the solution of (9°).
Thus R(A—A4,(t)) = HxH~ and the operator (A—4,(?) is invertible.
In view of (1.5) and (2.4) we have:

D(A,(t) = {a: weD(A,(1)), A;()weH xH} and A,(t) = A,(1),

and from this it follows that the operator (A—A,(t)) is invertible and
R().—A,(t)) = H*XxH.

Lemma 3. Under the hypotheses of Theorem 2, the operator (2 —A,(1))
is invertible and R(A—A,(t)) = H™ x H, for every te(0,T) and AeR with
Al > 2.

Proof. Fix te(0,T) and Ae¢R, |A| > A,. Since B(t)eL(H,, H), thus
(y,+B(t)Yo+ Ayo)eH and, by Lemma 1, the system (9°) has a unique
solution (z,, z,)e H" xH*. Therefore the condition (1.5) assures that
(¢4, @) is the unique solution of (8°). From (9°) it follows that (A(f)+
+8 (1))@, +B(t) @, = (¥, + AYo— A2xo) e H, hence (z,, x,) e D(A,(t)). This fact
jointly with the inclusion A,(f) = A,(t) complete the proof of the lemma.

Lemma 4. Assume that hypotheses (x), (1.1), (1.3) and either (1.2)
or (2.2) are fulfilled. Then the condition (3°) of Theorem 1° of Section I
is fulfilled for X = Hy xH, I(@o, @)l = ((lzoll{)* + "), A(2) = 4,(2)

1 82 -
and 1, = E(b+(7 +b2) )

Proof. Put ((z, y))t = ((a’oy ?/o)):.‘f'((mu yl)) for z = (2o, x,) and
Y = (Yo, Y1)y T, yeH ' X H and ||, = ((z, x));"*. By (2.4) and by Lemmas 4°
and 6° of Section I, we have ((4,(t)z,)) = (21, )i —((A(t)zo+
+8() o +B(t) @y, 2 ) = (21, Zo))i" — (0, @) — ((S(t)wo 1 B(t)zy, a’l))
Hence Re((Az(t):v, a:)), = —Re((S(t)a:o+B(t):vl, x,)), for every te(0,T)
and & = (2o, ;) e D(4,(1)).
From (1.1) and (1.3) and one of (1.2), (2.2), making use of the inequality

J ! Sty
2ab< pat+ —b% p> 0, a,beR, and putting in it a = |z,[;", b = |,
B

_ 2Va

p =

Ao, We obtain

Re((4: (1), @), < (8llolly” + b leal) [l | < (73_— il + b nmlu) =X
a

= 8 X
< ——=u(ll@elly")* 4+ —lley 12} + b [jy |2
2Va Iz

82
= }-o(”zo"i‘" )2 + (Z— = b) kel = 44 H.’DH? .
alo
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As a consequence of the latter, for every te(0,T), xeD(Az(t)), A> 2,
and ¢ = +1, we get

I Az — eA, ()l = (A — Ao) T +(Ao— A5 (1)) zll}
(10°) = (A— AV [l@llf + (A — eAo () @Ilf + 2 (A— ) (4 ll2lff +
| +eRe(((4,(1), o)) = (A—20)* |l .

From Lemmas 2 and 3 we have
(11°) R(A—A,()) = H" xH, for every 1e(0,T),A> A and ¢ = +1,
and the proof of (3°) of Theorem 1° follows from (10°) and (11°).

Lemma 5. Under the hypotheses (x) the condition (2°) of Theorem 1
is satisfied for X = Hy xH and || [, = || ”11+xu’ where

o @)y = (Il + D 1.

Proof. It follows from Lemma 2° of Section I.

Lemma 6. If the hypotheses of Theorem 1 are satisfied, then t-—>A,(t)
i8 an L(H; xH, H xH; )-valued function, weakly continuously differen-
tiable on <0, T), and the conditions (2°) and 3°) of Theorem 1° are fulfilled
for X = HxH;, A(t) = A,(t) and

Il lle=11l,,, ,-» where |zl = [[(2+1—A4,() x|

1 s? i
— b";- ——':bE .
i =5 (a )

Proof. For every © = (z,, ,)e H" XxH and y = (¥, y,)eH xH "~ from
Lemmas 4° and 6° of Section I it follows

H} <1

(42002, 9)),,,.,,- = (@1, 90) = (A2~ B D)1, 9l
= ((@1, ¥0)) = ((@ (1) 2o, I (0)3,))5 — (S (D) 2y +B()2y, 3,))5 -

Thus, by (1.1) and (1.2) and Lemma 1°, t—>A,(?) is an L(H xH, H;)-
-valued, weakly continuously differentiable on (0, T) function. The
function t—>().o+1 —A4,(t)) is the same. Moreover, by Lemma 2 it follows
that for every te (0, T, the operator (1,+1—A4,(t)) is invertible and maps
Hj xH onto H xH; . Hence t—(A,+1—A,(t))"" is an L(H xH,, Hf xH)-
-valued, weakly continuously differentiable function on (0, T.

To prove (2°), we put

C(t) = (}-o +1 —Al(t))—l'
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We have |z = [|C(t) | for 2¢eH xH;. From the weak

HxH] Hi xH’
dlfferentlablllty of C(t) it follows that there exists a constant k, > 0
e < fe. gl
such that “ f"(t).: e L"""']szr From the equivalence of the

norms || |’HxH__, 8¢(0,T) and from the equality
@

d
T IIC( Ed =2[C(t)| F IC ()l

HY xH

Hd
= 2 ‘ ((EC(t)m, C(t)w))H:xH

+ +
H xH HixH

we have

;?f 1( )xdff:vcff <

k, |||

I{XH‘

Hence there exists a constant k. such that

NC@®)all1 = ICO3le | < BICEO,, lt—sl.

H' xH

From the latter, by Lemma 5 and, by the inequality

0Bl = IC@Iy | S NNCWO,, ., — 10Ol <ul +
10Ol , — 1C@],.
it follows that
HlC(t)wnerH— IIU(S)EIIH:”II <k, I|C(t)$IIH‘+x”lt—8I-

Hence

_ <k -
115 = Wl =] < Bl s,

and the condition (2°) is satisfied.
From the inclusion A4,(t) = A,(t), by Lemma 4 we have

[(A—ed, (1) "4 = [[(A—ed,(t) o < (A—A) 7!l

H+x11 )/ A S Hf xH’

for te¢0,T), A> 4y, ¢ = +1 and 2¢H, xH.
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Thus

| (A—edy(0) " | = |[(A+1—4;(1) " (A—ed, (1))

@ z||
| H = ” IlII"" xH

= [[(2—ed: ()7 (2o +1 — 4, (1) 2|

nt+H

< A=20)7 (o1 =)ol = A= 207 o] s

for te<0,T>, 2> 2y, ¢ = £1, zeH xH,,

what proves the condition (3°).

Proof of Theorem 1. Put X — HxH,, Y = H" xH, || |, =l I,
Gt

A(t) = A,(t), and E(¢) =1, then from Lemma 6 it follows that the
conditions (1°)—(5°) of Theorem 1° of Section I are fulfilled. This proves
the theorem.

Proof of Theorem 2. Set X = H xH, Y = D(A4,(0))xH", A(?)
=As(t), I ll, =11 and

H+xn

(12°)  R(t)(wy, ;) = ((Q(¥) '@y, @), for (m,,x,)eH, xH, {0, T)
one can see that the conditions (1°)—(5°) of Theorem 1° are fulfilled.

Indeed, from Lemmas 4 and 5 it follows that the conditions (2°)
and (3°) of Theorem 1° are fulfilled. Since S(t)eL(H,,H) and B(f)e
elL(H,, H), from (2.4) it follows
D(Aa(t)) = {&: woeH ", (A(t) +S(t))xoeﬂ} XH" = D(Ao(t)) xH*,  for
every te{0, T).
By Lemma 3° R(J,(t)) is a densc subspace of H; and, by Lemma 5°
(46(2) " = Jy(t), s0 D(A(t)) is dense in Hy. Thus D(A4,(t)) is dense in
H;} x H for te(0,T), what proves the condition (1°) of Theorem 1°.
By (12°) and Lemma 5° and Lemma 1° the operators R(t), te(0, T)
are invertible and map H, x H onto itself, t>R(t) is an L(H, xH, Hy X
x H)-valued, twice weakly continuously differentiable function on <0, T),
satisfying

(R(2)) 'D(A,(t) = Q(t) D (Ay(t)) x H" = D(4,(0)) x H", for every te(0, T).

Hence (4°) is satisfied.
Finally, from (12°) and Lemma 5° we obtain

(R(T))* A () R(t)z = (R(1) 7' A (1)((Q (1)) @0, 21)
= (R(t) (&1, —(Ao(t) +8(1)(Q (1)) " 2o —B(t)2y)
= (Q(t) w1, —4,(0) X, — 8 (1) (Q (1)~ @0 — B(t) 1),
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for every P

T = (T4, @)€Y = D(A,(0)) xH* and te(0, T).
Taking account (2.1), (2.2) and Lemma 1° we see that the condition (5°)
of Theorem 1° is fulfilled. This completes the proof.

Remark. The existence and the uniqueness of the Green operator
G(t, s) of problem (1.6) assures the existence and the uniqueness of the
solution X (t) of the following problem:

dX(t)
dt

X(0) = X,, XgeH* xH.

The solution of this problem takes a form: X(t) =G(t,0)X,. By (5°
da (1
of Theorem 1, we have X({) = (.r({}, __I{!_} «C'((0,T); H xHy), thus
ot
z(t)eC' (€0, Ty>; HY)nC*({0,T>; Hy) and, by (4°) of Theorem 1,
z(t)eC’ (€0, T); H).
Consequently xz(t)eC°(<0, T>; Hi)nC' (<0, T>; HYNnC?(<0,T>; H).

= A,() X (2), te(0,T),
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STRESZCZENIE

Opierajac si¢ na wynikach [2], w pracy tej dowodzi si¢ dwéch twier-
dzen dotyczacych problemu istnienia i jednoznaczno$ci rozwigzania pew-
ncgo zadania Cauchy’ego drugiego rzedu w przestrzeni Hilberta.

PE3IOME

[Moawaysach, peayabraTamu [2] B paGoTe qoKka3LIBAIOTCA JBe TEOPeMbl
Kacalomeca TIpoGaeMbl CYIIeCTBOBAHMA W eJHHCTBEHHOCTH pellleHlA
HeKxoropoit 3anauu Houu BTOporo nopsaaka B rub0epTOBOM [IPOCTPALICTRE.



