ANNALES
 UNIVEIRSITATIS MARIAECURIE-SKEODOWSKA

 LUBLIN-POLONIAVOL. XXIX, 15
SECTIO A
1975

Instytut Matematyki, Uniwersytet Maril Curie-Sklodowskiej, Lublin

ZBIGNIEWSWIETOCHOWSKI

On Second Order Cauchy's Problem in a Hilbert Space with Applications to the Mixed Problems for Hyperbolic Equations, I

O zadaniu Cauchy'ego drugiego rzędu w przestrzeni Hilberta z zastosowaniem do zadań mieszanych dla równań hiperbolicznych, I

О задаче Коши второго порядка в гильбертовом пространстве с приложеннием к смешанным задачам для уравнений гиперболического типа, I

I. Preliminaries

This section, unfortunately long, is devoted to the preliminary notions, lemmas and Theorem 1°.
A. If X and Y are Banach spaces then by X^{*}, Y^{*} we denote the conjugate spaces of X and Y respectively and by $L(X, Y)$ - the space of all lincar bounded operators from X to Y.
B. $L(X, Y)$-valued functions. An $L(X, Y)$-valued function $t \rightarrow A(t)$, $t_{\epsilon}\langle a, b\rangle$ is called (n times) strongly continuously differentiable on $\langle a, b\rangle$, if the function $t \rightarrow A(t) x$ is (n times) strongly continuously differentiable in the sense of the norm in Y, for any $x \epsilon X$; it is called (n times) weakly continuously differentiable on $\langle a, b\rangle$, if for any $x \in X$ the function $t \rightarrow A(t) x$ is (n times) continuously differentiable in the weak sense.
C. Green's operator. Let X be a Banach space and let $A(t), t \in\langle 0, T\rangle$ be a family of linear operators whose domaines $D(A(t))$ and ranges $R(A(t))$ contain in $X, D(A(t))$ being dense in X for any $t \in\langle 0, T\rangle$.

Consider the first order Cauchy's problem

$$
\left\{\begin{array}{l}
\frac{d x(t)}{d t}=A(t) x(t), \quad \text { for } t \in\langle 0, T\rangle \tag{I}\\
x(0)=x_{0}
\end{array}\right.
$$

for given initial data x_{0}.

An $L(X, X)$-valued function $(t, s) \rightarrow Q(t, s)$ defined on the triangle $0 \leqslant s \leqslant t \leqslant T$ is called the Green operator of the problem (I) if
(II) $G(s, s)=1$ for any $s \epsilon\langle 0, T\rangle$;
(III) $G(t, s) G(s, r)=G(t, r)$ for $0 \leqslant r \leqslant s \leqslant t \leqslant T$;
(IV) an X-valued function $(t, s) \rightarrow G(t, s) x$ is continuous in the sense of the norm in X for any $0 \leqslant s \leqslant t \leqslant T$ and any $x \in X$;
(V) $\quad G(t, s) D(A(s)) \subset D(A(t))$ for $0 \leqslant s \leqslant t \leqslant T$ and, for any $s \in\langle 0, T\rangle$ and $x \in D(A(s))$, the function $t \rightarrow G(t, s) x$ is continuously differentiable in the sense of the norm in X on $\langle s, T\rangle$ and satisfies the equation $d / d t G(t, s) x=A(t) G(t, s) x$.
The following theorem (Kisyński, [2], p. 312), playing an important role in our treatment, holds:
D. Theorem 1°. Let X be a Banach space equipped with the norm $\|\cdot\|$ and let $A(t), t \in\langle 0, T\rangle$ be the family of linear operators, $D(A(t)) \subset X$, $K(A(t)) \subset X$. Suppose that the following conditions are satisfied:
($\left.1^{\circ}\right) D(A(t))$ is dense in X;
$\left(2^{\circ}\right)$ there exists a family of norms $\left\|\|_{\ell}, t \in\langle 0, T\rangle\right.$, equivalent to the given norm $\left\|\|\right.$, such that $\left.\left|\|x\|_{t}-\|x\|_{g}\right| \leqslant k\right\| x \|_{t}|t-s|, k=$ const., $0 \leqslant s, t \leqslant T$, $x \in X$ and,
$\left(3^{\circ}\right)$ there exists a constant $\lambda_{0} \geqslant 0$, such that $R(\lambda-\varepsilon A(t))=X$ and $\| \lambda x-$ $-\varepsilon A(t) x\left\|_{t} \geqslant\left(\lambda-\lambda_{0}\right)\right\| x \|_{\ell}$ for $\varepsilon= \pm 1, \lambda>\lambda_{0}, x \in D(A(t)) ;$
$\left(4^{\circ}\right)$ there exists a family of linear bounded and invertible operators $R(t)$ mapping X onto X, such that a function $t \rightarrow R(t)$ is twice weakly continuously differentiable on $\langle 0, T\rangle$ and $(R(T))^{-1} D(A(t))=Y=$ const. for any $t \in\langle 0, T\rangle$;
$\left(5^{0}\right)$ for any $x \in Y$, the function $t \rightarrow(R(t))^{-1} A(t) R(t) x$ is weakly continuously differentiable on $\langle 0, T\rangle$,
then there exists one and only one Green operator of problem (I) having the following properties:
$(\mathrm{II})^{\circ}(t, s) \rightarrow G(t, s)$ is an $L(X, X)$-valued function, strongly continuous on the quadrat $0 \leqslant s, t \leqslant T$;
$(\mathrm{III})^{\circ} G(s, s)=1$ for $s \in\langle 0, T\rangle$,
$(\mathrm{IV})^{\circ} G(t, s) G(s, r)=G(t, r)$ for $0 \leqslant r, s, t \leqslant T$;
$(\mathrm{V})^{\circ} \quad G(t, s) D(A(s))=D(A(t))$ for $0 \leqslant s, t \leqslant T$ and, for any $s \in\langle 0, T\rangle$ and $x \in D(A(s))$, the function $t \rightarrow G(t, s) x$ is continuously differentiable in the sense of the norm in X on $\langle 0, T\rangle$ and satisfies $d / d t G(t, s) x$ $=A(t) G(t, s) x$.
If the conditions $\left(1^{\circ}\right)-\left(5^{\circ}\right)$ of Theorem 1° are satisfied for $R(t) \equiv 1$ and, if the space Y is equipped with the norm $\|\|\|$ under which Y be-
comes a Banach space and $\|y\| \leqslant k\|y\|$ for any $y \in Y$, then the operator $G(t, s)$ has the following additio nal properties:
(VI) ${ }^{\circ}$ an $L(Y, Y)$-valued function $(t, s) \rightarrow G(t, s)$ is strongly continuous on the quadrat $0 \leqslant 8, t \leqslant T$;
(VII) ${ }^{\circ}$ an $L(Y, X)$-valued function $(t, s) \rightarrow G(t, s)$ is strongly continuously differentiable on the quadrat $0 \leqslant s, t \leqslant T$ and satisfies the equations: $d / d t G(t, s)=A(t) G(t, s), d / d s G(t, s)=-G(t, s) A(s)$, for $0 \leqslant s, t \leqslant T$.
E. Hypotheses (*). Let H be a Hilbert space with the scalar product $(()$,$) and let H^{+}$be linear and dense subset of H. Futhermore, let $((,))_{t}^{+}$ be the scalar product on H^{+}for $t \epsilon\langle 0, T\rangle$ such that H^{+}with $\left((,)_{t}^{+}\right.$constitute a Hilbert space H_{l}^{+}with the topology not weaker than the topology induced in H^{+}by H.

Assume moreover that for any $x \in H^{+}$and $y \in H^{+}$the function $t \rightarrow((x, y))_{t}^{+}$ is n times ($n \geqslant 1$) continuously differentiable on $\langle 0, T\rangle$
F. The following lommas (cf. [2], pp. 319-322, also [1], p. 45 and [5], pp. 9-14) will be necessary in further considerations.

Lemma $1^{0^{\circ}}$. The equality $((x, y))_{t}^{+}=((Q(t) x, y))_{0}^{+}, x, y \in H^{+}, t \in\langle 0, T\rangle$ defines an $L\left(\boldsymbol{H}_{0}^{+}, \boldsymbol{H}_{0}^{+}\right)$-valued function, n times weakly continuously differentiable on $\langle\mathbf{0}, \boldsymbol{T}\rangle$. For fixed $t_{\epsilon}\langle 0, T\rangle$ the operator $Q(t)$ is Hermitian with $\inf Q(t)>0$ in H_{0}^{+}.

Lemma 2°. There exists a constant $0<\alpha \leqslant 1$, such that

$$
a^{1 / 2}\|x\|_{0}^{+} \leqslant\|x\|_{t}^{+} \leqslant a^{-1 / 2}\|x\|_{0}^{+}, \quad\left|\frac{d}{d t}\|x\|_{t}^{+}\right| \leqslant \alpha^{-1 / 2}\|x\|_{t}^{+},
$$

for any $x \in H^{+}$and $t \in\langle\mathbf{0}, \boldsymbol{T}\rangle$.
Lemma 3°. The equality $((x, y))=\left(\left(J_{0}(t) x, y\right)\right)_{t}^{+}, x \in H, y \in H^{+}$, defines an invertible, Hermitian operator $J_{0}(t) \epsilon L\left(H, H_{t}^{+}\right)$, the image $J_{0}(t)\left(H^{+}\right)$ is dense in H_{b}^{+}. Moreover we have:

$$
\left\|J_{0}(t) x\right\|_{t}^{+}=\sup \left\{|((x, y))|: y \in H^{+},\|y\|_{t}^{+} \leqslant 1\right\}, \text { for } x \in H, t \in\langle 0, T\rangle
$$

Lemma 4°. Setting $\|x\|_{t}^{-}=\left\|J_{0}(t) x\right\|_{t}^{+}$for $t \epsilon\langle 0, T\rangle$ and $x \in H$ we define the space H_{l}^{-}as the completion of H in the norm $\left\|\|_{t}^{-}\right.$. We have:
(4.1) $H \subset H_{\iota}^{-}$, the topology of H is not weaker than the topology induced in H by H_{ℓ}^{-};
(4.2) if by $J(t)$ we denote the extension of $J_{0}(t)$ (by continuity), then $J(t)$ is an isometry which maps H_{t}^{-}onto H_{t}^{+}and, for any $t \in\langle 0, T\rangle$ the equality $J(t)=(Q(t)\rangle^{-1} J(0)$ holds;
(4.3) for any $t \in\langle\mathbf{0}, T\rangle$ the space H_{\imath}^{-}has the structure of Hilbert space under the scalar product:

$$
((x, y))_{t}^{-}=((J(t) x, J(t) y))_{t}^{+}=\left(\left(Q(t)^{-1} J(0) x, J(0) y\right)\right)_{0}^{+} ;
$$

(4.4) there exists a constant $0<\beta \leqslant 1$, such that the estimates

$$
\beta^{1 / 2}\|x\|_{0}^{-} \leqslant\|x\|_{t}^{-} \leqslant \beta^{-1 / 2}\|x\|_{0}^{-},\left|\frac{d}{d t}\|x\|_{t}^{-}\right| \leqslant \beta^{-1 / 2}\|x\|_{t}^{-},
$$

for any $x \in H_{0}^{-}$and $t \in\langle\mathbf{0}, T\rangle$ hold;
(4.5) the inequality $\mid((x, y)) \leqslant\|x\|_{t}^{+}\|x\|_{t}^{-}$holds for $x \epsilon H^{+}, y \in H$, $t \in\langle 0, T\rangle$. Thus the form $(x, y) \rightarrow((x, y))$ has the extension by continuity on the set $(\boldsymbol{H} \times H) \cup\left(\boldsymbol{H}^{+} \times H_{l}^{-}\right) \cup\left(H_{l}^{-} \times \boldsymbol{H}^{+}\right)$. We have $((x, y))=((x, J(t) y))_{t}^{+}$ $=\left(\left(J(t)^{-1} x, y\right)\right)_{t}^{-}$, for $x \in H^{+}, y \in H_{\ell}^{-}, t \epsilon\langle 0, T\rangle$.
Lemma $\mathbf{5}^{\circ}$. The conditions

$$
\left\{\begin{array}{l}
D\left(\Lambda_{0}(t)=\left\{x \in H^{+}: \sup \left\{|((x, y))|: y \in H^{+},\|y\| \leqslant 1\right\}<\infty\right\}\right. \\
\left(\left(\Lambda_{0}(t) x, y\right)\right)=((x, y))_{t}^{+}, \text {for } x \in D\left(\Lambda_{0}(t)\right), y \in H^{+}
\end{array}\right.
$$

define in the space H an invertible, self-adjoint, positive operator $\Lambda_{0}(t)$. We have $D\left(\Lambda_{0}(t)\right)=(Q(t))^{-1} D\left(\Lambda_{0}(0)\right)$ and $\Lambda_{0}(t)=\left(J_{0}(t)\right)^{-1}=$ $=\Lambda_{0}(0) Q(t)$ for $t \in\langle 0, T\rangle$.

Lemma 6°. Denote by $\Lambda(t)$ the closure of $\Lambda_{0}(t)$ in $H_{\ell}^{-} . \Lambda(t)$ is an invertible, self-adjoint, positive operator in $H_{l}^{-} . D(\Lambda(t))=H^{+}, \Lambda(t)=(J(t))^{-1}$ $=\Lambda(0) Q(t)$, for any $t \epsilon\langle\mathbf{0}, T\rangle$.

II. Second order Cauchy's problem in a Hilbert space

Suppose that the hypotheses (*) of Section I are fulfilled and the following conditions:
(1.1) $t \rightarrow S(t)$ is an $L\left(H_{0}^{+}, H\right)$-valued, weakly continuously differentiable function on $\langle 0, T\rangle$,
(1.2) $t \rightarrow B(t)$ is an $L\left(H, H_{0}^{-}\right)$-valued, weakly continuously difforentiable function on $\langle 0, T\rangle$,
(1.3) there exists a constant $b \geqslant 0$, such that an inequality $\operatorname{Re}((B(t) x, x))$ $\leqslant b\|x\|^{2}$ holds, for any $x \in H^{+}$and $t \in\langle 0, T\rangle$
Consider second order Cauchy's problem

$$
\left\{\begin{array}{l}
\frac{d^{2} x(t)}{d t^{2}}+(\Lambda(t)+\mathcal{S}(t)) x(t)+B(t) \frac{d x(t)}{d t}=0, t \in\langle 0, T\rangle \tag{1.4}\\
x(0)=x_{0}, \frac{d x}{d t}(0)=x_{1}
\end{array}\right.
$$

We shall treat it as first order problem in t in the space $H \times H_{0}^{-}$. To this end we put

$$
\left\{\begin{array}{l}
D\left(A_{1}(t)\right)=H^{+} \times H, \tag{1.5}\\
A_{1}(t)\left(x_{0}, x_{1}\right)=\left(x_{1},-(\Lambda(t)+S(t)) x_{0}-B(t) x_{1}\right), \text { for }\left(x_{0}, x_{1}\right) \in D\left(A_{1}(t)\right),
\end{array}\right.
$$

and we consider the problem

$$
\left\{\begin{array}{l}
\frac{d X(t)}{d t}=A_{1}(t) X(t) \quad \text { for } t \in\langle 0, T\rangle \tag{1.6}\\
X(0)=X_{0}, X_{0}=\left(x_{0}, x_{1}\right)
\end{array}\right.
$$

in the space $H \times H_{0}^{-}$.
We can state
Theorem 1. If the hypotheses ($*$) $(n \geqslant 1)$ and (1.1)-(1.3) are satisfied then there exists one and only one Green operator of problem (1.6) having the following properties:
$\left(1^{\circ}\right)(t, s) \rightarrow G(t, s)$ is an $L\left(H \times H_{0}^{-}, H \times H_{0}^{-}\right)$-valued, strongly continuous function on the quadrat $0 \leqslant s, t \leqslant T$;
(2°) $G(s, s)=1$ for $s \in\langle 0, T\rangle$;
($\left.3^{\circ}\right) ~ G(t, s) G(s, r)=G(t, r)$ for $0 \leqslant s, r, t \leqslant T$;
(4 $\left.{ }^{\circ}\right) ~ G(t, s)\left(\boldsymbol{H}^{+} \times \boldsymbol{H}\right)=\boldsymbol{H}^{+} \times \boldsymbol{H}$, for $0 \leqslant s, t \leqslant T$ and, $(t, s) \rightarrow G(t, s)$ is an
$L\left(H_{0}^{+} \times H, H_{0}^{+} \times H\right)$-valued, strongly continuous function on the quadrat $0 \leqslant s, t \leqslant T$;
$\left(5^{\circ}\right)(t, s) \rightarrow G(t, s)$ is an $L\left(H_{0}^{+} \times H, H \times H_{0}^{-}\right)$-valued, strongly continuously differentiable on the quadrat $0 \leqslant s, t \leqslant T$ function, satisfying the equations

$$
\frac{d}{d t} G(t, s)=A_{1}(t) G(t, s), \frac{d}{d s} G(t, s)=-G(t, s) A_{1}(s), \text { for } 0 \leqslant s, t \leqslant T
$$

Before we prove Theorem 1, we will state Theorem 2, which is connected with the same problem under some modified assumptions. Namely now we assume:
(2.1) $t \rightarrow S(t)$ is an $L\left(H_{0}^{+}, H\right)$-valued, weakly continuously differentiable function on $\langle 0, T\rangle$,
(2.2) $t \rightarrow B(t)$ is an $L\left(H_{0}^{+}, H\right)$-valued, weakly continuously differentiable function on $\langle 0, T\rangle$,
(2.3) there exists a constant b, such that the inequality $|\operatorname{Re}((B(t) x, x))| \leqslant b\|x\|^{2}$ holds for any $x \epsilon H^{+}$and $t \epsilon\langle 0, T\rangle$.

As before, we consider second order Cauchy's problem (1.4) and by setting

$$
\left\{\begin{array}{l}
D\left(A_{2}(t)\right)=\left\{\left(x_{0}, x_{1}\right): x_{0} \epsilon H^{+}, x_{1} \in H^{+},\left[(\Lambda(t)+S(t)) x_{0}+B(t) x_{1} \mid \epsilon H\right.\right. \tag{2.4}\\
A_{2}(t)\left(x_{0}, x_{1}\right)=\left(x_{1},-(\Lambda(t)+S(t)) x_{0}-B(t) x_{1}\right), \text { for }\left(x_{0}, x_{1}\right) \in D\left(A_{2}(t)\right)
\end{array}\right.
$$

we obtain the first order problem equivalent to

$$
\left\{\begin{array}{l}
\frac{d X(t)}{d t}=A_{2}(t) X(t), t_{\epsilon}\langle 0, T\rangle \tag{2.5}\\
X(0)=X_{0}
\end{array}\right.
$$

which is treated in the space $H_{0}^{+} \times H$.
Theorem 2. If we assume that the hypotheses $(*)(n \geqslant 2)$ and (2.1) -(2.3) are satisfied, then there exists one and only one Green operator of problem (2.5) having the properties $\left(2^{\circ}\right)-\left(4^{\circ}\right)$ of Theorem 1 and the following one: $\left(6^{\circ}\right) G(t, s) D\left(A_{2}(s)\right)=D\left(A_{2}(t)\right)$ for $0 \leqslant s, t \leqslant T$ and, for any $x \in D\left(A_{2}(t)\right)$ and $s \epsilon\langle 0, T\rangle, t \rightarrow G(t, s) x$ is continuously differentiable in the sense of the norm in $H_{0}^{+} \times H$ function, satisfying $d / d t G(t, s) x=A_{2}(t) G(t, s) x$.

Theorems 1 and 2 are suggested by professor J. Kisyński operator formulations which strenghten the theorems of Lions on weak solutions of some differential equations in a Hilbert space expressing by means of bilinear forms (cf. [5], pp. $150-159$). The strengthening is that here we get solutions with strong continuous derivatives (belonging to H, H^{-} and so on) while Lions has analogous derivatives but in the distributional sense. Both cases of equations with constant (independent of t) operators were given in Lions' paper [4].

The proofs of Theorems 1 and 2 will be based on the following lemmas.
Lemma 1. Assume that hypotheses (*), (1.1) and (1.3), and either (1.2) or (2.2) are satisfied. Then for every $t_{\epsilon}\langle 0, T\rangle$ and real $\lambda,|\lambda|>\lambda_{0}$ (where

$$
\lambda_{0}=\frac{1}{2}\left(b+\left(\frac{s^{2}}{a}+b^{2}\right)^{1 / 2}\right)
$$

a being a constant as in Lemma $\mathbf{2}^{\circ}$, s being a constant not less than the norm of $S(t)$ in the space $L\left(H_{0}^{+}, H\right)$), the operator $P(t, \lambda)=\Lambda(t)+S(t)+$ $+\lambda \mathrm{B}(t)+\lambda^{2}$ belongs to the space $L\left(H_{0}^{+}, H_{0}^{-}\right)$, is invertible and $R(P(t, \lambda))=$ H^{-}.

Proof. From Lemmas 4° and 6° of Section I it follows

$$
\left.((P(t, \lambda) x, x))=((x, x))_{t}^{+}+(S(t) x, x)\right)+\lambda((\mathrm{B}(t) x, x))+\lambda^{2}((x, x)) .
$$

Thus for every $\lambda,|\lambda|>\lambda_{0}$ we have

$$
\begin{aligned}
& \operatorname{Re}((P(t, \lambda) x, x)) \geqslant a\left(\|x\|_{0}^{+}\right)^{2}-s\|x\|_{0}^{+}\|x\|+|\lambda|(|\lambda|-b)\|x\|^{2} \\
& \quad=\epsilon\left(\|x\|_{0}^{+}\right)^{2}+\left[\frac{s}{2(|\lambda|(|\lambda|-b))^{1 / 2}}\|x\|_{0}^{+}-(|\lambda|(|\lambda|-b))^{1 / 2}\|x\|\right]^{2} \\
& \geqslant \varepsilon\left(\|x\|_{0}^{+}\right)^{2}, \quad \text { for } t \epsilon\langle 0, T\rangle, x \epsilon H^{+} \quad \text { and } \varepsilon=a-\frac{s^{2}}{4|\lambda|(|\lambda|-b)}>0
\end{aligned}
$$

Consequently

$\left(7^{\circ}\right)$
for every rel $\lambda,|\lambda|>\lambda_{0}$, there exists a constant $\varepsilon_{\lambda}>0$
such that $\operatorname{Re}((P(t) x, x),) \geqslant \varepsilon_{\lambda}\left(\|x\|_{0}^{+}\right)^{2}$, for every $t \in\langle 0, T\rangle$ and $x \in H^{+}$.
Fix $t_{\epsilon}\langle 0, T\rangle$ and $\lambda_{\epsilon} R,|\lambda|>\lambda_{0}$. By $\left(7^{\circ}\right)$ and Lemma 4° we have

$$
\|P(t, \lambda) x\|_{0}^{-}\|x\|_{0}^{+} \geqslant|((P(t, \lambda) x, x))| \geqslant \varepsilon_{\lambda}\left(\|x\|_{0}^{+}\right)^{2}
$$

hence

$$
\|\boldsymbol{P}(t, \lambda) x\|_{0}^{-} \geqslant \varepsilon_{\lambda}\|x\|_{0}^{+} \quad \text { for } x \in \boldsymbol{B}^{+} .
$$

Since $P(t, \lambda) \in L\left(H_{0}^{+}, H_{0}^{-}\right)$, thus $R(P(t, \lambda))$ is closed in H_{0}^{-}. It remains to prove the density of $R(P(t, \lambda))$ in the space H_{0}^{-}. Suppose that $R(P(t, \lambda))$ is not dense in H_{0}^{-}, then there exists $x_{0} \in H_{0}^{-}, x_{0} \neq 0$, such that $\left(\left(P(t, \lambda) x, x_{0}\right)\right)_{0}^{-}=0$ for every $x \in H^{+}$and, by Lemma 4° we have $\left(\left(P(t, \lambda) y_{0}, y_{0}\right)\right)=\left(\left(P(t, \lambda) y_{0}, x_{0}\right)\right)_{0}^{-}=0$, where $0 \neq y_{0}=J(0) x_{0} \epsilon H^{+}$, what is contradiction of $\left(7^{\circ}\right)$. Lemma is proved.

Lemma 2. Assuming that the hypotheses of Theorem 1 are fulfilled then for every $t \in\langle 0, T\rangle$ and real λ,

$$
|\lambda|>\lambda_{0}=\frac{1}{2}\left(b+\left(\frac{s^{2}}{a}+b^{2}\right)^{1 / 2}\right)
$$

the operators $\left(\lambda-A_{1}(t)\right)$ and $\left(\lambda-A_{2}(t)\right)$ are invertible and

$$
R\left(\lambda-A_{1}(t)\right)=H \times H^{-}, R\left(\lambda-A_{2}(t)\right)=\boldsymbol{H}^{+} \times H
$$

Proof. Consider the equation

$$
\left(\lambda-A_{1}(t)\right)\left(x_{0}, x_{1}\right)=\left(y_{0}, y_{1}\right),
$$

where $t \in\langle 0, T\rangle$ and $\lambda \in R,|\lambda|>\lambda_{0}$ are fixed, $\left(y_{0}, y_{1}\right)$ is a given element from $H \times H^{-},\left(x_{0}, x_{1}\right) \in D\left(A_{1}(t)\right)=H^{+} \times H$ being the unknown. Since $B(t) \epsilon L\left(H, H_{0}^{-}\right)$, then by (1.5) the equation (8°) is equivalent to the following system

$$
\left\{\begin{array}{l}
P(t, \lambda) x_{0}=y_{1}+B(t) y_{0}+\lambda y_{0} \tag{}\\
x_{1}=\lambda x_{0}-y_{0} .
\end{array}\right.
$$

Lemma 1 assures the existence and the uniqueness of the solution of $\left(9^{\circ}\right)$. Thus $R\left(\lambda-A_{1}(t)\right)=H \times H^{-}$and the operator $\left(\lambda-A_{1}(t)\right)$ is invertible. In view of (1.5) and (2.4) we have:

$$
D\left(A_{2}(t)\right)=\left\{x: x \in D\left(A_{1}(t)\right), A_{1}(t) x \in H^{+} \times H\right\} \quad \text { and } A_{2}(t) \subset A_{1}(t)
$$

and from this it follows that the operator $\left(\lambda-A_{2}(t)\right)$ is invertible and $R\left(\lambda-A_{2}(t)\right)=H^{+} \times H$.

Lemma 3. Under the hypotheses of Theorem 2, the operator $\left(\lambda-A_{2}(t)\right)$ is invertible and $R\left(\lambda-A_{2}(t)\right)=H^{+} \times H$, for every $t \in\langle 0, T\rangle$ and $\lambda \in R$ with $|\lambda|>\lambda_{0}$.

Proof. Fix $t \in\langle 0, T\rangle$ and $\lambda \in R,|\lambda|>\lambda_{0}$. Since $B(t) \in L\left(H_{0}^{+}, H\right)$, thus $\left(y_{1}+B(t) y_{0}+\lambda y_{0}\right) \in H$ and, by Lemma 1 , the system $\left(9^{\circ}\right)$ has a unique solution $\left(x_{0}, x_{1}\right) \in H^{+} \times H^{+}$. Therefore the condition (1.5) assures that $\left(x_{0}, x_{1}\right)$ is the unique solution of $\left(8^{\circ}\right)$. From $\left(9^{\circ}\right)$ it follows that $(\Lambda(t)+$ $+\boldsymbol{S}(t)) x_{0}+\boldsymbol{B}(t) x_{1}=\left(y_{1}+\lambda y_{0}-\lambda^{2} x_{0}\right) \in \boldsymbol{H}$, hence $\left(x_{0}, x_{1}\right) \in D\left(A_{2}(t)\right)$. This fact jointly with the inclusion $A_{2}(t) \subset A_{1}(t)$ complete the proof of the lemma.

Lemma 4. Assume that hypotheses (*), (1.1), (1.3) and either (1.2) or (2.2) are fulfilled. Then the condition $\left(3^{\circ}\right)$ of Theorem 1° of Section I is fulfilled for $X=H_{0}^{+} \times H,\left\|\left(x_{0}, x_{1}\right)\right\|_{t}=\left(\left(\left\|x_{0}\right\|_{t}^{+}\right)^{2}+\left\|x_{1}\right\|^{2}\right)^{1) 2}, A(t)=\boldsymbol{A}_{2}(t)$ and $\lambda_{0}=\frac{1}{2}\left(b+\left(\frac{s^{2}}{\alpha}+b^{2}\right)^{1 / 2}\right)$.

Proof. Put $((x, y))_{t}=\left(\left(x_{0}, y_{0}\right)\right)_{t}^{+}+\left(\left(x_{1}, y_{1}\right)\right)$ for $x=\left(x_{0}, x_{1}\right)$ and $y=\left(y_{0}, y_{1}\right), x, y \in H^{+} \times H$ and $\|x\|_{l}=((x, x))_{t}^{1 / 2}$. By (2.4) and by Lemmas 4^{0} and 6° of Section I , we have $\left(\left(A_{2}(t) x, x\right)\right)_{t}=\left(\left(x_{1}, x_{0}\right)\right)_{t}^{+}-\left(\left(\Lambda(t) x_{0}+\right.\right.$ $\left.\left.+S(t) x_{0}+B(t) x_{1}, x_{1}\right)\right)=\left(\left(x_{1}, x_{0}\right)\right)_{t}^{+}-\left(\left(x_{0}, x_{1}\right)\right)_{t}^{+}-\left(\left(S(t) x_{0}+B(t) x_{1}, x_{1}\right)\right)$.
Hence $\operatorname{Re}\left(\left(A_{2}(t) x, x\right)\right)_{t}=-\operatorname{Re}\left(\left(S(t) x_{0}+B(t) x_{1}, x_{1}\right)\right)$, for every $t \in\langle 0, T\rangle$ and $x=\left(x_{0}, x_{1}\right) \in D\left(A_{2}(t)\right)$.
From (1.1) and (1.3) and one of (1.2), (2.2), making use of the inequality $2 a b \leqslant \mu a^{2}+\frac{1}{\mu} b^{2}, \mu>0, a, b \in R$, and putting in it $a=\left\|x_{0}\right\|_{t}^{+}, b=\left\|x_{1}\right\|_{,}$, $\mu=\frac{2 \sqrt{\alpha}}{s} \lambda_{0}$, we obtain

$$
\begin{aligned}
\left\langle\operatorname{Re}\left(\left(A_{2}(t) x, x\right)\right)_{t}\right. & \leqslant\left(s\left\|x_{0}\right\|_{0}^{+}+b\left\|x_{1}\right\|\right)\left\|x_{1}\right\| \leqslant\left(\frac{s}{\sqrt{\alpha}}\|x\|_{t}^{+}+b\left\|x_{1}\right\|\right)\left\|x_{1}\right\| \\
& \leqslant \frac{s}{2 \sqrt{\alpha}}\left(\mu\left(\left\|x_{0}\right\|_{t}^{+}\right)^{2}+\frac{1}{\mu}\left\|x_{1}\right\|^{2}\right)+b\left\|x_{1}\right\|^{2} \\
& =\lambda_{0}\left(\left\|x_{0}\right\|_{t}^{+}\right)^{2}+\left(\frac{s^{2}}{4 a \lambda_{0}}+b\right)\left\|x_{1}\right\|^{2}=\lambda_{0}\|x\|_{t}^{2}
\end{aligned}
$$

As a consequence of the latter, for every $t \in\langle 0, T\rangle, x \in D\left(A_{2}(t)\right), \lambda>\lambda_{0}$ and $\varepsilon= \pm 1$, we get

$$
\left\{\begin{array}{l}
\left\|\lambda_{i} x-\varepsilon A_{2}(t) x\right\|_{l}^{2}=\left\|\left(\lambda-\lambda_{0}\right) x+\left(\lambda_{0}-\varepsilon A_{2}(t)\right) x\right\|_{l}^{2} \\
=\left(\lambda-\lambda_{0}\right)^{2}\|x\|_{t}^{2}+\|\left(\lambda_{0}-\varepsilon A_{2}(t) x \|_{8}^{2}+2\left(\lambda-\lambda_{0}\right)\left(\lambda_{0}\|x\|_{\ell}^{2}+\right.\right. \\
\\
+\varepsilon \operatorname{Re}\left(\left(\left(A_{2}(t) x, x\right)\right)_{t}\right) \geqslant\left(\lambda-\lambda_{0}\right)^{2}\|x\|_{l}^{2}
\end{array}\right.
$$

From Lemmas 2 and 3 we have
(11 $\left.{ }^{\circ}\right) \quad R\left(\lambda-A_{2}(t)\right)=H^{+} \times \boldsymbol{H}$, for every $t \in\langle 0, T\rangle, \lambda>\lambda$. and $\varepsilon= \pm 1$, and the proof of $\left(3^{\circ}\right)$ of Theorem 1° follows from $\left(10^{\circ}\right)$ and $\left(11^{\circ}\right)$.

Lemma 5. Under the hypotheses $(*)$ the condition $\left(2^{\circ}\right)$ of Theorem 1 is satisfied for $X=H_{0}^{+} \times H$ and $\left\|\left\|_{t}=\right\|\right\|_{H_{i}^{+} \times H}$, where

$$
\left\|\left(x_{0}, x_{1}\right)\right\|_{H_{i}^{+} \times H}=\left(\left(\left\|x_{0}\right\|_{l}^{+}\right)^{2}+\left\|x_{1}\right\|^{2}\right)^{1 / 2}
$$

Proof. It follows from Lemma 2° of Section I.
Lemma 6. If the hypotheses of Theorem 1 are satisfied, then $t \rightarrow \Lambda_{1}(t)$ is an $L\left(\boldsymbol{H}_{0}^{+} \times H, H \times \boldsymbol{H}_{0}^{-}\right)$-valued function, weakly continuously differentiable on $\langle 0, T\rangle$, and the conditions $\left(2^{\circ}\right)$ and 3°) of Theorem 1° are fulfilled for $X=H \times H_{0}^{-}, A(t)=A_{1}(t)$ and

$$
\begin{gathered}
\left\|\left\|_{t}=\right\|\right\|_{H \times H_{t}^{-}}, \text {where }\|x\|_{H \times H_{t}^{-}}=\left\|\left(\lambda_{0}+1-A_{1}(t)\right)^{-1} x\right\|_{H_{t}^{+} \times H} \\
\lambda_{0}=\frac{1}{2}\left(b+\left(\frac{s^{2}}{a}+b^{2}\right)^{1 / 2}\right)
\end{gathered}
$$

Proof. For every $x=\left(x_{0}, x_{1}\right) \in H^{+} \times H$ and $y=\left(y_{0}, y_{1}\right) \in H \times H^{-}$from Lemmas 4° and 6° of Section I it follows

$$
\begin{aligned}
& \left(\left(A_{1}(t) x, y\right)\right)_{I \times I_{0}^{-}}=\left(\left(x_{1}, y_{0}\right)\right)-\left(\left(\Lambda(t) x_{0}-B(t) x_{1}, y_{1}\right)\right)_{0}^{-} \\
= & \left(\left(x_{1}, y_{0}\right)\right)-\left(\left(Q(t) x_{0}, J(0) y_{1}\right)\right)_{0}^{+-}-\left(\left(S(t) x_{0}+B(t) x_{1}, y_{1}\right)\right)_{0}^{-}
\end{aligned}
$$

Thus, by (1.1) and (1.2) and Lemma $1^{\circ}, t \rightarrow A_{1}(t)$ is an $L\left(H_{0}^{+} \times H, H_{0}^{-}\right)$--valued, weakly continuously differentiable on $\langle 0, T\rangle$ function. The function $t \rightarrow\left(\lambda_{0}+1-A_{1}(t)\right)$ is the same. Moreover, by Lemma 2 it follows that for every $t \in\langle 0, T\rangle$, the operator $\left(\lambda_{0}+1-A_{1}(t)\right)$ is invertible and maps $H_{0}^{+} \times H$ onto $H \times H_{0}^{-}$. Hence $t \rightarrow\left(\lambda_{0}+1-A_{1}(t)\right)^{-1}$ is an $L\left(H \times H_{0}^{-}, H_{0}^{+} \times H\right)$ --valued, weakly continuously differentiable function on $\langle 0, T\rangle$.

To prove (2°), we put

$$
C(t)=\left(\lambda_{0}+1-A_{1}(t)\right)^{-1}
$$

We have $\|x\|_{H \times H_{i}^{-}}=\|C(t) x\|_{H_{i}^{+} \times H}$, for $x \in H \times H_{0}^{-}$. From the weak differentiability of $C(t)$ it follows that there exists a constant $k_{1} \geqslant 0$ such that $\left\|\frac{d}{d^{d}} C(t) x\right\|_{H_{s}^{+} \times H} \leqslant k_{1}\|x\|_{H \times H_{s}^{-}}$From the equivalence of the norms $\left\|\left\|\|_{H \times H_{s}^{-}}, s \epsilon\langle 0, T\rangle\right.\right.$ and from the equality

$$
\begin{gathered}
\left|\frac{d}{d t}\|C(t) x\|_{H_{s}^{+} \times H}^{2}\right|=2\|C(t) x\|_{H_{s}^{+} \times H}\left|\frac{d}{d t}\|C(t) x\|_{H_{s}^{+} \times H}\right| \\
=2\left|\left(\left(\frac{d}{d t} C(t) x, C(t) x\right)\right)_{H_{s}^{+} \times H}\right|
\end{gathered}
$$

we have

$$
\left|\frac{d}{d t}\|C(t) x\|_{H_{s}^{+} \times H}\right| \leqslant k_{2}\|x\|_{H \times H_{s}^{-}} .
$$

Hence there exists a constant k_{s} such that

$$
\|C(s) x\|_{H_{s}^{+} \times H}-\|C(t) x\|_{H_{s}^{+} \times H}\left|\leqslant k_{3}\|C(t) x\|_{H_{2}^{+} \times H}\right| t-s \mid .
$$

From the latter, by Lemma 5 and, by the inequality

$$
\begin{gathered}
\|C(t) x\|_{H_{i}^{+} \times H}-\|C(s) x\|_{H_{s}^{+} \times H}\left|\leqslant\|C(t) x\|_{H_{t}^{+} \times H}-\|C(t) x\| H_{s}^{+} \times I I\right|+ \\
+\|C(t) x\|_{H_{s}^{+} \times H}-\|C(s) x\|_{H_{s}^{+} \times I I} \mid
\end{gathered}
$$

it follows that

$$
\|C(t) x\|_{H_{t}^{+} \times H}-\|C(s) x\|_{H_{s}^{+} \times H I}\left|\leqslant k_{4}\|C(t) x\|_{B_{t}^{+} \times I I}\right| t-s \mid .
$$

Hence

$$
\|x\|_{H \times H_{i}^{-}}-\|x\|_{H \times H_{s}^{-}}\left|\leqslant k_{4}\|x\|_{H \times H_{i}^{-}}\right| t-s \mid,
$$

and the condition $\left(2^{\circ}\right)$ is satisfied.
From the inclusion $A_{2}(t) \subset A_{1}(t)$, by Lemma 4 we have

$$
\begin{gathered}
\left\|\left(\lambda-\varepsilon A_{1}(t)\right)^{-1} x\right\|_{H_{t}^{+} \times H}=\left\|\left(\lambda-\varepsilon A_{2}(t)\right)^{-1} x\right\|_{H_{l}^{+} \times H} \leqslant\left(\lambda-\lambda_{0}\right)^{-1}\|x\|_{H_{l}^{+} \times H}, \\
\text { for } \quad t_{\epsilon}\langle 0, T\rangle, \lambda>\lambda_{0}, \varepsilon= \pm 1 \text { and } x \in H_{0}^{+} \times H .
\end{gathered}
$$

Thus

$$
\begin{gathered}
\left\|\left(\lambda-\varepsilon A_{1}(t)\right)^{-1} x\right\|_{H \times H_{l}^{-}}=\left\|\left(\lambda_{0}+1-A_{1}(t)\right)^{-1}\left(\lambda-\varepsilon A_{1}(t)\right)^{-1} x\right\|_{H_{l}^{+} \times H} \\
=\left\|\left(\lambda-\varepsilon A_{1}(t)\right)^{-1}\left(\lambda_{0}+1-A_{1}(t)\right)^{-1} x\right\|_{H_{l}^{+}+H} \\
\leqslant\left(\lambda-\lambda_{0}\right)^{-1}\left\|\left(\lambda_{0}+1-A_{1}(t)\right)^{-1} x\right\|_{H_{l}^{+} \times H}=\left(\lambda-\lambda_{0}\right)^{-1}\|x\|_{H \times H_{l}^{-}} \\
\quad \text { for } t \epsilon\langle 0, T\rangle, \lambda>\lambda_{0}, \varepsilon= \pm 1, x \epsilon H \times H_{0}^{-},
\end{gathered}
$$

what proves the condition $\left(3^{\circ}\right)$.
Proof of Theorem 1. Put $X=H \times H_{0}^{-}, Y=H^{+} \times H,\| \|_{t}=\| \|_{H \times H_{t}^{-}}$, $A(t)=A_{1}(t)$, and $R(t)=1$, then from Lemma 6 it follows that the conditions $\left(1^{\circ}\right)-\left(5^{\circ}\right)$ of Theorem 1° of Section I are fulfilled. This proves the theorem.

Proof of Theorem 2. Set $X=H_{0}^{\vdash} \times H, \quad Y=D\left(\Lambda_{0}(0)\right) \times H^{+}, \quad A(t)$ $=A_{2}(t),\| \|_{t}=\| \|_{H_{t}^{+} \times H}$ and
$\left(12^{\circ}\right) \quad R(t)\left(x_{0}, x_{1}\right)=\left((Q(t))^{-1} x_{0}, x_{1}\right)$, for $\left(x_{0}, x_{1}\right) \epsilon H_{0}^{+} \times H, t \epsilon\langle 0, T\rangle$ one can see that the conditions $\left(1^{\circ}\right)-\left(5^{\circ}\right)$ of Theorem 1° are fulfilled.

Indeed, from Lemmas 4 and 5 it follows that the conditions $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$ of Theorem 1° are fulfilled. Since $S(t) \epsilon L\left(H_{0}^{+}, H\right)$ and $B(t) \epsilon$ $\epsilon L\left(H_{0}^{+}, H\right)$, from (2.4) it follows
$D\left(A_{2}(t)\right)=\left\{x_{0}: x_{0} \epsilon H^{+}, \quad(\Lambda(t)+S(t)) x_{0} \epsilon H\right\} \times H^{+}=D\left(\Lambda_{0}(t)\right) \times H^{+}, \quad$ for every $t \in\langle 0, T\rangle$.
By Lemma $3^{\circ}, R\left(J_{0}(t)\right)$ is a dense subspace of H_{0}^{+}and, by Lemma 5° $\left(\Lambda_{0}(t)\right)^{-1}=J_{0}(t)$, so $D\left(\Lambda_{0}(t)\right)$ is dense in H_{0}^{+}. Thus $D\left(A_{2}(t)\right)$ is dense in $H_{0}^{+} \times H$ for $t \epsilon\langle\mathbf{0}, T\rangle$, what proves the condition (1°) of Theorem 1°.
By (12°) and Lemma 5°, and Lemma 1°, the operators $R(t), t \in\langle 0, T\rangle$ are invertible and map $H_{0}^{+} \times H$ onto itself, $t \rightarrow R(t)$ is an $L\left(H_{0}^{+} \times H, H_{0}^{+} \times\right.$ $\times H)$-valued, twice weakly continuously differentiable function on $\langle 0, T\rangle$, satisfying
$(R(t))^{-1} D\left(A_{2}(t)\right)=Q(t) D\left(\Lambda_{0}(t)\right) \times H^{+}=D\left(\Lambda_{0}(0)\right) \times H^{\dagger}$, for every $t \epsilon\langle 0, T\rangle$.
Hence (4°) is satisfied.
Finally, from (12°) and Lemma 5° we obtain

$$
\begin{aligned}
& (R(T))^{-1} A(t) R(t) x=(R(t))^{-1} A_{2}(t)\left((Q(t))^{-1} x_{0}, x_{1}\right) \\
& =(R(t))^{-1}\left(x_{1},-\left(\Lambda_{0}(t)+S(t)(Q(t))^{-1} x_{0}-B(t) x_{1}\right)\right. \\
& =\left(Q(t) x_{1},-\Lambda_{0}(0) X_{0}-S(t)(Q(t))^{-1} x_{0}-B(t) x_{1}\right),
\end{aligned}
$$

for every

$$
x=\left(x_{0}, x_{1}\right) \in Y=D\left(\Lambda_{0}(0)\right) \times H^{+} \text {and } t \in\langle 0, T\rangle .
$$

Taking account (2.1), (2.2) and Lemma 1° we see that the condition $\left(5^{\circ}\right)$ of Theorem 1° is fulfilled. This completes the proof.

Remark. The existence and the uniqueness of the Green operator $G(t, s)$ of problem (1.6) assures the existence and the uniqueness of the solution $X(t)$ of the following problem:

$$
\left\{\begin{array}{l}
\frac{d X(t)}{d t}=A_{1}(t) X(t), t \epsilon\langle 0, T\rangle \\
X(0)=X_{0}, X_{0} \epsilon H^{+} \times H .
\end{array}\right.
$$

The solution of this problem takes a form: $X(t)=G(t, 0) X_{0}$. By $\left(5^{\circ}\right)$ of Theorem 1, we have $X(t)=\left(x(t), \frac{d x(t)}{d t}\right) \epsilon C^{1}\left(\langle 0, T\rangle ; H \times H_{0}^{-}\right)$, thus $x(t) \epsilon C^{1}(\langle 0, T\rangle ; H) \cap C^{2}\left(\langle 0, T\rangle ; H_{0}^{-}\right)$and, by $\left(4^{\circ}\right)$ of Theorem 1 , $x(t) \epsilon C^{0}\left(\langle\mathbf{0}, T\rangle ; H_{0}^{+}\right)$.
Consequently $x(t) \epsilon C^{0}\left(\langle 0, T\rangle ; H_{0}^{+}\right) \cap C^{1}(\langle 0, T\rangle ; H) \cap C^{2}\left(\langle 0, T\rangle ; H_{0}^{-}\right)$.

REFERENCES

[1] Березанский Ю. М., Разложение по собственным функциям самосопряженных операторов, Киев 1965.
[2] Kisyński J., Sur les opérateurs de Green des problèms de Cauchy abstrait, Studia Math., T. XXIII (1964), 285-328.
[3] Крейн С. Г., Линейные дифференциальные уравнения в банаховом пространстве, Москва 1967.
[4] Lions J. L., Une remarque sur les applications du théorème de IIille-Yosida, J. Math. Soc. Japan, 9 (1957), 62-70.
[5] Lions J.L., Equations differentielles operationnelles et problèms aux limites, Springer, Berlin 1961.

STRESZCZENIE

Opierając się na wynikach [2], w pracy tej dowodzi się dwóch twierdzeń dotyczących problemu istnienia i jednoznaczności rozwiązania pewnego zadania Cauchy'ego drugiego rzędu w przestrzeni Hilberta.

PE3IOME

Пользуясь результатами [2] в работе доказываются две теоремы касающиеся іроблемы существования и едииственности решення некоторой задачи IКоии второго порядка в гильбертовом простраистве.

