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I. Preliminaries

This section, unfortunately long, is devoted to the preliminary notions, 
lemmas and Theorem 1°.

A. If X and Y are Banach spaces then by X*, Y* we denote the 
conjugate spaces of X and Y respectively and by L(X, Y) — the space 
of all linear bounded operators from X to Y.

B. L(X, revalued functions. An L(X, revalued function
te(a, by is called (n times) strongly continuously differentiable on <a, &>, 
if the function t->A(t)x is (n times) strongly continuously differentiable 
in the sense of the norm in Y, for any xeX-, it is called (n times) weakly 
continuously differentiable on <o, by, if for any xeX the function t-+A(t)x 
is (n times) continuously differentiable in the weak sense.

C. Green’s operator. Let A be a Banach space and let A(t), /«<0, Ty 
be a family of linear operators whose domaines D(A (f)) and ranges R(A (/)) 
contain in X, U(A(t)) being dense in X ior any te(Q,Ty.

Consider Ihe first order Cauchy’s problem

= A(t)x(t), forZt<0,T>,
(I) dt

®(0) - x0,

for given initial data x0.
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An A (A, A)-valued function (t, s)-+G(t, s) defined on the triangle
0 < s < T is called the Green operator of the problem (I) if
(II) G(s,s) =1 for any se<0,T>;
(III) G(t, s)G(s,r) = G(t, r) for 0 < r < s < t < T;
(IV) an V-valued function (t, s)-+G(t, s)x is continuous in the sense of

the norm in X for any and any xeX-,
(V) G(t, s)A(A(s)) c: A(A(<)) for 0 5%: s < i T and, for any S€<0,T> 

and #eD(A(s)), the function t->G(t,s)x is continuously differen
tiable in the sense of the norm in X on <s, and satisfies the 
equation dldtG(t, s)x — A(t)G(t, s)x.

The following theorem (Kisynski, [2], p. 312), playing an important 
role in our treatment, holds:

D. Theorem 1°. Let X be a Banach space equipped with the norm ||-|| 
and let A(/), t*(f},iy be the family of linear operators, D(A(t)) <= X, 
Ii (A (/)) c X. Suppose that the following conditions are satisfied:
(1°) D[A(t)) is dense in X-,
(2°) there exists a family of norms || ||(, te<fi,Ty, equivalent to the given 

norm || ||, such that |||a?H,— ||a?||s| < k\\x||( |< —s|, k = const., 0 < s, t < T, 
xeX and,

(3°) there exists a constant 20>0, such that K(2 — eA(t)j = X and ||Ar — 
-cA(«)®||<> (A — Ao)Horll, for e = ±1, 2>2O, XtD(A(t})',

(4°) there exists a family of linear bounded and invertible operators B(t) 
mapping X onto X, such that a function t—>Ii(t) is twice weakly con- 
tinuoiisly differentiable on <0,T> and (R(T))~1D(A(t)] — Y — const. 
for any te<O,Ty-,

(5°) for any xeY, the function t^-(R(t)]~1A(t)R(t)x is weakly continuously 
differentiable on

then there exists one and only one Green operator of problem (I) having the 
following properties'.
(II) ° (t, s)->G(t, s) is an L(X, X)-valued function, strongly continuous on

the quadrat 0 < s, t < T;
(III) 0 G(s,s) = 1 for Se<0, T>,
(IV) ° G(t, s)G(s,r) = G(t, r) for Q^r,s,t^T-,
(V) ° G(t,s)D(A(s)} =D(A(t)) for 0 < 8, t < T and, for any se(Q,Ty

and ®eZ)(A(s)), the function t-+G(t, s)x is continuously differentiable 
in the sense of the norm in X on (f>,Ty and satisfies d/dtGlf, s)x 
= A(t)G(t, s)x.

If the conditions (1°)—(5°) of Theorem 1° are satisfied for Rtf) = 1 
and, if the space X is equipped with the norm ||| ||| under which Y be-
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conies a Banach space and \\y\\ < fc|||y||| f°r any y*Y, then the operator 
G(t,s) has the following additional properties:
(VI) ° an L(T, Y)-valued function (t,s)^G(t,s) is strongly continuous

on the quadrat 0 < s, t < T;
(VII) °an L( Y, Z)-valued function (t, s) ^>G(t, s) is strongly continuously

differentiable on the quadrat 0 < t^T and satisfies the equa
tions: dldtG(t,s) = A(t)G(t,s), d/dsG(t, s) — —G(t,s)A(s), for 
0<s,

E. Hypotheses (*). Let II be a Hilbert space with the scalar product 
((,)) and let H+ bo linear and dense subset of H. Puthermore, let ((,))/" 
be the scalar product on H+ for ie<0, such that H+ with ((,))+ con
stitute a Hilbert space H,+ with the topology not weaker than the topology 
induced in H+ by H.

Assume moreover that for any xdT Mt&yHF the function <->((#, y))+ 
is n times (n > 1) continuously differentiable on <0,T>

F. The following lemmas (cf. [2], pp. 319—322, also [1], p. 45 and 
[5], pp. 9—14) will be necessary in further considerations.

Lemma 1°. The equality ((x, y)^ — ((Q(/)x, y)) +, x,yeH+, te <0,T> 
defines an L(Hf, Hf)-valued function, n times weakly continuously diffe
rentiable on <0,T>. For fixed te(0,T)> the operator Q(t) is Hermitian 
with infQ(Z) > 0 in Hf.

Lemma 2°. There exists a constant 0 < a < 1, such that

a1/2lK< llK< K2|K,
d
dt

IK -1/2 IK< a

for any XeH~ and te(O, T).
Lemma 3°. The equality ((a?,?/)) = ((«A>(0®» y))«+, xeH, yeH+, defines 

an invertible, Hermitian operator J0(t)eL(H, Hf), the image J0(t)(H+) 
is dense in Hf. Moreover we have:

IU0(*)K = sup{|((ai, y))|: yeH+, \\y\\f < 1}, for xeH, te<0,T>.

Lemma 4°. Setting ||®||f = ||<70(i)a,ll<+ for and xeH we
define the space Hf as the completion of H in the norm |, ||f. We 
have:
(4.1) H c Hf, the topology of H is not weaker than the topology induced 

in H by Hf;
(4.2) if by J (t) we denote the extension of J 0(t) (by continuity), then J(/) 

is an isometry which maps Hf onto Hf and, for any te(0,T)> the 
equality J(t) = (Q(t))~lJ(O) holds-,
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(4.3) for any /e<0, the space Ht has the structure of Hilbert space under 
the scalar product:

((x,y))f = ((^(<)x, J(W>y))o;

(4.4) there exists a constant 0 < ft < 1, such that the estimates

Pll2\W\o<M\r^rll2\\^,
dt ^r1/2wr,11*11/

for any XeHa and tt<f),Ty hold-,
(4.5) the inequality |((a?, //))| < ||£P|I<*" ||*||/ holds for xeH+, yeH,

Thus the form (x, y)^>((x, y)) has the extension by continuity on the 
set (H xH)'j(H+ xHf)u(Hf xH+). We have ((x,y)) = ((x, J(t)y))f 
= ((J(<)_1a;,y))/, for xeH+, yeHf, te<0,T>.

Lemma 5°. The conditions

-°(^o(<) = [xtH+: sup{|((a?, y))f: yeH+, ||y||<l}< oo}

(Mo(<)*, y)) == ((®,y))t+,/or xeD[A0(tf\, yeH+

define in the space H an invertible, self-adjoint, positive operator /l0(t). 
We have D(A„(t)) = (Q(<))_1D(/to(0)) and A0(t) = (J0(C)_1 =
= Ao{O)Q(t) for te<Q,T>.

Lemma 6°. Denote by A(t) the closure of A0(t) in Hf. A(t) is an in
vertible, self-adjoint, positive operator in Hf. D(A(t)j = H+, A(t) = (J(/))_1 
= A(O)Q(t), for any Ze<0, T>.

II. Second order Cauchy’s problem in a Hilbert space

Suppose that the hypotheses (*) of Section I are fulfilled and the 
following conditions:
(1.1) t-+S(t) is an LfELf, 1//valued, weakly continuously differentiable 

function on <0, T>,
(1.2) /->£(/) is an L(H, Hf (-valued, weakly continuously differentiable 

function on <0, Tj,
(1.3) there exists a constant ft > 0, such that an inequality B,a((B(t)x, x)) 

<ft||a;||2 holds, for any xeH+ and <e<0,T>
Consider second order Cauchy’s problem

(1.4)

d2x(t} dx(t)' ’ '-(A(t)+S(t))x(t)+B(t)-
df

XW = «0, at

dt
o, te<0,T>,

x,
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We shall treat it as first order problem in t in the space . To
this end we put

D(A,(t)} = H+xH,
^i(<)(®o,»i) = (®x, -(A(t)+S(t))x0-B(t)xr), for («0, «1)e D(A1(0), 

and we consider the problem

(1-6) —^=A(№<) forfe<0,T>,
at

-T(0) — A'u, A’o = (x0, xf)

in the space H xHa .
We can state
Theorem 1. If the hypotheses (*) («> 1) and (1.1)—(1.3) are satisfied 

then there exists one and only one Green operator of problem (1.6) having 
the following properties-.
(1°) (<,«)->(?(/, s) is an L(H xHf, H xH^)-valued, strongly continuous 

function on the quadrat 0 < s, t < T;
(2°) G(s,s) = 1 for se<0,T>;
(3°) G(t, s)G(s, r) = G(t, r) for Q^s,r,t^T-,
(4°) G(t,s)(H+xH) = H xH, for 0 < s, t^T and, (t, s)->G(t, s) is an

L(H+ x H, Hf xH)-valued, strongly continuous function on the quadrat
0=0,

(5°) (/, s)->G(t, s) is an L(Hf xH, H xH^)-valued, strongly continuously 
differentiable on the quadrat 0 < s, / < T function, satisfying the equa
tions

4-G(t, s) = A1(i)G(<, s), ~G(t, s) = —G(t, s)A1(s), for 0 < s, t < T. 
dt ds

Before we prove Theorem 1, we will state Theorem 2, which is con
nected with the same problem under some modified assumptions. Namely 
now we assume:
(2.1) t^S(t) is an L(H+, Revalued, weakly continuously differentiable 

function on <0,T>,
(2.2) t-+B(t) is an L(3f, TZj-valued, weakly continuously differentiable 

function on <0, T>,
(2.3) there exists a constant b, such that the inequality 

\~Rc((B(t)x, x»))| C b ||a?ll2 holds for any xeH+ and Ze<O,T>.
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As before, we consider second order Cauchy’s problem (1.4) and 
by setting

B(A2(t)) = {(a?0, a?x): xoeH+, \cH+, [(A(t) + 8(t))x0+B(<)aq]di, 

A2(f)(»„,»!) = (aq, -(A(t) + 8(t))x0-B(t)x1),ior(x0,x1)iD(A2(t)),

we obtain the first order problem equivalent to

(2.5)
dX(t)—jA-L=A2(t)X(t), te<O,T>, 

A' (0) = Xg,
\

which is treated in the space Ilf xH.
Theorem 2. If we assume that the hypotheses (*) (n > 2) and (2.1) —(2.3) 

are satisfied, then there exists one and only one Green operator of problem
(2.5) having the properties (2°)—(4°) of Theorem 1 and the following one: 
(6°) G(t, s)D(A2(s)) = D(A2(/)) for 0 < s, t^T and, for any xeD[A2(t)) 
and S€<0,T>, t->G(t,s)x is continuously differentiable in the sense of 
the norm in Ilf xH function, satisfying d/dtG(t, s)x — A2(t)G(t, s)x.

Theorems 1 and 2 are suggested by professor J. Kisynski operator 
formulations which strenghten the theorems of Lions on weak solutions 
of some differential equations in a Hilbert space expressing by means 
of bilinear forms (cf. [5], pp. 150—159). The strengthening is that here 
we get solutions with strong continuous derivatives (belonging to H, H~ 
and so on) while Lions has analogous derivatives but in the distributional 
sense. Both cases of equations with constant (independent of t) operators 
were given in Lions’ paper [4].

The proofs of Theorems 1 and 2 will be based on the following lemmas.
Lemma 1. Assume that hypotheses (*), (1.1) and (1.3), and either (1.2) 

or (2.2) are satisfied. Then for. every tc<0, T> and real 2, |2| > 20 (where

a being a constant as in Lemma 2°, s being a constant not less than the 
norm of S(t) in the space L(Hf, H)), the operator P(t, 2) = A(t)+S(t) + 
+ 2B(f) + 22 belongs to the space L(Hf, Hf), is invertible and R[P(t, 2)) = 
H~.

Proof. Prom Lemmas 4° and 6° of Section I it follows

((P(L I)x, x)) = ((#, a?)),+ + (S(t)x, £c)) + 2((B(<)®, + 22((x, a?)).
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Thus for every A, |A| > Ao we have

Re((P(t, A)x, x)} > a( ||O2 - s |K ||a?|| + |A| (|A| - b) ||aj|p

= •(l*+)!+ [iiiwPior

s2
> e(Mo+)2, for <*<0, P>, xeH+ and e = a--------------------> 0# ’ \ 4 |A|(|A| — ft) '

Consequently

(7°)
for every rel A, |A| > Ao, there exists a constant eA > 0

such that Re((P(Z, )#, a;)) > eA(||a;||0+)2, for every Ze<0,P> and xeH^.

Fix /e<0, P> and AeR, |A| > Ao. By (7°) and Lemma 4° we have 

\\P(t, A)a||0~ ||< > |((P(Z, A)x, ®))| > eA(ll®llo+)2,
hence

\\P(t, A)<- > eaWo+ for x<3f

Since P(t, A)eL(H+,H'), thus P(P(Z, A)) is closed in Hf. It remains to 
prove the density of R(P(t, A)) in the space Hf. Suppose that R(P(t, A)) 
is not dense in Hf, then there exists xoeH„, x0 0, such that 
((P(t, A)x, £0))0“ =0 for every xe3+ and, by Lemma 4° we have 
((P(t, A)y0, y0)) =((P(t, A)y0,x0})„ =0, where 0 y0 =J(0)xoeH+, what 
is contradiction of (7°). Lemma is proved.

Lemma 2. Assuming that the hypotheses of Theorem 1 are fulfilled 
then for every Z« <0, T> and real A,

<—!(«) 

the operators (A—J.1(Z)) and (A—A2(<)) are invertible and

R(A-A^t)) = H xH~, R(A—Ai(t)) = H+ xH.

Proof. Consider the equation

(®°) (A—-Ai(Z))(x„, xt) —(yo>yi)f

where Z€<0,T> and AeR, |A| > Ao are fixed, (y0,yf) is a given element 
from H xH~, (x0, x1)eD(Al(t)) = H+ xH being the unknown. Since 
B(t)eL(H, Hf), then by (1.5) the equation (8°) is equivalent to the follow
ing system
, P(<, A)a?0 = t/i+P(0yo + A3Zo
'9 > .= Ax0 — y0.

9 — Annales t. XXIX, 1975
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Lemma 1 assures the existence and the uniqueness of the solution of (9°). 
Thus .R(A—A2(/)) =HxH~ and the operator (A—J-i(/)) is invertible. 
In view of (1.5) and (2.4) we have:

H(J.2(/)) = {»: A1(t)xeH+ xH} and zl2(i) <= AJf),

and from this it follows that the operator (A—A2(t)) is invertible and 
E(A-A2(<)) = H+ xH.

Lemma 3. Under the hypotheses of Theorem 2, the operator (A—A2(/)) 
is invertible and R[f.—At(t)) = H+ xH, for every tt<$, T) and XtR with 
|A| > A„.

Proof. Fix «e<0,T> and A«R, |A| > Ao. Since B(t)fL(Hf, H), thus 
(y1+B(<)y0 + kyfjeH and, by Lemma 1, the system (9°) has a unique 
solution (x0, x1)tH+ xH+. Therefore the condition (1.5) assures that 
(®o>®i) is the unique solution of (8°). From (9°) it follows that (4(<) + 
+S(t))x0+B(t)x1 = (yr + ty0 — №x0)eH, hence (x0, x1)eD(Ai(t)). This fact 
jointly with the inclusion A2(t) c Ar(t) complete the proof of the lemma.

Lemma 4. Assume that hypotheses (*), (1.1), (1.3) and either (1.2) 
or (2.2) are fulfilled. Then the condition (3°) of Theorem 1° of Section I 
is fulfilled for X = H+ xH, ||(ic0, 34)11« = ((«|<j2 + IM2)1)2, A(t) = A2(<)

and Ao

Proof. Put ((», y))t = {(x„, y0))f + ((»,, yj) for x = (x0,x1) and 
y = (y0, yj, x, yeH+ xH and ||aj||« = ((«, ®))}/2. By (2.4) and by Lemmas 4° 
and 6° of Section I, we have ((^42(/)a?,a;))(=((a;1,a;0))«+ — ((/l(<)a;0 + 
AS(t)x0AR(l)^n aq)| = ((®i, a?0))/ ((a^o, aq))«+ ^>S(/)a?0-(-B(/)a;1, 24)).
Hence Re((A2(<)ic, a?))« = -B^(S(t)x0+B(t)x1, xj), for every <«<0,T> 
and x = (x0, x1)eD(Ai(t)).
From (1.1) and (1.3) and one of (1.2), (2.2), making use of the inequality 

2ab^pai+ — b2, p>0, a,bcR, and putting in it a — ||a:0||«+,6 = ||«1||,

/z =
2}/ a

Ao, we obtain
s

|Re((A2(<)a?,a?))«< (s||:i

= A, (|Mi

2l/a
s
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As a consequence of the latter, for every <e<0,T>, xeD(A2(t)), A> Ao 
and e = ±1, we get

(10°)

||lr - eA2(t)x\\2t = ||(A-A0)a:+(A0-eA1(f))^||f 

= (A - A0)21« + IK *o - ^2 (*X + 2 (A - Ao) (Ao ||< + 
-t-eRe(((A2(/);r, •■f))/) (A Ao) ||®||2.

From Lemmas 2 and 3 we have
(11°) _R(A—A2(/)) = H+ xE, for every te<0, T>, A > A. and e = ±1,
and the proof of (3°) of Theorem 1° follows from (10°) and (11°).

Lemma 5. Under the hypotheses (*) the condition (2°) of Theorem 1 
is satisfied for X — Hf xH and || ||j = II llff+xjz, where

H(®o,®i)llff+xH = ((M^ + M2)1'2.

Proof. It follows from Lemma 2° of Section I.
Lemma 6. If the hypotheses of Theorem 1 are satisfied, then t->A,(t)

is an L(Hf xE, E xEf)-valued function, wealdy continuously differen
tiable on <0, Ty, and the conditions (2°) and 3°) of Theorem 1° are fulfilled 
for X = E xEf, A(t) = Aj(/) and

|| where ||®|| _ = l|(A0+l — A^/)) 1a?|| ,"flxfl, ’ 11 H*Bt II' 0 1V '' Hff+xff

Proof. For every x = (x0, x1)eH+ xE and y — (y0, yJeH xE from 
Lemmas 4° and 6° of Section I it follows

y))HxH- = ((®x,J/o))-((^(0®o--B(0®i, JZi))o"

= ((®i> Ho)) J(0)2/i))o~ 3/i))o •

Thus, by (1.1) and (1.2) and Lemma 1°, t->A,(t) is an L(Ef xE, Ef)- 
-valued, weakly continuously differentiable on <0, T> function. The 
function f->(A„+l — A^Z)) is the same. Moreover, by Lemma 2 it follows 
that for every t e<0, Ty, the operator (A0+l —A^Z)) is invertible and maps 
Hf xE onto H xHf. Hence Z->(AO+1 — Ai(Z))-1 is an L(E xHf, Hf xH)- 
-valued, weakly continuously differentiable function on <0, Ty.

To prove (2°), we put

C(<) = (Ao+l-AJf))-1.
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We have M//xH_ = l|C(i)æ||rz+ o> for xeHxH~. From the weak

differentiability of C(7) it follows that there exists a constant 7^ > 0

such that

norms II

-zr | , _ From the equivalence of the
Ï Z/g x£f H*Ha

HxH.
., s e <0, T> and from the equality

— l|C(<)< + dt ' ' "h+xH = 2'^VxZZ — IIC(0®ll +dt H8XH

«
dt

C(t)x, C(t)x
))//+x/z

we have

< M®llZZxZZ"

Hence there exists a constant Tc. such that

iikwil+„„-ii<wilZZJxZZ < MC(0®ll„+ „!<-«!•H?xH

From the latter, by Lemma 5 and, by the inequality

l«C(,)XllH+xH-|l0W“,lH+xHl*'ll°(!)!'llH,+ xH_l|C(*)*-+XB| +

+ IIIC(«)^<X1!-IICW»’II„1+X„I

it follows that

l,,C(/)a;|lH+xZZ_l|C(S):rl,ZZt-xZZl fc4llC'(<)«llH+x„|f-S|.

Hence

I II® II ZZxZZ,
- WZZxZ/-K M®ll„„„- K —«I,II* 117

and the condition (2°) is satisfied.
From the inclusion A2(t) c A^t), by Lemma 4 we have

||^-^1(0)-,<j+xH = ||(A-£A2«))-1æ||H(+><H<(2-;.0)-’ii^+xH,

for <€<0, T>, A > Ao, e = ±1 and xcH^ xH.
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Thus

= IK^o+l-^i(0)-1(A-«A1(n)-1®||H+xH 
z z

= ||(2-£A1(0)-1(4+l-A1(/))-1a;|^++H 

(A-A0)-1||(A0+l-^1(«))-1a!||K+xH = (A-A0)->|H|
t t

for /e<0, T>, 2 > 20, e = ±1, XeH xHB, 

what proves the condition (3°).
Proof of Theorem 1. Put X = H xHB, Y = H+ xH, || ||, = || ||ff ff_,

A(t) = Aj\t), and R(t) = 1, then from Lemma 6 it follows that the 
conditions (1°)—(5°) of Theorem 1° of Section I are fulfilled. This proves 
the theorem.

Proof of Theorem 2. Set X = Ef xH, Y = D(do(O))x5+, A(t)
= || ||, = || ||^+xh and

(12°) = ((Q(t))~lx0,x1), for (x^xJeH+xH,
one can see that the conditions (1°)—(5°) of Theorem 1° are fulfilled.

Indeed, from Lemmas 4 and 5 it follows that the conditions (2°) 
and (3°) of Theorem 1° are fulfilled. Since S(t)eL(H£, H) and B(t)e

H), from (2.4) it follows
D(A2(t)) = {x0 : xoeH+, (A(t)+S(t))xoeH}xH+ = B(Aa(t))xH+, for 
every te<0,T>.
By Lemma 3°, R(J0(t)) is a dense subspace of Hj and, by Lemma 5° 
(xl0(£))_1 = J0(Z), so D(/lo(0) is dense in HQ. Thus D(A2(()) is dense in

xH for te<0, T>, what proves the condition (1°) of Theorem 1°.
By (12°) and Lemma 5°, and Lemma 1°, the operators R(t), te(O,Ty 
are invertible and map HB xH onto itself, t->R(t) is an L(HB xH, HB x 
x//)-valued, twice weakly continuously differentiable function on <0, T>, 
satisfying

(R(t))- 'D(A2(t)) = Q(t)D(A0(t)) xH+ = D(/lo(O)) xH+, for every/«<0, T>. 

Hence (4°) is satisfied.
Finally, from (12°) and Lemma 5° we obtain

(R(T))~lA(t)R(t)x = (P(/))-1^2(<)((<?(<))"1®o^i)

= (R(t)) '(^i, — (xl0(£) +$(£)(Q(0) lxo~B(t)x^

= (Q (t)x,, -A„ (0) Xo—S(t) (Q (t^x0-B (t)xj,
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for every g#
a; = (a;0, T = Z?(zlo(0)) xH+ and <«<0,T>.

Taking account (2.1), (2.2) and Lemma 1° we see that the condition (5°) 
of Theorem 1° is fulfilled. This completes the proof.

Remark. The existence and the uniqueness of the Green operator 
O(t, s) of problem (1.6) assures the existence and the uniqueness of the 
solution X(t) of the following problem:

dX(t)

X(Q) = Xo, XoeH+ xH.

The solution of this problem takes a form: X(t) = G(t, O)Xo. By (5°) 

of Theorem 1, we have X(t) — , T)-, H xHf), thus

x(t)eC1(^0, T)-, Я)пС2«0,Т); Яо ) and, by (4°) of Theorem 1, 
a?(/)eC°«0, T>; Я+).
Consequently ж(<)еС°«0, T>; ff+jnC^O, Т>; Я)пС2«0,Т>; H~).
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STRESZCZENIE

Opierając się na wynikach [2], w pracy tej dowodzi się dwóch twier
dzeń dotyczących problemu istnienia i jednoznaczności rozwiązania pew
nego zadania Cauchy’ego drugiego rzędu w przestrzeni Hilberta.

РЕЗЮМЕ

Пользуясь результатами [2] в работе доказываются две теоремы 
касающиеся проблемы существования и единственности решения 
некоторой задачи Коши второго порядка в гильбертовом пространстве.


