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On Some Properties of the Coefficients of Regular Fimctions with 
Positive Real Part

O pewnych własnościach współczynników funkcji holomorficznych o dodatniej części 
rzeczywistej

О некоторых свойствах коэффициентов регулярных функций, вещественная часть которых 
является положительной

1. Recently the studies have been undertaken concerning the problem 
of finding the radius of the greatest disc in which a given property of 
a regular function is preserved after a rather general change of its coeffi
cients has been done, [3], [7].

For the given function of the form

(1) /(z) = «о + а1г+ ••• +апгП+ •••

regular in the disc A = {2: |г| < 1} we construct a new function f(z) 
in the following way, [7]. Let {nk} be a finite or infinite subsequence of 
the sequence of natural numbers and {e,,*} — a corresponding sequence 
of complex numbers with elements not all equal zero. Let us put

. am if m ^nk, Tc = 1,2,...

a„k + enkank if m =nk, к = 1, 2, ...
and

(3) /(2)=^йт2т

w=o

where in the case when the sequence is infinite we assume that the
series J£|e a |r** converges in the interval <0, 1). 

к
Definition. Let T\,T2 be fixed classes of regular functions of 

the form (1).
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a/ For fixed {w*.}, /e2\ we denote by

= Rx(f, {w*}, {enjfc}> ^1, -^2)

the greatest number r, 0 < r < 1, such that either f(rz) or /--‘/(rz) be
longs to T2. If the number with this property does not exist, then we 
put J?! = 0.
b/ For fixed {nk}, q > 0, feTx we put

•®2 = -®2 (У» {^fc}» ^1, ^2) ~ {^fc} , {enfc}, ^и^г)

с/ For fixed {nk}, {enJ let

R3 — ^з({пк}» {ел*}» ^2) — infl?^/, {nkS) {enjfc}’ ^1’ ^)-
AZ'i

d/ For fixed {%}, q > 0, we put

-K4 = -K4({nfc}, Q, Tx, T2) = inf [inf Rx(f, {nk}, {e }, Tx, T2)].
/«г l«„fc|«Se

It can be easily noticed that if |e | < q and feTx, then F4 < -ft, < 
and -K4 < R3 < Rx.

The present work gives estimations of thę numbers R( (i — 1,2,3, 4) 
for some families of functions connected with the class of functions re
gular in the disc К and having the positive real part there. The obtained 
results are the generalization of those by J. Stankiewicz, [7].

2. Let us denote by P'‘a (0 < a< 1, —1 < to < 1), (cf. [5]), a family 
of functions with the following integral representation

(4) p(z) = j Га + (1 —a)

0 L J

where p(t) is a function of the variable t, 0<$<2я, nondecreasing in 
this interval and satisfying

(5) Jdp(t)=l>
0

It is easy to observe that = ^a, where ^a, [6], is a family of all 
functions of the form

(6) p(z) = l+pkz+p2z2+ ... 

regular in the disc К and satisfying

Ke{p(z)} > a for zeK.

Obviously = ^’° = whero [1], denotes the known class of all 
functions of the form (6) with their real parts positive in the disc K.
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Now we shall determine the estimations of the numbers R{ 
(i = 1,2,3, 4) in the case when Tx — (?am and T2 =

Theorem 1. If either the condition

(i) Km Y|eBfcpnfc|rn* = +oo 
r-l~ k

or the conditions
(ii) lim Y \e„kpnk\rnk = A< +oo 

r->1 k
and

(iii) A + /3 — a > 0

hold, then the number R, — R,(p, {»*}, {e„A.}, is greater than or
equal to the unique root, lying in the interval (0,1), of the equation

(7) (1 + mr) + V \enkPnkI r"fc] + [1 - (1 + to) a]r -1 = 0.
k

If both the conditions (ii) and

(iv) A + fl — a < 0

hold, then = 1.
There exists a function belonging to the class and a sequence {e„A} 

such that the result is the best.
Proof. Let the function p(z) of the form (6) belong to the class 

^n. From (2) and (3) we get

(8) p(z) = p(z) + 2enkPHkznk, zeK.
k

From the results of Mol^da, [5], the following sharp estimation imme
diately follows:

(9) Re{p(«)}>
1 —[1 —(l + TO)a]r

|«| = r, 0 < r < 1.
1 + TOr

On the circle |«| = r, 0<r<l, by (8) and (9), the inequality 

1 — [1 — (1+ TO)a]r
(10) Re{p(«)}>

1 + wr

holds. From above and from the maximum principle it follows that

Re{p(z)} > /? in the disc |«| < r

— Annales t. XXIX, 1975
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when

(11)
1 — [1 — (1 +to) air vyi 

0(r) ----- > |e„fcp„A|rn*>/S.
1 + rnr K K

k

Thus the problem of finding the estimation of the number Rx is connected 
with the discussion of either the equation (7) or the equation

(12)

where

(13) P(r) =

L(r) y\Enkpnk\r^+P(r) =0

[1 + mfi — (1 + m) a]r + /3 — 1 
1 + mr

Consider the following cases:
a/ Suppose that the condition (i) is fulfilled. By (12) we have Z(0) 

= ft—1< 0. The function P(r) defined by (13) increases in the interval 
(0,1). Thus the equation (12) and consequently the equation (7) has 
a unique root in this interval what, by the definition of completes 
the proof of the theorem in the case in question.

b/ Suppose now that the conditions (ii) and (iii) are fulfilled. Then 
lim L(r) = A + /J — a > 0. Since the function L(r) increases in (0,1)

r-+l —
and i(0)<0, therefore the equation (7) has a unique root in (0,1). 
This proves the assertion in the considered case.

c/ If, in turn, the conditions (ii) and (iv) ate fulfilled, then L(r) 
takes negative values in (0,1) and therefore the function 0(r), given 
by (11), satisfies the inequality

0(r) > for every r, 0 < r < 1.

Hence Rr = 1.
Let us consider a function p*(z) of the form

1 + g
1 — m; '

(14) p*(z) = a + (l-a) ZeK

and a sequence e*k = —(—l)n* |e£j. Then for z = —r, 0< r< 1, by (8),
we obtain

p*(-r) =
1 — [1 — (1 + w)a]r 

1 + w
^\P* *

nk £nk |rn*.

Thus it follows that

-®l (P J {nk} t > ^ ) — ro
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where r0 is a root, lying in (0,1), of the equation (7) corresponding to 
the function p*(z) and to the sequence e*k. That means that the given 
estimation of R, is the best. The proof of Theorem 1 has been completed.

Remark 1. In the case when m = 0 Theorem 1 is obviously reduced 
to the following formulas:

K}, {e„ ---- 1 if |e1p1| + /?-a> 0,
1 —a+|e1Pil

HAP, {nk}, if |£iPil + ^-a< 0.

Theorem 2. If either the condition

(i) lira Y|pnfc|rn* =+oo 
r~*1 k

or the conditions

(ii) lim £ \Pnk\rnk = A < + oo 
r-*1 k

and

(iii) QA+p — a>0

hold, then the number R2 = R2(p, q,^,^p) is greater than or equal
to the unique root, lying in the interval (0,1),. of the equation

(15) (1 + »nr)p? + e JT |pnJr"*] + r[l-(l + m)a]-l =0.
k

If both the conditions (ii) and

(iv) gA + fi — a 0

hold, then R2 = 1.
There exists a function belonging to the class (P“, and a sequence {%}> 

|enfc| C such that the result is the best.
Proof. Consider the lower bound of the function <P(r) defined in 

(11) with respect to the sequences |enfel < Q. Then the relation (10)
implies the following inequality:

Re{p(s)}>
1 — [1 — (1 +w)a]r 

1 +w
e^lP»Zfcl’ kl=r, o<r<i.

Hence, analogously to the proof of Theorem 1 we obtain the estimation 
of R2.
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Notice finally that for the sequence {e*fc} = { — (— 1 )"*£>} and for 
p*(s) defined in (14) we have

Re{p*(z)}
1 — [1 — (1+ m)a]r 

1 + mrz = — r

Hence it follows that the estimation of is the best.
Remark 2. If m = 0, then the following conditions hold:

-K>(P, fofc}, Q, > T- 1 , -r if Q\P!\ + p-a> 0
1-a + elpJ

and
#2(P, W, = 1 if e\Pi\ + P-a^ 0.

Theorem 3. 1° Let m y=0(—1<to<1). If either the condition

(i) lim Yle„fcIM"*_1rn* = +<x> 
r-i- k

or the conditions

(ii) lim y |cnjfc| |m|nfc-1rn* = A < +oo 
’■-I- V

and

(iii) (1 — a)(l + »n) A +/? — a > 0

hold, then the number = R3 ( {wfc}, {e„A}, is greater than or
equal to the unique root, lying in the interval (0,1), of the equation

(16) (l+TOr)[^ + (l-a)(l + w)r^’|enfe||TOr|’‘*-1] + [l-(l + TO)a]r-l=O.
A

If both the conditions (ii) and

(iv) (1 — a)(l +m)A +(i — a < 0

hold, then R3 = 1.
2° If m = 0, then

(17) -----1 i , when (l-a)\e1\ + p-a> 0,
(l-a)(l + |ei|)

R3 = 1 when (1 — a) |e1| + /? — a < 0.

There exists a sequence {e„fc} such that the result is sharp.
Proof. L et to 0. It is known that the sharp estimation of coeffi

cients pn of the function having the form (6) and belonging to the class 
is the following, [5],

(18) |p„| (l-a)(l + TO)|TO|n_1, »=1,2,...
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Hence, taking into accout the condition (10), for \z\ — r, 0 < r < 1, we 
get the inequality

, 1 — [1 — (1 + m) air ,Re{p(«)}>-----------  -------------------(l-a)(l + m) 5 |e„ | |m|n* ‘rnfc.
1 + mr —i k

k

From the above relation and from the definition of R3, the way of reaso
ning being analogous to that used in the proof of Theorem 1, we get the 
first part of the Theorem 3.

Let m — 0. From the formulas (4), (5) and rules (2) and (3) we obtain 
the condition

(19) p(s) =p(2) + £1p12, ZeK

where

(20) p(z) = l + (l — a)z j eildp(t), ZeK.
0

The conditions (17) are now easy to obtain.
Finally, is can be easily noticed that for the sequence e*fc = — (—1)"* x

|e*J the function p*(z) defined by (14) is the extremal function. Thus 
the proof is completed.

Theorem 4. 1° Let w 0 (— 1 < wi 1). If either the condition

(i) lim = +oo
r—1— fc

or the conditions

(ii) lim =A< +oo
r-i- k

and

(iii) g(l —a)(l + m)A+/? —a > 0

hold, then the number Ri = Ri({nk}, is equal to the unique root,
lying in the interval (0,1), of the equation

(21) (l + wir)p + e(l-a)(l + m)r JT Imrl"*-1] + [l-(l + w)a]r-l = 0. 

If both the conditions (ii) and

(iv) e(l-a)(l+m)A + p-a^0

hold, then Ri — 1.
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2° If m = 0, then

W
(l-a)(l + e) 

1
(22) R, =

when g(l —a)—a>0, 

when g(l — a) + /? — a^O.

The estimations are sharp.
Proof. Let m 0. The definition of the number _K4 implies that 

we should take the lower bound of 0(r) defined in (11) with respect to 
all functions pe^m and all sequences {e„fc}, |«MJ < g. Then the ine
quality

Re{p(z)} >
1 —[1 —(l + ra)a]r

mr

for |«| = r, 0 < r < 1, results from (10). Therefore, we get the equation 
(21). After the discussion, similar to the one in previous theorems, of 
the equation we get the first part of Theorem 4.

If m = 0, then the assertion of Theorem 4 follows immediately from 
the definition of R4 and from (19) and (20).

, The sharpness of the estimations is realized by the sequence = 
_(_!)"*£ and by the function p*(z) defined in (14).

The foregoing theorem seems to be of the most considerable interest 
for us. It states that every function p(z) constructed from an arbitrary 
function p«^“, according to the rules (2) and (3), where {«„J, |e„J < e, 
is an arbitrary sequence of complex numbers corresponding to a fixed 
sequence {nk} and to a fixed positive number o, satisfies in the disc with 
the radius equal R4 the condition

Re{p(z)} > /?

and, moreover, that Ri cannot be made greater.
Remark 3. Denote by , [2], a family of functions of the form (6) 

regular in the disc K and satisfying

|p(z) —c|< M for ZeK

where c, M are arbitrary fixed numbers satisfying 

|1 — c| < M < Re {c}.

The definition of the class —1 < m< 1, and of the family im‘ 
plies the inclusion

<= &c.M
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where
1 — am 1 — aM =c
1 — m 1 — TO

The sharp estimations of the coefficients, [2], and the real part, [4], in 
the class are already known. It is worth mentioning here that the 
applied method does not allow to determine the sharp estimations of 
-R3 and in the case of T1 = ^C,M, T., = 0^.

Remark 4. In the case of a = /5 = 0 and to = 1 the theorems 1-4 
are identical to the respective results of Stankiewicz, [7].

Remark 5. In the case of to = 1 the theorems 1 —4 give the esti
mations of R, when T1 = and T2 — For example, Theorem 4 
results in the following statement:

1/ {nJ is an arbitrarily fixed subsequence of the sequence of natural 
numbers and the condition lim = +oo is satisfied, then the number

R4({nk}, equals to the unique root, lying in the interval (0,1),
of the equation

(23) (l + r)p + 2(l-a)0 +(1 — 2a)r —1 = 0.

Remark 6. Specifying the sequences {nJ and {e„fc} we obtain from 
(23) various estimations of R,. In particular

1° If to = 1 and {nJ = {2fc}, k — 1,2, ..., i.e. when we change only 
even coefficients of the function pe^a, then the formula

R,({2k}, e,^a,^) =

is valid, where
1 =(a-/?)2 + 2e(l-a)(l-/?). 
4

Assuming, moreover, that e„k = —1, we get

1-P
4 l-a+/(l-a)*+ (!-/?)’

2° If to = 1 and {nJ = {2k — 1}, k = 1, 2, ..., then

224({2k-l},e,^“,^) = —-
(l-a)(l + e)+yj/4
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where

If we assume additionally that enj, = —1, then the function

p(z) = l + ^p^Z2*, ZeK
k

belongs to &a. Obviously for fi^a, the function p(z)c^ for zeK.
3. In the following section we shall give the estimations of A,

(i = 1,2,3,4) when 2\ and T2 are certain classes of p-valent functions. 
A function f(z) is said to be p-valent in a unit disc K if it is regular

in K and the equation

(24) f(+) = w0

has, for some w0,p roots in K and if for an arbitrary complex number 
w0 the equation (24) has at most p roots in the disc K.

Denote by C%, 0 sg a< 1, p = 1, 2, ..., the family of all functions 
f(z) of the form

(25) /(z)=z”+ J*
n=J) + l

regular in the disc K and satisfying

(26) Re

It is known, [8], that the functions belonging to the class 0“ are p-valent 
in K.

Let the function/(z), having the form (25), belong to the class C". 
Then from the inequality (26) and from the well known, [1], estimations 
valid in the class & we obtain the following sharp estimations:

(27)
2®(1 — a)

W <------- ------, n = P+1, p + 2, ...n

and

1 —r(l —2a)
, |z| = r, 0 < r < 1.

1 + r
(28)
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Let {nk} be a subsequence of natural numbers greater than p. For 
the given function feC'}‘ we construct, according to the rules (2) and 
(3), a new function

+ 00
(29) /(«)-«” +

Wl=p + 1

Consider next the definitions of Rt corresponding to the functions defined 
by (25) and (29) and to the families of functions Tx = C“, T2 = 
Employing the method used in the proofs of the theorems 1 — 4 and of 
the inequalities (27) and (28) we easily verify that the following theorems 
are true.

Theorem 5. If either the conditin

(i) lim Ynk\en a^r"* = +oo

or the conditions

(ii) lim X«*|8»fc«»fclr”fc = A< + °° 
r->l_ k

and

(iii) A +p(fi — a) > 0

hold, then the number Rx(f, {n*}, {enj:}, C“, C£) is not smaller than the uni
que root, lying in the interval (0,1) of the equation

(1 + r) b + - JT | «„J rn‘-J’I + (1 - 2«) r -1 = 0.
L P t J

If both the conditions (ii) and

(iv) A+p(P — a) 0

hold, then Rx — 1. '
For the function

z
(30) f(z) J p+ (!-«)

there exists a sequence e*k = — ( —l)"fc |e„fc| such that the result is the best. 
Theorem 6. If either the condition

(i) Hm Ynk\an |r"* = +oo 
r-i" k *
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or the conditions

(ii) lim \nk\a |rB* =A< +oo 
>•-1- k

and

(iii) gA+p(p-a)> 0

hold, then number R3(f, {nk}, C°, Cp} is not smaller than the unique root, 
lying in the interval (0,1), of the equation

(i+r)R+«^nja^ir',,c_,’l+(i_2a)r_i=o-

L P k J

If both the conditions (ii) and

(iv) çA+p(P-a)^0

hold, then R2 — 1.
For the function f*(z) of the form (29) and for the sequence e*k 

— — (—l)"fce the result is the best.
Theorem 7. If either the condition

(i) lim = +oo
r-»l k

or the conditions

(ii) lim V |e„ |r”fc = A < +oo
k

and

(iii) 2(1 —a)A +p — a> 0

hold, then the number R3({nk}, {«„*.}, C", Cp) is not smaller than the unique 
root, lying in the interval (0,1), of the equation

(l + r)p + 2(l-a)^ |enjfc|r»*-*] + (l-2a)r-l = 0. 
s

If both the conditions (ii) and

(iv) 2(1 —a) A+fi—a^O

hold, then R3 = 1.
For the sequence e*k = — (—1)"*|««J the function f* (z) defined by (29) 

is the extremal function.
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Theorem 8. If either the condition

(i) lim V rnk = + oo 
r-»l- V

or the conditions

(ii) lim Wnk = A < +oo

and

(iii) 2p(l — a)A+fi — a > 0

hold, then number R4({nk}, q, Cf, Cfy is equal to the unique root, lying 
in the interval (0, 1), of the equation

(31) (l + r)[/} + 2e(l-a) J£rn*-*] + (l-2a)r-l =0.

If both the conditions (ii) and

(iv) 2g(l — a) A 4-/5 — a < 0

hold, then R, =1.
The extremal function’ has the form (30).
Remark 7. In particular, when p — 1 and a = ft — 0, then the 

theorems 5 —8 are identical to the respective results of J. Stankiewicz, [7].
Remark 8. If we put

nk = 2k, k = p, p+1, ...

or

nk = 2k—1, k = p+1, p + 2, ...,

then it follows from the equation (31) that the number Rt is a positive 
root of the equation

2^(1 - a)rp + r2(2a-p-l) + 2r(l - a) + 0-1 = 0

or

2<?(1 - a)rp+1 + r2(2a - 0 -1) +2r(l - a) + 0 -1 = 0, 

respectively.

Thus in particular we get the relations

«4({2fc-l}, e,O“,C?) = Rt({2k}, Q,Ca2,C$) = Rd{2k},Q,^a,^)
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and

ЗД2*}, в, C“, C{) = R^k-1}, e,^a,^e).
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STRESZCZENIE

Niech T1 i T2 będą ustalonymi klasami funkcji holomorficznych w kole 
jednostkowym. Dla danej funkcji konstruujemy funkcję f(z)
według reguł (2) i (3), [7].

W pracy tej wyznaczono ostre oszacowania największej liczby r, 
0 < r < 1, takiej, że funkcja f(r-z) albo r^f^r-z) należy do T2, gdzie 
rodziny i T2 są związane z klasą funkcji Caratheodory’ego.

РЕЗЮМЕ

Пусть и Т2 будут фиксированными классами регулярных 
функций в единичном круге. Для данной функции / е Т\ мы констру
ируем функцию / по правилам (2) и (3) [7].

В этой работе представлены точные оценки самого большого 
числа г, 0 < г < 1, такого что функция /(гг) или г_,/(гг) принадлежит 
к Т2, где семейства 1\ и Т2 являются связанными с классами функции 
Каратеодори.


