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On Some Properties of the Coefficients of Regular Functions with
Positive Real Part

O pewnych wlasnodciach wspélezynnikéw funkeji holomorficznych o dodatniej czedei
rzeczy wistej

O HexOTOpbIX CBOWCTBaX KOIPGHUMEHTOB PErYNAPHLIX QYHKUMH, BELIECTBEHHAN YacTh KOTOPBIX
ABJIAETCA TMOMOXKUTENLHOH ;

1. Recently the studies have been undertaken concerning the problem
of finding the radius of the greatest disc in which a given property of
a regular function is preserved after a rather general change of its coeffi-
cients has been done, [3], [7].

For the given function of the form

(1) f(2) = ag+a,2+ ... +a,2"+ ...

regular in the discK = {z: |2/ < 1} we construct a new function f(2)
in the following way, [7]. Let {n,} be a finite or infinite subsequence of
the sequence of natural numbers and {¢, } — a corresponding sequence
of complex numbers with elements not all equal zero. Let us put

_ a, if m#n, t=12,...
(2) Gy = .
QG t 6@y, Hm=m, k=1,2,..
and
(3) flo) = D) ane™

m=0
where in the case when the sequence {n,} is infinite we assume that the
Series 3 |e,, @, |7"* converges in the interval <0, 1).
k

Definition. Let T,,T, he fixed classes of regular functions of
the form (1).
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a/ For fixed {n,}, {¢,,}, feT, we denote by

R, = R\(f, {m}, {enk}, T, T,

the greatest number 7, 0 < r < 1, such that either f(rz) or » 'f(rz) be-
longs to 7T,. If the number with this property does not exist, then we
put B, = 0.
b/ For fixed {n,}, o > 0, feT, we put

R, = R,(f, {m}, 0, T\, Ty)) = inf R, (f, {ni}, {e,,}, Ty T>)

Iluki‘--ﬁ'

¢/ For fixed {n;}, {e,} lot
Ry = By({m}, {ea,}s T1s To) =};2le(f, {ne}s {ea}y Thy T).
d/ For fixed {n.}, o > 0, we put
R, = R,({n\}, 0, Ty, T,) = inf [inf R,(f, {m}, {&,,}, T\, T,)].

£T lep 1<e

It can be easily noticed that if |e, | < ¢ and feT,, then B, < R, < R,
and R, < R, < R,.

The present work gives estimations of the numbers B; (¢ = 1,2, 3, 4)
for some families of functions connected with the class of functions re-
gular in the disc K and having the positive real part there. The obtained
results are the generalization of those by J. Stankiewicz, [7].

2. Let us denote by P, (0 <a<1l, —1<m<1), (cf. [6]), a family
of functions with the following integral representation

s
3n .
il .,

1+ ez )
(4) p(2) = f [a+(l—a) -1_?:;12]({;;(”, zeK

0
where u(t) is a function of the variable ?, 0 < ¢ < 2x, nondecreasing in
this interval and satisfying

(5) f du(t) = 1.
It is easy to observe that #] = #° where 2% [6], is a family of all
functions of the form
(6) p(2) =1+p2+py22+ ...
regular in the disc K and satisfying
Re{p(z)} > a for zeK.

Obviously #! = #° = #, where #, [1], denotes the known class of all
functions of the form (6) with their real parts positive in the disc K.
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Now we shall determine the estimations of the numbers R,
(1 =1,2,3,4) in the case when T, = £ and T, = 2.
Theorem 1. If either the condition

(i) lim ,T,Vle,.kpnklr"k = +oo

r—-1-

or the conditions

(ii) lim T? [Eng Py | P™ = A < + 00
and
(iii) A+B—a>0

hold, then the number R, = R,(p, {n}, {e,,}, Z, #") is greater than or
equal to the unique root, lying in the interval (0, 1), of the equation

(7) (L +mr) [ﬂ+ 2; Isnkpn,klr"k] +[1—(1+m)alr—1 = 0.
k

If both the conditions (ii) and
(iv) A+pf—a<0

hold, then R, = 1.
There exists a function belonging to the class #, and a sequence {e, }
such that the yesult is the best.

Proof. Let the function p(z) of the form (6) belong to the class
#, . From (2) and (3) we get

(8) P(2) = p(2)+ D P ?™, 2¢K.
k

From the results of Moleda, [5], the following sharp estimation imme-
diately follows:
1—[1—(1+m)a]r

(9) Re{p(2)} >

y Rl=r0<r<l1.

On the circle |2 =7, 0<7r< 1, by (8) and (9), the inequality

. 1—[1—(1+m)alr
(10) Re{p(2)} > —— e ~

1
’ i
;" p 1snkpllk|r .

holds. From above and from the maximum principle it follows that
Re{p(2)} > B in the disec 2| < r

& — Annales t. XXIX, 1975
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when

[1—(1+m a]r
(1) o) - V|en,,p,,k|r"k> 2

Thus the problem of finding the estimation of the number R, is connectod
with the discussion of either the equation (7) or the equation

(12) Lr Vle,,kpnklr"k P(r) =0
where
(13) Pl — gt — st mbalr g1

1-+mr

Consider the following cases:

a/ Suppose that the condition (i) is fulfilled. By (12) we have L(0)
= f—1< 0. The function P(r) defined by (13) increases in the interval
(0,1). Thus the equation (12) and consequently the equation (7) has
a unique root in this interval what, by the definition of R,, completes
the proof of the theorem in the case in question.

b/ Suppose now that the conditions (ii) and (iii) are fulfilled. Then
lim L(r) = A+B8—a> 0. Since the function L(r) increases in (0, 1)

r—1—
and L(0)< 0, therefore the equation (7) has a unique root in (0, 1).
This proves the assertion in the considered case.

¢/ If, in turn, the conditions (ii) and (iv) are fulfilled, then L(7)
takes negative values in (0,1) and therefore the function @(r), given
by (11), satisfies the inequality

d(r) > B for every r, 0 < r< 1.

Hence R, = 1.
Let us consider a function p*(z) of the form
1+2
*(2) = l—a)-——, K
(14) PR mat(l—a)g——, 2
and a sequence &, = —(—1)"e, |. Then for z = —r, 0 <r< 1, by (8),
we obtain
1—-[1—(1+m)alr )
-~ * % n
B bl 75 - T — '*% 1Py Eng | 7"

Thus it follows that

R,(p*) {m}, {5:k}r Py P') =1y
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where r, is a root, lying in (0, 1), of the equation (7) corresponding to
the function p*(z) and to the sequence e:k. That means that the given
estimation of R, is the best. The proof of Theorem 1 has been completed.

Remark 1. In the case when m = 0 Theorcm 1 is obviously reduced
to the following formulas:

1-4
R . ., pa _-}:a;i Sl — 3
Py (i} {e k}’ 0y 7). 1—a+ e p,yl

if leypy|+Bf—a>0,

R\ (p, {m}, {Euk} 25, #") =1 if |eyp,|+p—a<0.

Theorem 2. If either the condition

(i) lim lenklr"k = +o00
r-»1 k
or the conditions
il lim [Pp, |7 = A< 400
(i) Tim ; Pu
and
(iii) pA+pf—a>0

hold, then the number R, = R,(p, {n;}, 0, 2%, P’) is greater than or equal
to the unique root, lying in the interval (0, 1), of the equation

(15) (1 +mn)[B+e 3 1pa, 1] +r[1— (1 +m)a]-1 = o.
k

If both the conditions (ii) and

(lV) gA+ﬂ—a < 0

hold, then R, = 1.

There exists a function belonging to the class 2%, and a sequence {e,, },
Ie,,kl < o, such that the result is the best.

Proof. Consider the lower bound of the function @(r) defined in

(11) with respect to the sequences {s,,k}, e, | < o. Then the relation (10)
implies the following inequality:

1—_[1j(1+m)ﬂr__

Re{p(2)} > SV

Y
@Z |pnk/r”kl’ 2} =7, o<r<l1.
k

Hence, analogously to the proof of Theorem 1 we obtain the estimation
of R,.
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Notice finally that for the sequence {e,,k} = {—(—1)"*p} and for
p*(2) defined in (14) we have
_ 1-1—-(1+m)a]r = X
Re(f*(a)}| =~ = —e D Ipk,Ir™.
k

oA = 1-+mr

Hence it follows that the estimation of R, is the best.
Remark 2. If m = 0, then the following conditions hold:

1—B\

R-)( n;. .9":,.’?“}} e — if QI |+B—a>0
-p’{k}’gr 1—a+tolp, Pl +B
and
R,(p, {ny}, 0, 75, ) =l if olp | +B8—a<0
Theorem 3. 1° Let m # 0(—1<m <1). If either the con dition
(i) lim S‘|enk|lm|"k Iy = oo
r—»1-

or the condilions

(i) lim ?le,.kuml"k Pk = A< +oo

r—1-
and
(iii) l—a)1l+m)A+p—a>0

hold, then the number R, = R,({n}, {e,,}, Py, ?") is greater than or
equal to the unique root, lying in the interval (0, 1), of the equation

(16) (1 +mr)[ﬂ+ (L—a)(1+m)r Y le,,| lmrl"""] +[1=(1+m)alr—1=0.
-

If both the conditions (ii) and

(iv) (1—a)(1+m)A+f—a<0
hold, then R; = 1.
2° If m = 0, then
1-p
(1A—a)(1+]eal)
R, =1 when (L—a)le|+f—a<0

(17) R, > when (1—a)|e;| +f—a> 0,

There exists a sequence {e, } such that the result is sharp.

Proof. Let m +# 0. It is known that the sharp estimation of cocffi-
cients p, of the function having the form (6) and belonging to the class

e

#,, 18 the following, [5],
(18) P < (1—a)(1+m)m™, n=1,2,..
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Hence, taking into accout the condition (10), for 2| =7, 0 <7< 1, we
get the inequality

1-[1—(1 +m)alr

= - \" np—1,.n
Refp(e)} >~ —(L—a)(Ltm) Y ey, |lm{"* s,

k

From the above relation and from the definition of Ry, the way of reaso-
ning being analogous to that used in the proof of Theorem 1, we get the
first part of the Theorem 3.

Let m = 0. From the formulas (4), (5) and rules (2) and (3) we obtain
the condition

(19) P(2) = p(2)+&.p12, 2¢K
where
(20) pl2) = 1+(1-a)zf etdu(t), zeK.
0
The conditions (17) are now easy to obtain.
Finally, is can be easily noticed that for the sequence e,‘,k= —(—1)*%* X
Ie,',kl the function p*(z) defined by (14) is the extremal function. Thus

the proof is completed.
Theorem 4. 1° Let m # 0 (—1< m < 1). If either the condition
(1) lim ¥ mr™ ' = + oo
r-»l—T

or the conditions

ii lim fmr|™ ! = 4 < + o0
( ) r—1- .TS:

and

(1ii) e(l—a)1+m)A+f—a>0

hold, then the number R, = R,({n,}, 0, 75, #") is equal to the unique root,
lying in the interval (0, 1), of the equation

(21) (@ +mn)[p+e@—a)@+m)r ¥ | +[1—(1+m)alr—1 = 0.
-
If both the conditions (ii) and

(iv) e(l—a)1+m)A+f—a<0
kold, then R, = 1.
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2° If m = 0, then
1-5
(22) R, = (1—a)(1+p)
I 1 when p(l—a)+pf—a<0.

when po(l—a)4f—a>0,

The estimations are sharp.

Proof. Let m +# 0. The definition of the number R, implies that
we should take the lower bound of @(r) defined in (11) with respect to
all functions peZ;, and all sequences {s,,k}, lén, | < e. Then the ine-
quality

1—-f1—-(1 +m)a]r "

Re(p(a) >~

o(1—a)(1 +M)Zlml"’*"‘r"’~‘
k

for |z2| =r, 0 < r< 1, results from (10). Therefore, we get the equation
(21). After the discussion, similar to the one in previous theorems, of
the equation we get the first part of Theorem 4.

If m = 0, then the assertion of Theorem 4 follows immediately from
the definition of R, and from (19) and (20).

. The sharpness of the estimations is realized by the sequence r:k =
—(—1)**p and by the function p*(z) defined in (14).

The foregoing theorem seems to be of the most considerable interest
for us. It states that every function p(z) constructed from an arbitrary
function pe#;, according to the rules (2) and (3), where {s,,k}, &g, | < 0,
is an arbitrary sequence of complex numbers corresponding to a fixed
sequence {n,} and to a fixed positive number p, satisfies in the disc with
the radius equal R, the condition

Re{p(2)} > B

and, moreover, that K, cannot be made greater.

Remark 3. Denote by #, 5, [2], a family of functions of the form (6)
regular in the disc K and satisfying

lp(2)—ec|< M for zeK
where ¢, M are arbitrary fixed numbers satisfying
1—e|l < M < Re{c}.

The definition of the class #;, —1 < m < 1, and of the family 2, ,, im-
plies the inclusion

PP m
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where

The sharp estimations of the coefficients, [2], and the real part, [4], in
the class #, ,, are already known. It is worth mentioning here that the
applied method does not allow to determine the sharp estimations of
R, and R, in the case of T, = 2,5, T, = #°.

Remark 4. In the case of a =88 =0 and m =1 the theorems 1—4
are identical to the respective results of Stankiewiez, [7].

Remark 5. In the case of m = 1 the theorems 1 —4 give the esti-
mations of R, when 7, = ?" and T, = #’. For example, Theorem 4
results in the following statement:

If {n,} is an arbitrarily fived subsequence of the sequence of nmatural

numbers and the condition lim Y'r" = + oo is satisfied, then the number
r—+1— &k

R, ({n,}, 0, 2", ") equals to the unique root, lying in the interval (0, 1),
of the equation

(23) (1+7)[ﬂ+2(1—a)9 > +(1—2a)r—1 = 0.
]

Remark 6. Specifying the sequences {n,} and {e,,k} we obtain from
(23) various estimations of R,. In particular

1° If m =1 and {n,} = {2k}, k =1,2,..., i.e. when we change only
even coefficients of the function pe?“, then the formula

1
1~—u+]/

{2’”}a e, 2% g?ﬂ

ua]m“

is valid, where

A4
5= (a—p)*+20(1 —a)(1—pB).
Assuming, moreover, that e, = —1, we get
1-p

R, =

1—atVl—ap+1—pr
2°If m =1 and {n,} = {2k—1}, k =1,2,..., then

1-8
R,({2k—1}, o, 2%, #") = T
L e )= W aa+evan
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where
A4 3 y
— = (a—B)2+ (1 —a)2(20+ 0?).

If we assume additionally that e, = —1, then the function

belongs to #°. Obviously for g < a, the function p(2)e#’ for zeK.
3. In the following section we shall give the estimations of R;
(¢ =1,2,3,4) when T, and T, are certain classes of p-valent functions.
A function f(2) is said to be p-valent in a unit dise K if it is regular
in K and the equation

(24) f(z) = w,

has, for some w,, p roots in K and if for an arbitrary complex number
w, the equation (24) has at most p roots in the disc K.

Denote by €5, 0<a<1, p =1,2,..., the family of all functions
f(z) of the form

(25) fo =2+ Y a2
n=p+1

regular in the disc K and satisfying

I (2))

pzl)—l ’ P (1, ~€K.

(26) Re{

It is known, [8], that the functions belonging to the class Cj‘, are p-valent
in K.

Let the function f(z), having the form (25), belong to the class Oy
Then from the inequality (26) and from the well known, [1], estimations
valid in the class 2 we obtain the following sharp estimations:

2p(1—a)
(27) lan|<——;; —y n=p-+1, p+2,...
and
"(z 1—7r(1—2a
(28) Relf()l‘z ( —-),Iz|=r,0<r<1.

Lp | Ly
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Let {n,} bo a subsequence of natural numbers greater than p. For
the given function feC, we construct, according to the rules (2) and
(3), 2 new function

+00
(29) flo) =22+ D) @2, z¢K.

m=p+1

Consider next the definitions of R; corresponding to the functions defined
by (25) and (29) and to the families of functions T, = Cj, T, = (7).
Employing the method used in the proofs of the theorems 1 —4 and of

the inequalities (27) and (28) we easily verify that the following theorems
are true.

Theorem 5. If either the conditin

(i) h.rln 5‘ (L a"kl = 400

or the conditions

(ii) hmzym””'%—A<+m

r—1-

and
(iii) A+p(f—a)>0

hold, then the number R,(f, {n:}, {e4,}, Cp, C5) is mot smaller than the wuni-
que root, lying in the interval (0, 1) of the equation

y _
(Hr)[ﬂg}’m% klr""_”J+(1—2a)r—-1 =,

k

If both the conditions (ii) and

(iv) A+p(f—a)<0
hold, then R, = 1. Y
For the function
(30) [ = pf[a+ 1—a) i]:ﬂ-'ff:
L
there exists a sequence e,lk = —(—1)"le,, | such that the result is the best.

Theorem 6. If either the condition

(i) lim S‘nkla

r—»l_'

nLlr k= 400
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or the conditions

(i) lim ¥ala, |r"™ =A< +oo
r—1- T
and
(iii) pA+p(f—a)>0

hold, then number Ry(f, {n;}, Cg, Ch) is not smaller than the unique root,
lying in the interval (0, 1), of the equation

a +’)[ﬂ +;:- anlanklr"k"’] +(1—2a)r—1 = 0.

k
If both the conditions (ii) and
(iv) eA+p(f—a)<0

hold, then R, = 1.

For the function f*(z) of the form (29) and for the sequence ey,
= —(—1)"p the result is the best.

Theorem 7. If either the condition

r—1"

(i)  lim D'le,r" = +oo
k

or the conditions

(ii) lim Elwlf"" =A< 4o
k

and
(iii) 21—a)A+p—a>0

hold, then the number Ry({n}, {e,,}, Cy, C;) i8 not smaller than the unique
root, lying in the interval (0, 1), of the equation

(L+n)[B+2A—a) Y leyJr™ 7|+ (1—2a)r—1 = 0.
] ,

If both the conditions (ii) and
(iv) 21—a)A+f—a<0

hold, then Ry — 1.
For the sequence e, — —(—1)"e, | the function f*(z) defined by (29)
18 the extremal function.
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Theorem 8. If either the condition

(i) lim Y% = +oo

r—1- ‘Z.J

or the conditions

(ii) lim Erﬂk =A< 4+

r—-1 &
and
(iii) 20(1l—a)d+B—a>0

hold, then number R ({n;}, 0, C5,C5) is equal to the unique root, lying
in the interval (0, 1), of the equation

(31) (1+r)[ﬂ+2g(1—a)Zr"k‘p]+(1—2a)r—1 =0

-k
If both the conditions (ii) and
(iv) 20(l—a)A+B—a<0

hold, then R, = 1.
The extremal function™ has the form (30).

Remark 7. In particular, when p =1 and « = = 0, then the
theorems 5 —8 are identical to the respective results of J. Stankiewicz, [7].
Remark 8. If we put

n, =2k, k =p, p+1,...
or
n, =2k—1, k=p+1, p+2,...,

then it follows from the equation (31) that the number R, is a positive
root of the equation

201—a)r®+r3(2a—f—1)+2r(1—a)+ -1 =0
or
201 —a)r?*' 4 r2(2a—pf—1)+2r(1—a)+p—1 =0,
respectively.

Thus in particular we get the relations

R4({2k—l}, 0, Cy, 0,1’) = R4({2k}’ 0, C3, Cg) - R4({2k}’ 0, 7% g,ﬂ)
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and

R4({2k}7 0, CY, C’f) = R4({2k"l}y 0, %% gpﬂ).
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STRESZCZENIE

Niech T, i T, beda ustalonymi klasami funkeji holomorficznych w kole
jednostkowym. Dla danej funkeji fe7, konstruujemy funkeje f(2)
wedhug regut (2) i (3), [7].

W pracy tej wyznaczono ostre oszacowania najwiekszej liczby r,
0 < r<1, takiej, ze funkcja f(r-z) albo r“f(r-z) nalezy do T,, gdzie
rodziny 7', i T, sa zwiazane z klasg funkeji Caratheodory’ogo.

PE3SIOME

[yers 7y u T, OynyT QUKCHPOBAHHBIMM KJIACCaMH PeryJfapHBIX
$yukuit B eaunuynom Kpyre. LA naHuoit gyHkuum f € T, MBI KOHCTpY-
upyeM QyHKLHIO fuo npasuaam (2) u (3) [7).

B aroit paGote npescraBieHbl To4ynble OLeHKM camMoro O6oJblioro
yncaa r, 0 < r < 1, Takoro 4to Q)yHKUHA f(rz) Wi r“f(rz) NPHHANCHKUT
Kk T,, rae cemeiictea T, u T, ABAAIOTCA CBA3AHHBIMK € KjiaccaMil (yHKLIH
Hapareonopi.



