UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXIX, 7

SECTIO A

1975

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej, Lublin

MARIA FAIT, JAN STANKIEWICZ, JADWIGA ZYGMUNT

On Some Classes of Polynomials

O pewnych klasach wielomianów Об некоторых классах полиномов

Let P_{n_a} denote a class of polynomials of the form:

$$p(z) = 1 + a_1 z + \ldots + a_n z^n$$

which satisfy the condition

$$\operatorname{Re} p(z) > a$$
, for $z \in K_1 = \{z : |z| < 1\}$,

where n is a fixed positive integer and a is a fixed real number belonging to the interval (0, 1).

F. Holland [2] proved the following

Theorem A. If $p(z) = 1 + a_1 z + \ldots + a_n z^n \epsilon P_{n,0}$ then

$$|a_k|\leqslant 2\cosrac{\pi}{\left\lceilrac{n}{k}
ight
ceil+2}\,, \hspace{0.5cm} k\,=1,2,\ldots,n\,,$$

where $\left\lceil \frac{n}{k} \right\rceil$ is the greatest integer $\leqslant \frac{n}{k}$. The estimate (1) is sharp.

Long before (1928) E. Egervary and O. Szasz [1] proved

Theorem B. Let $Q(\theta) = 1 + \sum_{k=1}^{n} (a_k \cos k\theta + \beta_k \sin k\theta)$ be a non-negative trigonometrical polynomial. Then

$$\sqrt{a_k^2+eta_k^2}\leqslant 2\cosrac{\pi}{\left\lceilrac{n}{k}
ight
ceil+2}, \hspace{0.5cm} k=1,2,...,n$$

and the estimate is sharp.

Remark 1. Theorem A is a simple corollary of Theorem B. It is enough to remark that if we put $z=e^{i\theta}$, $a_k=a_k-i\beta_k$, $k=1,2,\ldots,n$, then

$$Q(\theta) = \operatorname{Re} p(z) = \operatorname{Re} p(e^{i\theta}).$$

Thus the condition $\operatorname{Re} p(z) > 0$, for |z| < 1, implies that $\operatorname{Re} p(z) \ge 0$ for |z| = 1 and by this $Q(\theta) \ge 0$. Furthermore, $|a_k| = |\overline{a}_k| = \sqrt{a_k^2 + \beta_k^2}$.

The Theorems A and B may be generalized on the classes $P_{n,a}$. Theorem 1- If a polynomial

$$w(z) = 1 + a_1 z + \ldots + a_n z^n \epsilon P_{n,a}$$

then

$$|a_k|\leqslant 2\,(1-a)\cos\frac{\pi}{\left\lceil\frac{n}{k}\right\rceil+2}, \quad k=1,\,2,\,\ldots,\,n\,.$$

The estimate is sharp. The extremal polynomials, which give equality in (2) have a form:

(3)
$$w_{\xi}(z) = q(z) \left\{ 1 + (1-a) \sum_{l=1}^{\left[\frac{n}{k}\right]} \tilde{a}_l (e^{i\varphi} z)^{kl} \right\}$$

where

$$\tilde{a}_l = \frac{2}{\left[\frac{n}{k}\right] + 2} \binom{n}{k} - l + 1 \bigg) \cos \frac{l\pi}{\left[\frac{n}{k}\right] + 2} + \sin \frac{(l+1)\pi}{\left[\frac{n}{k}\right] + 2} \bigg/ \sin \frac{\pi}{\left[\frac{n}{k}\right] + 2}$$

and q(z) is a polynomial whose degree is $n - \lfloor n/k \rfloor k$ $(n - \lfloor n/k \rfloor \cdot k \in \{0, 1, ..., k-1\})$ and chosen so that the polynomial $w_{\xi}(z)$ given by (3) satisfies the conditions of our theorem. For $n \to \infty$ we obtain the result of Libera [5].

Proof. We first remark that $w(z) \, \epsilon P_{n,a}$ if and only if $p(z) = (w(z) - a)/(1-a) \, \epsilon P_{n,0}$.

If we put $w(z) = 1 + a_1 z + \ldots + a_n z^n$, $p(z) = 1 + b_1 z + \ldots + b_n z^n$ then the coefficients a_k , b_k are related by the equality $a_k = (1-a)b_k$. The polynomial p(z) satisfies the conditions of Theorem Λ and therefore (1) implies (2).

In the paper [1] p. 646, the extremal trigonometrical polynomials in Theorem B are determined. Using these extremal polynomials and the relation

(4)
$$w(z) = a + (1-a)p(z)$$

between the classes $P_{n,a}$ and $P_{n,0}$ one can find that the extremal polynomials have the form (3).

Basing on the results of papers [1], [2] we can find the estimates of some functionals such as: $\max_{|z|\leqslant 1}|w(z)|, |a_k|+|a_{n-k+1}|$ and $\max_{|z|\leqslant 1}|\operatorname{Re}\{izw'(z)\}|=\max_{|z|\leqslant 1}|\operatorname{Im}\{zw'(z)\}|$ for the class $P_{n,a}$.

Theorem 2. Let $w(z) = 1 + a_1 z + \ldots + a_n z^n \epsilon P_{n,a}$.

(5)
$$|a_k| + |a_{n-k+1}| \le 2(1-a), \ k = 1, 2, ..., n,$$

(6)
$$\max_{|z| \le 1} |w(z)| \le 1 + (1-\alpha)n$$

$$(7) \qquad \max_{|z|\leqslant 1}|\operatorname{Re}\left\{izw^{'}(z)\right\}| = \max|\operatorname{Im}\left\{zw^{'}(z)\right\}|\leqslant (1-a)\sqrt{\frac{n+1}{2}\binom{n+2}{3}}.$$

The estimate (6) is sharp. The extremal polynomials have the form

(8)
$$w_{\varepsilon}(z) = 1 + 2(1-a)\sum_{k=1}^{n} \left(1 - \frac{k}{n+1}\right) (e^{i\varphi}z)^{k}$$

where φ is an arbitrary fixed real number.

Proof. The inequality (5) follows from (4) and from inequality (22) of [1], p. 650. The inequality (7) follows from (4) and from inequality (23) of [1], p. 651. Next, the inequality (6) follows from (4) and from Theorem 2 of [2], p. 54.

With the class $P_{n,a}$ we can connect some classes of univalent polynomials.

Denote by $R_{n,a}$ the class of univalent polynomials

$$f(z) = z + a_2 z^2 + \ldots + a_n z^n$$

satisfying the condition

$$\operatorname{Re} f'(z) > a$$
 for $z \in K_1$.

Thus we have

(9)
$$f \in R_{n,a} \Leftrightarrow f(0) = 0 \wedge f' \in P_{n-1,a}.$$

Let $H_{n,a}$ be the class of univalent polynomials

$$h(z) = z + a_2 z^2 + \ldots + a_n z^n$$

such that $\operatorname{Re}[zh^{'}(z)]^{'}>a$ for $z\in K_{1}$. In this case we have

(10)
$$h \in H_{n,a} \Leftrightarrow h(0) = 0 \wedge [zh'(z)]' \in P_{n-1,a}.$$

Furthermore, denote by $G_{n,a}$ the class of univalent polynomial $g(z)=z+a_2z^2+\ldots+a_nz^n$ such that $\operatorname{Re}\{g^{'}(z)+\frac{1}{2}zg^{''}(z)\}>a$ for $z\in K_1$. Now

(11)
$$g \epsilon G_{n,a} \Leftrightarrow g(0) = 0 \wedge \{g'(z) + \frac{1}{2}zg''(z)\} \epsilon P_{n-1,a}$$

Theorem 3. If $f(z) = z + a_2 z^2 + \ldots + a_n z^n \in \mathbb{R}_{n,a}$ then

$$|a_k|\leqslant \frac{2(1-a)}{k}\cos\frac{\pi}{\left[\frac{n-1}{k-1}\right]+2}, \quad k=2,3,...,n$$

This estimate is sharp. The equality occurs only for the polynomials of the form

(13)
$$f_{\xi}(z) = \int_{0}^{z} w_{\xi}(\zeta) d\zeta,$$

where $w_{\xi}(z)$ is given by (3).

Remark 2. If n approaches ∞ then we obtain the estimates of coefficients for the class R_a of univalent functions (Ref'(z) > a) Namely,

$$\text{if } f(z) = z + \sum_{k=2}^{\infty} a_k z^k \text{ and } \operatorname{Re} f'(z) > a, \text{ then } |a_k| \leqslant \frac{2\left(1-a\right)}{k}.$$

For a = 0 and n approaches ∞ , we obtain the classical result, that the coefficients of the functions with bounded rotation are dominated by 2/k (see e.g. [6]).

Proof of Theorem 3. By the relation (9) between the classes $P_{n-1,a}$, $R_{n,a}$ we have $f \in R_{n,a}$ if and only if there exists a polynomial $w \in P_{n-1,a}$ such that

(14)
$$f(z) = \int_{0}^{z} w(\zeta) d\zeta.$$

Therefore if $f(z) = z + a_2 z^2 + \ldots + a_n z_n$ and $w(z) = 1 + \tilde{a}_1 z + \ldots + \tilde{a}_{n-1} z^{n-1}$, then $a_k = \tilde{a}_{k-1}/k, \ k = 2, 3, \ldots, n$.

Using the estimate (2) for \tilde{a}_{k-1} we have finally

$$|a_k| \leqslant rac{2\left(1-lpha
ight)}{k} \, \cos rac{\pi}{\left[rac{n-1}{k-1}
ight] + 2} \, .$$

The equality occurs in (12) only if the equality occurs in (2). This together with (9) yields (13).

Theorem 4. If $h(z) = z + a_2 z^2 + \ldots + a_n z^n \in H_{n,n}$, then

$$|a_k| \leqslant \frac{2(1-a)}{k^2} \cos \frac{\pi}{\left\lceil \frac{n-1}{k-1} \right\rceil + 2}, \quad k = 2, 3, ..., n.$$

The equality occurs in (15) only for the polynomials of the form

(16)
$$h_{\xi}(z) = \int_{0}^{z} \left\{ \frac{1}{\zeta} \int_{0}^{\zeta} w_{\xi}(\eta) d\eta \right\} d\zeta = \int_{0}^{z} \frac{f_{\xi}(\zeta)}{\zeta} d\zeta,$$

where $w_{\varepsilon}(z)$ is given by (3) and $f_{\varepsilon}(z)$ is given by (13).

Proof. The relation (10) between the classes $P_{n-1,a}$ and $H_{n,a}$ may be written in the form

$$h(z) = \int_{0}^{z} \left\{ \frac{1}{\zeta} \int_{0}^{\zeta} w(\eta) d\eta \right\} d\zeta$$

and by this, if $h(z)=z+a_2z^2+\ldots+a_nz^n$ and $w(z)=1+\tilde{a}_1z+\ldots+\tilde{a}_{n-1}z^{n-1}$ then

$$a_k = \tilde{a}_{k-1}/k^2.$$

Now (17) and (2) implies (15). The equality occurs in (15) only if the equality occurs in (2) and therefore by (3) and (10) we obtain (16).

Theorem 5. If $g(z) = z + a_2 z^2 + \ldots + a_n z^n \epsilon G_{n,\alpha}$, then

$$|a_k| \leqslant 4 \; \frac{1-\alpha}{k(k+1)} \cos \frac{\pi}{\left\lceil \frac{n-1}{k-1} \right\rceil + 2} \cdot$$

The equality occurs in (18) only for the polynomials $g_{\xi}(z)$ of the form

(19)
$$g_{\xi}(z) = \frac{2}{z} \int_{z}^{z} f_{\xi}(\zeta) d\zeta = \frac{2}{z} \int_{z}^{z} \left\{ \int_{0}^{\zeta} w_{\xi}(\eta) d\eta \right\} d\zeta,$$

where $w_{\xi}(z)$ is given by (3) and $f_{\xi}(z)$ is given by (13).

Proof. Similarly as above one can remark that if $g(z) = z + a_2 z^2 + \ldots + a_n z^n$ and $w(z) = 1 + \tilde{a}_1 z + \ldots + \tilde{a}_{n-1} z^{n-1}$ are connected by (11), then

$$a_k = \frac{2}{k(k+1)} \, \tilde{a}_{k-1}.$$

Hence, by (20), (11) and (2) we obtain (18) and the formula (19) for the extremal polynomials.

Now, we will consider some special subclasses $P_{n,a}^l$ of the class $P_{n,a}$ with the gaps. Namely, let $P_{n,a}^1$ denote a class of polynomials of the form $w(z) = 1 + a_l z^l + a_{l+1} z^{l+1} + \ldots + a_n z^n$, $(l \leq n)$ which belong to $P_{n,a}$.

Theorem 6. If $w(z) = 1 + a_1 z^1 + \ldots + a_n z^n \in P_{n,a}^l$ then

$$|a_k|\leqslant 2\,(1-lpha)\cosrac{\pi}{\left[rac{n}{k}
ight]+2}, \hspace{0.5cm} k=l,\,l+1,\ldots,n$$

The proof follows by the fact that the extremal polynomials given by (3) are the polynomials with a gap, if q(z) is a polynomial with a gap, too.

Similar theorems can be obtained for the classes $R_{n,a}^l$, $H_{n,a}^l$, $G_{n,a}^l$ of the corresponding polynomials with gaps.

Remark 3. Every polynomial of the classes $R_{n,a}$, $H_{n,a}$, $G_{n,a}$ is univalent in K_1 . All these classes are the subclasses of the class of close-to-convex functions. This follows from the fact that the transformations: $\int\limits_0^z \left[f(\zeta)/\zeta\right]d\zeta \text{ and } 2/z\int\limits_0^z f(\zeta)d\zeta \text{ preserve the class of close-to-convex functions,}$

MacGregor [6] and others considered the functions $f(z)=z+a_2z^2+\ldots$ such that $\operatorname{Re} f(z)/z>0$ for $z\in K_1$. Here, we consider a similar class of polynomials.

Let $L_{n,a}$ denote a class of polynomials of the form $l(z)=z+a_2z^2+\ldots+a_nz^n$, such that $\operatorname{Re} f(z)/z>a$ for $z\in K_1$.

We can write

see for example [3], [4].

$$l(z) \, \epsilon \, L_{n,a} \, \Leftrightarrow \, l(z) \, = \, zw(z) \, \, \, ext{and} \, \, \, w \, \epsilon \, P_{n-1,a}.$$

In this class the coefficients a_k are estimated as follows

$$|a_k| \leqslant 2(1-a)\cosrac{\pi}{\left\lceilrac{n-1}{k-1}
ight
ceil + 2}\,, \hspace{0.5cm} k = 2,3,...,n\,.$$

The polynomials of the class $L_{n,a}$ are not necessary univalent in K_1 . It would be interesting to find the radii of univalence, starlikeness and convexity.

For example, if n=2 then the radii of univalence and starlikeness are equal to $\min\{1, 1/2(1-a)\}$.

Some of these problems were solved in the case a = 0 and $n \to \infty$, [6].

REFERENCES

- [1] Egervary E. and Szasz O., Einige Extremalprobleme in Bereiche der trigonometrischen Polynome, Math. Z. 27 (1928), 641-652.
- [2] Holland F., Some Extremum Problems for Polynomials with Positive Real Part, Bull. London Math. Soc., 5 (1973), 54-58.

- [3] Lewandowski Z., On a Problem of M. Biernacki, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, XVII, 5 (1963), 39-41.
- [4] Libera R.J., Some Classes of Regular Univalent Functions, Proc. Amer. Math. Soc., 16 (1966), 755-758.
- [5] ,, Univalent a-Spiral Functions, Can. J. Math., 19 (1967), 449-456.
- [6] MacGregor T.H., Functions whose Derivative has a Positive Real Part, Trans. Amer. Math. Soc. 104, (1962), 532-537.

STRESZCZENIE

Niech $P_{n,a}$ oznacza klasę wielomianów postaci $w(z)=1+a_1z+\ldots+a_nz^n$ spełniających warunek $\mathrm{Re}\,w(z)>a$ dla |z|<1. W pracy tej oszacowano współczynniki w klasie $P_{n,a}$ oraz w pewnych podklasach wielomianów jednolistnych w kole jednostkowym związanych z tą klasą.

W szczególności, jeżeli $w(z) \in P_{n,n}$ to

$$|a_k|\leqslant 2\,(1-a)\cosrac{\pi}{\left\lceilrac{n}{k}
ight
ceil+2}, \hspace{0.5cm} k=1,\,2,\,...,\,n\,.$$

РЕЗЮМЕ

Пусть $P_{n,a}$ обозначает класс полиномов вида $w(z)=1+a_1z+\ldots+a_nz^n$ исполняющих условие ${\rm Re}\,w(z)>a$, где |z|<1. В этой работе дано оценки коэффицентов в классе $P_{n,a}$ и в некоторых подклассах однолистных полиномов связянных с классом $P_{n,a}$. В особенности,

если
$$w(z)\in P_{n,a}$$
 то $|a_k|\leqslant 2(1-a)\cos\frac{\pi}{\left\lceil\frac{n}{k}\right\rceil+2},$ $K=1,\,2,\,\ldots,\,n.$