ANNALES

UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLIN - POLONIA

VOL. XXIX, 6
SECTIO A
1975

University of North Carolina at Chapol Hill, 27514 North Carolina, USA

JOSEPH A. CIMA

Hadamard Products of Convex Schlicht Functions

Iloczyny Hadamarda funkeji wypuklych jednolistnych
Произведения Адамара вьштукых однолистных функций

1. Introduction

The disk in \mathbf{C} with radius 1 and center at the origin is denoted by Δ. The set \mathscr{A} of all functions holomorphic on Δ is a linear space with pointwise operations. The compact open topology on \mathscr{A} makes \mathscr{A} a Montel space, with the usual metric structure. Let S be the set of f in \mathscr{A} which are univalent on Δ and C the subset of f in S which have convex ranges. Each f in C induces a continuous linear operator Λ on \mathscr{A} by convolution

$$
\Lambda(g)(z)=f^{*} g(z) .
$$

If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ then

$$
\Lambda(g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}=\frac{1}{2 \pi i} \int_{|\xi|=1+|z| / 2} f(\zeta) g\left(\frac{z}{\zeta}\right) \frac{d \zeta}{\zeta} .
$$

There are two important results which came to the fore in discussing such operators. First, the result of T. J. Suffridge [9]. He shows that if f and g and in C then $f^{*} g(z)$ is again a univalent function. The second and perhaps more striking result is that indeed under the same hypothesis $f^{*} g(z)$ is a convex function. This last result is due to St. Ruscheweyh and Sheil-Small [8]. In [7] Sheil-Small has defined a very general class of operators which generalize the simple convolution operators defined above.

In the latter part of this paper we shall need the definitions of the Hardy spaces H^{r} and H^{∞} and also the class of functions of bounded mean
oscillation (BMO). A function f in \mathscr{A} is in the space $H^{p}(1 \leqslant p<\infty)$ if

$$
\sup _{0<r<1}\left(\frac{1}{2 \pi} \int\left|f\left(r e^{i 0}\right)\right|^{p} d \theta\right)^{1 / p}=M<\infty
$$

and $f \in H^{\infty}$ if

$$
\sup _{|z|<1}|f(z)|=M<\infty .
$$

H^{p} is a Banach space. The dual of H^{1} can be identified in a natural way with a space of functions. More precisely let $f\left(e^{i x}\right)$ be a function in L^{2} of the unit circle. The function f has bounded mean oscillation (or f is in $B M O$) if for each interval I we have

$$
\frac{1}{|I|} \int_{I}\left|f\left(e^{i x}\right)-\frac{1}{|I|} \int_{I} f\left(e^{i t}\right) d t\right| d x \leqslant M
$$

where M is a fixed constant depending on f and $|I|$ is the length of I. This set of functions modulo the constants is a Banach space when the obvious norm is introduced. The pairing which establishes the duality is as follows. Let $g \in B M O$ and $f \in H^{1}$. We choose a sequence $\left\{f_{n}\right\}$ in H^{2} with $f_{n} \rightarrow f$ in H^{1} and define

$$
\Lambda(f)=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f_{n}\left(e^{i x}\right) g\left(e^{i x}\right) d x
$$

We have

$$
\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f_{n}\left(e^{i x}\right) g\left(e^{i x}\right) d x\right| \leqslant\|\Lambda\| \cdot\left\|f_{n}\right\|_{1} .
$$

For a reference on $B M O$ see C. Fefferman and E. Stein [2] or the notes of J. Garnett [3].

We bave written two essential sections in this work. The first is a study of the operators induced by composition with the functions $\boldsymbol{K}_{a}(z)$ $=\left(\frac{1+z}{1-z}\right)^{a}$. The second is a collection of assorted cases describing when convolutions map H^{1} into H^{∞}.

1. Operators induced by $K_{a}(z)$.

The univalent mapping $\left(\frac{1+z}{1-z}\right)$ maps Δ onto the right half plane in C. If $\alpha \epsilon(0,1)$ then $K_{\alpha}(z) \equiv\left(\frac{1+z}{1-z}\right)^{a}$ are univalent mappings of Δ onto
a cone, symmetric with respect to the positive real axis. The cone has its vertex at $z=0$ and aperture opening $\alpha \pi$. We compute the Taylor coefficients of $K_{a}(z)=\sum_{k=0}^{\infty} g_{k}(a) z^{k}$. The differential equation

$$
\begin{equation*}
K_{a}^{\prime}(z)=\frac{2 a}{\left(1-z^{2}\right)} K_{a}(z) \tag{1.1}
\end{equation*}
$$

allows the recursion relation

$$
\begin{aligned}
& g_{0}(\alpha) \equiv 1 \\
& g_{1}(\alpha)=2 a
\end{aligned}
$$

$$
g_{k+1}(\alpha)=\frac{1}{k+1}\left[2 \alpha g_{k}(\alpha)+(k-1) g_{k-1}(\alpha)\right]
$$

for $k=1,2,3, \ldots$ to be established.
Theorem 1. For each $a \in(0,1)$ the linear operator Λ_{a} induced on \mathscr{A} by convolution with K_{a} is a one to one, onto, continuous linear operator on \mathscr{A}.

Proof. The convolution is obviously linear and continuous. Also since $g_{0}(\alpha)>0$ and $g_{1}(\alpha)>0$ if $\alpha \epsilon(0,1)$ the relation (1.2) shows that $g_{k}(\alpha)>0$ $k=1,2,3, \ldots$ and every $a \in(0,1)$. This means the operator induced by K_{a} is one to one. Hence, we examine the behavior of the polynomials $g_{k}(\alpha)$ for (i) $a=\frac{1}{2}$, (ii) $a \epsilon\left(\frac{1}{2}, 1\right)$, and (iii) $\alpha \epsilon\left(0, \frac{1}{2}\right)$.

$$
\text { Assuming } a=\frac{1}{2} \text { we find } g_{0}\left(\frac{1}{2}\right)=g_{1}\left(\frac{1}{2}\right)=1 \text {. Also } g_{2}\left(\frac{1}{2}\right)=g_{3}\left(\frac{1}{2}\right)
$$

$=\frac{1}{2}$. In general a simple finite induction argument shows that

$$
g_{2 k}\left(\frac{1}{2}\right)=g_{2 k+1}\left(\frac{1}{2}\right)=\frac{(2 k-1)!}{2^{2 k-1} k!(k-1)!} .
$$

Recall that Sterling's inequalities can be written (for large n)

$$
\frac{\sqrt{2 \pi} n^{n+1 / 2}}{e^{n}}<n!<\frac{\sqrt{2 \pi} n^{n+1 / 2}\left(1+\frac{1}{4 n}\right)}{e^{n}}
$$

This of course implies that

$$
g_{2 k}\left(\frac{1}{2}\right) \geqslant \frac{1}{\sqrt{2 \pi}}\left(\frac{(2 k-1)^{2}}{2 k^{2}-4 k}\right)^{k}\left(\frac{k-1}{2 k^{2}-k}\right)^{1 / 2} \frac{1}{2^{2 k-1}\left(1+\frac{1}{4(k-1)}\right)\left(1+\frac{1}{4 k}\right)}
$$

Taking the $2 k$ th root and then the limit inferior we find

$$
\liminf _{k \rightarrow \infty}\left(g_{2 k}\left(\frac{1}{2}\right)\right)^{1 / 2 k} \geqslant \liminf _{k \rightarrow \infty}\left(\frac{k-1}{2 k^{2}-2 k}\right)^{1 / k}=1
$$

Hence,

$$
\lim _{k \rightarrow \infty} g_{2 k}\left(\frac{1}{2}\right)^{1 / 2 k}=1
$$

A similar computation for the coefficients $g_{2 k+1}(1 / 2)$ shows that

$$
\lim _{k \rightarrow \infty} g_{k}\left(\frac{1}{2}\right)^{1 / k}=1
$$

But assuming that $h(z)=\Sigma a_{k} z^{k}$ is in \mathscr{A} we can choose the function

$$
f(z)=\sum_{k=0}^{\infty} \frac{1}{g_{k}\left(\frac{1}{2}\right)} a_{k} z^{k}
$$

Clearly f is in \mathscr{A} and $\Lambda(f)=K_{1 / 2}^{*} f=h$.
We consider now the behavior of the polynomials $g_{k}(\alpha)$ for $\alpha \epsilon\left(\frac{1}{2}, 1\right)$.
Assume α is fixed and we observe that $g_{1}(\alpha)>g_{2}(\alpha)$. We will show that in general $g_{k-1}(\alpha)>g_{k}(\alpha)$. Fix $k \geqslant 1$ and use (1.2) to write

$$
\begin{align*}
& (k+1)\left(g_{k}(\alpha)-g_{k+1}(\alpha)\right) \tag{1.3}\\
& =(k+1-2 \alpha)\left(g_{k}(\alpha)-g_{k-1}(\alpha)\right)+ \\
& +2(1-\alpha) g_{k-1}(\alpha) \\
& =(2 a-1)\left(g_{k-1}(\alpha)-g_{k}(\alpha)\right)+2(1-\alpha) g_{k-1}(\alpha)+ \\
& +k\left(\frac{1}{k}\left[2 \alpha g_{k-1}(\alpha)-(k-2) g_{k-2}(\alpha)\right]-g_{k-1}(\alpha)\right) \\
& =(2 \alpha-1)\left(g_{k-1}(\alpha)-g_{k}(\alpha)\right)+(k-2)\left(g_{k-2}(\alpha)-g_{k-1}(\alpha)\right) .
\end{align*}
$$

The induction argument then establishes that $g_{k-1}(\alpha)>g_{k}(\alpha)$. We will now show that $\lim _{k \rightarrow \infty} g_{k}(\alpha)^{1 / k}=1$. Again referring to (1.2) we find

$$
(k+1) g_{k}(\alpha)-2 a g_{k}(\alpha)>(k-1) g_{k-1}(\alpha),
$$

or

$$
g_{k}(\alpha)>\frac{(k-1)}{(k+1-2 a)} g_{k-1}(\alpha) .
$$

A finite repetition of this result establishes the inequality

$$
\begin{gathered}
g_{k}(\alpha)>\frac{(k-1)!(4 \alpha)}{(k+1)!\left(1-\frac{2 \alpha}{3}\right)\left(1-\frac{2 \alpha}{4}\right) \ldots\left(1-\frac{2 a}{k+1}\right)} \\
=\frac{4 a}{k(k+1) \prod_{j=3}^{k+1}\left(1-\frac{2 a}{j}\right)}
\end{gathered}
$$

We consider

$$
\lim _{k \rightarrow \infty}\left(\sum_{j=3}^{k+1}\left(1-\frac{2 a}{j}\right)\right)^{1 / k}
$$

It is clear that

$$
0>\log \left(1-\frac{2 \alpha}{j+1}\right)>\log \left(1-\frac{2 \alpha}{j}\right)
$$

The integral test shows

$$
\begin{gathered}
\int_{3}^{k+1}\left|\log \left(1-\frac{2 a}{x}\right)\right| d x=\int_{3}^{k+1}[\log x-\log (x-2 a)] d x \\
=\log (1+k)-\log (1+k-2 a)+o(k)
\end{gathered}
$$

Hence,

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{j=3}^{k+1} \log \left(1-\frac{2 \alpha}{j}\right)=\lim _{k \rightarrow \infty} \log \left(\frac{k+1}{k+1-2 \alpha}\right)=0
$$

Thus

$$
\liminf _{k \rightarrow \infty} g_{k}(a)^{1 / k} \geqslant \liminf _{k} \frac{(4 \alpha)^{1 / k}}{\left(k^{2}+k\right)^{1 / k}\left(\prod_{j=3}^{k+1}\left(1-\frac{2 a}{j}\right)\right)^{1 / k}}=1
$$

and $\lim g_{k}(a)^{1 / k}=1$. As in the case $a=\frac{1}{2}$ we find that K_{a} induces an onto operator.

We consider finally the case $\alpha \epsilon\left(0, \frac{1}{2}\right)$. The functions $g_{k}(\alpha)$ are not point wise decreasing so a somewhat different approach is necessary to treat this case. Again fix $a \in\left(0, \frac{1}{2}\right)$ and add the trivial equality

$$
g_{k-1}(\alpha)-g_{k}(\alpha)=g_{k-1}(\alpha)-g_{k}(\alpha)
$$

to (1.3) written for k and $(k-1)$ to obtain

$$
\begin{align*}
(k+1)\left(g_{k-1}(\alpha)\right. & \left.-g_{k-1}(\alpha)\right) \\
& =2 \alpha\left(g_{k-2}(\alpha)-g_{k} \cdot(\alpha)\right)+(k-3) \cdot\left(g_{k-3}(\alpha)-g_{k-1}(\alpha)\right) \tag{1.4}
\end{align*}
$$

It is true that for $a \in\left(0, \frac{1}{2}\right)$

$$
g_{1}(\alpha)-g_{2}(\alpha)>0
$$

and

$$
g_{2}(\alpha)-g_{3}(\alpha)<0
$$

We can apply (1.3) and finite induction to conclude that

$$
g_{2 j+1}(\alpha)-g_{2 j+2}(\alpha)>0
$$

and

$$
g_{2 j+1}(\alpha)-g_{2 j}(\alpha)<0
$$

for all $j=1,2,3, \ldots$. Now applying (1.4) we establish

$$
g_{2 k-2}(\alpha)>g_{2 k}(\alpha)
$$

and

$$
g_{2 k-1}(\alpha)>g_{2 k+1}(\alpha)
$$

for all $k=2,3,4, \ldots$ We proceed with the coefficient estimate. An application of equation (1.4) shows

$$
\left(g_{2 j}(\alpha)-g_{2 j+2}(\alpha)\right)>\frac{(2 j-2)}{2 j+2}\left(g_{2 j-2}(\alpha)-g_{2 j}(\alpha)\right)
$$

A repetition of this inequality yields

$$
\begin{aligned}
& g_{2 j}(\alpha)>g_{2 j+2}(\alpha)+\frac{2(j-1)!}{(j+1)!}\left(g_{2}(\alpha)-g_{4}(\alpha)\right) \\
& \quad=\frac{1}{(2 j+2)}\left\{2 \alpha g_{2 j+1}(\alpha)+2 j g_{2 j}(\alpha)\right\}+\frac{2(j-1)!}{(j+1)!}\left(g_{2}(\alpha)-g_{4}(\alpha)\right)
\end{aligned}
$$

Letting $a(\alpha) \equiv\left(g_{2}(\alpha)-g_{4}(\alpha)\right)>0$ we can write

$$
g_{2 j}(\alpha)>\frac{2}{j} a(\alpha)
$$

Taking $2 j$-th roots yields

$$
\lim _{j \rightarrow \infty} g_{2 j}^{1 / 2 j}(\alpha)=1
$$

Similarly one proves

$$
g_{2 j-1}(\alpha)>\frac{3}{2(2 j-1)} b(\alpha)
$$

where $b(a)>0$. This proves that

$$
\lim _{k \rightarrow \infty} g_{k}(\alpha)^{1 / k}=1
$$

for each fixed $a \epsilon\left(0, \frac{1}{2}\right)$ and so K_{a} induces an onto operator. This completes the proof of Theorem 1.

As an easy corollary to this theorem we obtain information about the fixed points of the operators Λ_{a} induced by the composition with K_{a}.

Corollary 1. There are a countable number of $\left\{a_{j}\right\}_{j=1}^{\circ}$, with $a_{1}=\frac{1}{2}<a_{2}<\ldots$ and $\lim _{n \rightarrow \infty} \alpha_{n}=1$ such that Λ_{a} has non-trivial (e.g. $f(z)$ $\not \equiv$ constant) fixed points. If a_{j} is such a number there exists an integer n_{j} such that all fixed points of $\Lambda_{a_{j}}$ are of the form $a+b z^{n_{j}}$.

Before stating Theorem 2 we need a lemma. A result of Cargo [1, p. 472] implies that K_{a} is in H^{p} for all $p<\frac{1}{a}$. An application of the Hausdorff-Young theorem then shows that if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is in H^{p}, $1 \leqslant p \leqslant 2$, and if p^{\prime} is the index conjugate to p then the sequence of Taylor coefficients $\left\{a_{n}\right\}_{n=0}^{\infty}$ is in the sequence space $l^{p^{p}}$. It is clear then that for α fixed in $(0,1) \lim _{k \rightarrow \infty} g_{k}(\alpha)=0$. We find the following result more useful for coefficients.

Lemma 1. For each α in $(0,1)$ and $k=1,2,3, \ldots$ we have $g_{k}(\alpha)$ $\leqslant 2\left(\frac{1}{k}\right)^{1-a}$.

Proof. The cases $k=1$ and 2 are easily checked. Assuming the result is valid for k it suffices to prove

$$
2 \alpha g_{k}(\alpha)+(k-1) g_{k-1}(\alpha)<2(k+1)^{a} .
$$

We apply the induction statement to conclude that this inequality above is valid if

$$
2 a\left(\frac{1}{k}\right)^{1-a}+(k-1)^{a}<(k+1)^{a} .
$$

We know

$$
\left(1+\frac{1}{k}\right)^{a}=\sum_{n=0}^{\infty}\binom{\alpha}{n}\left(\frac{1}{k}\right)^{n}
$$

and hence the last inequality can be written as

$$
2 \alpha k^{a}+k k^{a}\left(\sum_{n=0}^{\infty}(-1)^{n}\binom{\alpha}{n}\left(\frac{1}{k}\right)^{n}\right)<k k\left(\sum_{n=0}^{\infty}\binom{\alpha}{n}\left(\frac{1}{k}\right)^{n}\right)
$$

The transposition of terms reduces this to an obviously valid inequality

$$
2 \alpha k^{a}<k k^{\alpha}\left(\frac{2 \alpha}{k}+\frac{2(\alpha)(\alpha-1)(\alpha-2)}{3!} \frac{1}{k^{3}}+\ldots\right)
$$

where all the terms in the series are positive.
Theorem 2. Let a be given in $(0,1)$ and suppose $\beta \in(0,1)$ is such that $a+\beta<1$, then $K_{\alpha}^{*} K_{\beta}(z)=h(z)$ is in H^{∞}.

Proof. An application of Lemma 1 to the coefficients of $h(z)$ yields the proof.

We wish to make a few remarks on the coefficients $g_{k}(\alpha)$. The last theorem is reasonably sharp in that if $\alpha=\beta=\frac{1}{2}$ one sees that the coefficients $g_{k}^{2}\left(\frac{1}{2}\right)$ of $K_{1 / 2}^{*} K_{1 / 2}(z)$ are of order of magnitude $\frac{1}{k}$ so that $K_{1 / 2}^{*} K_{1 / 2}$ is in H^{2} but not in H^{∞}. In fact the function is unbounded on the positive axis as $x \rightarrow 1-$.

In the proof of Lemma 1 we used the expansion

$$
(1+z)^{a}=\sum_{n=0}^{\infty}\binom{a}{n} z^{n}
$$

where

$$
\binom{a}{n}=\frac{(\alpha)(\alpha-1)(\alpha-2) \ldots(\alpha-n+1)}{n!} .
$$

Thus one deduces

$$
\begin{aligned}
\left(\frac{1+z}{1-z}\right)^{a}=\left(\sum_{n=0}^{\infty}\binom{a}{n} z^{n}\right)\left(\sum_{n=0}^{\infty}(-1)^{n}\right. & \left.\left(\frac{-\alpha}{n}\right) z^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(-1)^{n-k}\binom{a}{k}\binom{-\alpha}{n-k}\right) z^{n}
\end{aligned}
$$

so that

$$
g_{n}(\alpha)=\left(\sum_{k=0}^{n}(-1)^{n-k}\binom{a}{k}\binom{-a}{n-k}\right)
$$

There are rather comprehensive reference works and tables on products of similar forms (see [6] and [4]) but we have been unable to use any arithmetic or combinatorial simplifications to obtain information about the $g_{k}(\alpha)$ or products of the $g_{k}(\alpha)$.

2. Mappings of H^{1} into H^{∞}.

The set of convex mappings can be divided into several groups. The function $k(z)=(1-z)^{-1}$ mapping Δ into the right half plane is the identity under convolution. Other convex mappings onto half planes are just rotations and translations of k and their behavior under convolution is determined by the behavior of k. Also the integral representation shows that the mapping induced by a function $f(z)$ in H^{∞} maps H^{1} into H^{∞}. The function $f(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$ is a convex mapping of Δ onto an infinite strip. A well known result of Hardy and Littlewood [5, p.] will show that the operator

$$
\Lambda(g)(z)=f^{*} g(z)
$$

maps H^{1} into H^{∞}. We have the following extension of this result.
Theorem 3. Let h be a function in \mathcal{A} and assume that h is subordinate to $f(z)=\frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$. Then the operator $\Lambda(g)(z)=g * h(z)$ is a mapping of H^{1} into H^{∞}.

Proof. The convex mappings are continuous from \triangle into the Riemann sphere. The condition that h be subordinate to f means there exists a univalent mapping $\eta(z)$ from Δ into Δ with η a Schwarz function and

$$
h(z)=f \circ \eta(z) .
$$

It is sufficient to prove that

$$
\log (1+\eta)^{*} g
$$

is in H^{∞} for all $g \in H^{1}$. First, we may choose $g_{r}(z)=g(r z)$ and observe g_{r} tends in H^{1} to g and $\left\|g_{r}\right\|_{1} \leqslant\|g\|_{1}$. Also $g_{r} \in H^{2}$. A criterion developed by C. Fefferman and E. Stein [2] states that a function H is in $B M O$ if and only if

$$
H=u+\tilde{v}
$$

where u and v are in L^{∞} and v is the Fourier transform of \tilde{v}. We write

$$
\log (1+\eta(z))=\log |1+\eta(z)|+i \arg (1+\eta(z)) .
$$

The function $\arg (1+\eta(z))$ is in L^{∞} and its harmonic conjugate is its

Fourier conjugate in this case so that $\log (1+\eta(z))$ is in $B M O$. Now if $z=r e^{i \theta}$, we may pass to the limit in the integral representation to obtain

$$
P_{\varrho}(z)=\log (1+\eta)^{*} g_{\ell}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(1+\eta\left(e^{i \ell}\right)\right) g_{Q}\left(r e^{i(0-t)}\right) d t
$$

We have, treating $\log (1+\eta)$ as a continuous linear functional on H^{1},

$$
\left|\boldsymbol{P}_{e}(z)\right| \leqslant M\left\|g_{e}\right\|_{1} \leqslant \boldsymbol{M}\|\boldsymbol{g}\|_{1}
$$

where M is a positive constant independent of z and o. But

$$
P_{Q}(z)=\log (1+\eta)^{*} g_{Q}(z) \rightarrow \log (1+\eta)^{*} g(z)
$$

as $\varrho \rightarrow 1$. Hence,

$$
\left\|\log (1+\eta)^{*} g\right\|_{\infty} \leqslant M\|g\|_{1}
$$

This is sufficient to show that $h^{*} g$ is in H^{∞} if $g \epsilon H^{1}$.

3. Some open questions.

There are integral representations of convex functions. For example one can easily find an increasing function $u_{a}(t)$ such that

$$
K_{a}(z)=\int_{0}^{\pi} \exp \left[-\frac{1}{\pi} \int_{0}^{2 \pi} \log \left(1-w e^{-i t}\right) d u_{a}(t)\right] d w
$$

where $u_{a}(2 \pi)-u_{a}(0)=2 \pi$. It is an easy consequence of the form of the first three functions $g_{k}(\alpha), k=0,1,2$ that $h_{a \beta}=K_{a}{ }^{*} K_{\beta}$ is never equal to a $K_{r}(\alpha, \beta \in(0,1))$. Although we can determine the Fourier coefficients of the measure corresponding to $h_{a, \beta}$ we have not found a "simple" increasing function $l(t)$ with $d u=d l$. It is a problem then to determine this function $l(t)$ for these cases.

A result of the St. Ruscheweyh and Sheil-Small paper is that if φ and ψ are convex with $f<\psi$ then $\varphi^{*} f$ is subordinate to $\psi * \varphi$. Consider an analogous question. Suppose $\alpha \epsilon(0,1)$ is fixed and g is convex function with range $g \subseteq$ range K. What conditions on range g will imply that convolution of H^{1} with g will be in H^{∞} ? For example it is casy to see that

$$
\operatorname{dist}_{C}\left(\text { range } g, \text { boundary } K_{a}\right)=\delta>0
$$

is not sufficient.
It would be interesting to find the precise values of α such that $g_{k}(\alpha)=1$.

We observe that the operators Λ_{a} on \mathscr{A} induced by composition with K_{a} have non-void spectrum. In particular the spectrum of Λ_{a} is the countable set $\left\{g_{k}(\alpha)\right\}_{k=0}^{\infty}$. Note that our proof of Theorem 1 shows that
the spectrum $\sigma\left(\Lambda_{a}\right)$ is not compact. We can ask then, if the convex function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ induces the operator Λ on \mathscr{A} is the spectrum of Λ the set $\left\{a_{n}\right\}_{n=0}^{\infty}$?

Finally, I would like to thank Professors John Pfaltzgraff and Ladnor Geissinger for their helpful comments on parts of this matorial.

REFERENCES

[1] Cargo G.T., Some geometric aspects of functions of Hardy class H^{p}, Journal of Mathematical Analysis and Applications 7, (1963), 471-474.
[2] Fefferman C. and Stein E.M., H^{p} speces of several variables, Acta. Math. 129 (1972), 137-193.
[3] Garnett J., BMO for Beginners. Unpublished notes.
[4] Gould H.W., Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations. Science Service, Washington, D.C.
[5] Hoffman K., Banach Spaces of Analytic Functions. Prentice-Hall, Inc., Englewood Cliffs, N. J., (1962).
[6] Riordan J., An Introduction to Combinatorial Analysis. John Wiley \& Sons, Inc., New York.
[7] Sheil-Small T.B., Some Linear Operators in Function Theory. Symposium on Complex Analysis, London Mathematical Society Lecture Note Series 12, Cambridge University Press, Cambridge, England.
[8] St. Ruscheweyh and Sheil-Small T.B., Hadamard products of schlicht funotions and the Pólya-Schoenberg conjecture, Comm. Math. Helv., 48 (1973), 119-135.
[9] Suffridge T.J., Convolutions of convex functions, Journal of Math. and Mechanics, Vol. 15, No. 5 (1966), 795-804.

STRESZCZENIE

Niech A oznacza zbiór wszystkich funkcji holomorficznych w kole jednostkowym Δ, zaś S, C podzbiory zbioru A funkcji odpowiednio jednolistnych i wypukłych.

Dla dowolnie ustalonego elementu $f \in C$ okreslamy na zbiorze A operator liniowy Λ :

$$
\Lambda(g)(z)=f^{*} g(z) .
$$

Jeśli $f(z)=\sum_{0}^{\infty} a_{n} z^{n}, g(z)=\sum_{0}^{\infty} b_{n} z^{n}$, wówezas

$$
\Lambda(g)(z)=\sum_{0}^{\infty} a_{n} b_{n} z^{n} .
$$

W pierwszej częsci pracy autor zajmuje się własnosciami operatora $\Lambda \operatorname{gdy} f(z)=((1+z) /(1-z))^{a}, 0<\alpha<1$.

W drugiej części autor podaje warunki, przy których operator Λ przeprowadza klasę Hardy'ego H^{1} w H^{∞}.

РЕЗЮME

Пусть A обозначает множество всех голоморфических функций в единичном круге Δ, зато S, C подмножество множества A соответствеино однолистных и выпуклых функций.

Для произвольно установленного элемента $f \in C$ определяем на множестве A линейный оператор Λ :

$$
\Lambda(g)(z)=f^{*} g(z) .
$$

Если $t(z)=\sum^{\infty} a_{n} z^{n}, g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, тогда

$$
\Lambda(g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

В первой части работы автор занимается свойствами оператора A, когда $f(z)=((1+z) /(1-z))^{a}, \quad 0<\alpha<1$

Во второй части автор представляет условия, в которых оператор Λ проводит класс Гарди H^{1} в H^{∞}.

