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1. Introduction

The disk in C with radius 1 and center at the origin is denoted by 4
The set = of all functions holomorphic on 4 is a linear space with point-
wise operations. The compact open topology on ./ makes ./ a Montel
space, with the usual metric structure. Let S be the set of f in & which
are univalent on 4 and C the subset of f in § which have convex ranges.
Each f in C induces a continuous linear operator A on & by convolution

A(g)(2) =f*g(2)

If f(z) 2, a,2" and g(z Zb 2" then

ne=0 n=0

a0

1 ‘ z\ dg
A(g)(2) = Zﬂ..b..z i f(€ lf;“.) :

2 \
n=0 e 1+|z|/2

There are two important results which came to the fore in discussing
such operators. First, the result of T. J. Suffridge [9]. He shows that
.if f and ¢ and in C then f*g¢(z) is again a univalent function. The second
and perhaps more striking result is that indeed under the same hypothesis
f*g(2) is a convex function. This last result is due to St. Ruscheweyh and
Sheil-Small [8]. In [7] Sheil-Small has defined a very general class of
operators which generalize the simple convolution operators defined above.

In the latter part of this paper we shall need the definitions of the
Hardy spaces H* and H* and also the class of functions of bounded mean
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oscillation (BMO). A funection f in & is in the space H? (1 <p< o)
if

1

e

i
0<r<l \-3?!

f | f(re“’)wdo)w= M <~

and feH* if
sup [f(z)] = M < oo.

lzl<1
H” is a Banach space. The dual of H' can be identified in a natural way
with a space of functions. More precisely let f(e'*) be a function in L* of
the unit circle. The function f has bounded mean oscillation (or f is in
BMO) if for each interval I we have

2T iy e “f(e"}dtidr" M
iy I ,

i I
where M is a fixed constant depending on f and |I| is the length of I.
This set of functions modulo the constants is a Banach space when the
obvious norm is introduced. The pairing which establishes the duality is
as follows. Let ge BMO and fe H'. We choose a sequence {f,} in H* with
J.—f in H' and define

n—»00

1~
A(f) = limg_f fu(6*) g (6)d.
We have :

“-{‘: :I-1I| i E;INI.:I'

L A
2 ‘ fale)g(e") da

For a reference on BMO sece C. Fefferman and E. Stein [2] or the notes
of J. Garnett [3].

We have written two essential sections in this work. The first is a study

of the operators induced by composition with the functions K (z)

( 1+2

1—=2
when convolutions map H' into H*.

L]
). The second is a collection of assorted cases describing

1. Operators induced by K (z).

. 1+2) :
The univalent mapping (—1——) maps 4 onto the right half plane
—2

: 14-2\° :
in C. If ae(0,1) then K,(2) (1———) are univalent mappings of 4 onto
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a cone, symmetric with respect to the positive real axis. The cone
has its vertex at z = 0 and aperture opening ax. We compute the Taylor
coefficients of K,(z) = ) g,(a)z*. The differential equation

k=0

9

Koo = Kold (L1)
allows the recursion relation
Jola) =1
91(a) = 2a (1.2)

1
Gr1(a) = ————[2agx(a) +(k—1)gs_1(a)]

"o

for ¥k =1,2,3,... to be established.

Theorem 1. For each ae(0,1) the linear operator A, induced on of
by convolution with K, is a one to one, onto, continuous linear operator
on .

Proof. The convolution is obviously linear and continuous. Also since
go(a) > 0 and g,(a) > 0 if ae(0, 1) the relation (1.2) shows that g,(a)> 0
k=1,2,3,... and every ae(0,1). This means the operator induced by
K, is one to one. Hence, we examine the behavior of the polynomials

1

gr(a) for (i) a et (ii) ae(%,l), and (iii) ae(O,%).

. 1 . 1 1 Als 1 1
Assuming a = Ewe find ¢, 5] = nig)= 1. Also g, 0 &
1
=i In general a simple finite induction argument shows that

/1) /1) (2k —1)!

Juc\ 5] = ok 11 \E = bmk!—(k—_ﬁ! :

Recall that Sterling’s inequalities can be written (for large =)
e 1
V2mnt (1 i 4—)

'/27t pht12 , n
'——en gl <€ So 0nv'_ T

This of course implies that

1 1 ((k~1)*\*] k-1 \'* 1
I |—) = —F— — e A% {02 I A
2/ Vom \2k2—4k/ \2K2—FK 1 i

2k—1 e > Syclaod s
. (1+'4<k—1>)(1+ 4k)
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Taking the 2k th root and then the limit inferior we find

174 1\ E—1 \Vk
it o)) >tminel ) -

Hence,

1 1/2k
lim g, (K) =k

k—»oc -

A similar computation for the coefficients g,,,, (1/2) shows that

But assuming that i(z) = Za,2* is in o we can choose the function

1
s St
=T lE)

Clearly f is in & and A(f) = K},f = h.

1
We consider now the behavior of the polynomials g,(a) for ae (E, 1).

Assume aq is fixed and we observe that g,(a) > g,(a). We will show that
in general g,_,(a) > g,(a). Fix k¥ >1 and use (1.2) to write
(k+1)(g:(a) = gi 11 (a) (1.3)
= (k+1—2a)(gi(a) — g1 (a)) +
+ 2(1 —a)gy_,(a)
= (2a—1)(gx_,(a) = gi(a)) +2(1 — a) gy_; (a) +

1
+k (7 [2ag,_,(a)—(k—2)g)_,(a)] _gk-l(a))

= (2‘1—1)(9k—1(a) —'gk(a)) + (k—2)(gk (@) —g, (a)).

The induction argument then establishes that g, ,(a) > g,(a). We will
now show that lim g, (a)'* = 1. Again referring to (1.2) we find
k00
(k+1)g,(a) — 2ag;(a) > (K —1)g,_,(a),
or
(k—1)

Sy Jk-1(a).

9i(a) > (k+1—2a)
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A finite repetition of this result establishes the inequality
(k—1)!(4a)
gila) > — :

a1 s 2a l 2a N 2a \
t ! _—— enn s
=) (= 5) - - )

4a

k+1

k(k+1) 1_[ (1—-1‘1)

i=3

We consider

’ s j=3

It is clear that
2 2
0>log(1——;—)>log(1— .u).
J+1 J

The integral test shows

:f“ ‘log(l— —-)

= log(1 + k) —log(1 + k —2a) + o (k).

k41
dr = ( [logz —log(x —2a)]dx
3

Hence,
k+1
k+1
11m—— VIOg (1———) = hmlog( ;) 0.
k—00 ﬁ:{ \ J k—oco k+1 2a
Thus
4 1/k
’lllginfgk(a)”k > likminf (JH(—II)  9g\\Vk =
(k2+ k)l/k(” (l . “_-))
j=3 J

1
and lim g,(a)’* = 1. As in the case a = _ we find that K, induces an

-

onto operator.

1
We consider finally the case ae(O,E). The functions g,(a) are not
point wise decreasing so a somewhat different approach is necessary to

1 ; g
treat this case. Again fix ae(O, _)—) and add the trivial equality

-

9k (a) —gi(a) = gi_,(a) —gi(a)
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to (1.3) written for ¥ and (k—1) to obtain

(k+1)(gx—1(a) = G-y (a)
= 2‘1(91:—2(0) — 9 (a)) +(k—3) '(gk—a(a) 5 gk—l(a)) . (1.4)

1
It is true that for ae(O,;)

g:1(a) —ga(a) > 0
and

92(a) —gs(a) < 0.
We can\ apply (1.3) and finite induction to conclude that

92j+1(a) = Gag40(a) > 0
and

g5 1(a) —gy;(a) < O
for all j =1,2,3,.... Now applying (1.4) we establish

Gok.-2 (@) > ga(a)
and

Gok—1(a) > gop i1 (a),
for all k¥ =2,3,4,.... We proceed with the coefficient estimate. An
application of equation (1.4) shows

(2j—2)

(g2j(a) e gzj+2(a)) > T9iio (921—2(0) - gzj(a)) .

A repetition of this inequality yields

gz;(al> 921+2( a)+ _(U_— (gz(a 94(0))
2(j—1)!

{2a agy; 1 (a) +2jgs(a)} + (G+1)! (ﬂz(a)_gs(a))-

1
T @2
Letting a(a) = (g,(a) —gi(a)) > 0 We can write

2
955(a) > —j—a(a)-

Taking 2j-th roots yields .
lim g} (a) = 1.
J]—00

Similarly one proves

g2j—1(a) > b(a)

2(25-1)
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where b(a) > 0. This proves that

k—so0

i |
for each fixed ac(O, 5) and so K, induces an onto operator. This com-

pletes the proof of Theorem 1.
As an easy corollary to this theorem we obtain information about
the fixed points of the operators A, induced by the composition with K.

Corollary 1. There are a countable number of {a;};°,, with

a; = §< as < ... and lim a, = 1 such that A, has non-trivial (e.g. f(z)

n—»00
# constant) fized points. If a; is such a number there exists an integer n; such
that all fized points of A,,). are of the form a - bz".
Bofore stating Theorem 2 we need a lemma. A result of Cargo [1,

1
p- 472] implies that K, is in H” for all p < —. An apphcatxon of the
Hausdorff-Young theorem then shows that 1f f(z) = Za 2" is in HP?,

==
1<p<2, and if p’ is the index conjugate to p then the sequence of

Taylor coefflclents {a,}7_, is in the sequence space I*. It is clear then
that for a fixed in (0, 1) lim g, (¢) = 0. We find the following result more
k—sto

useful for coefficients.

Lemma 1. For each a in (0,1) and k =1,2,3,... we have g,(a)

1 1—n
<21} .
g

Proof. The cases k¥ = 1 and 2 are easily checked. Assuming the
result is valid for k it suffices to prove

2ag;(a) + (k —1)g_,(a) < 2(k+1)°

We apply the induction statement to conclude that this inequality above
is valid if

2a (%)M L (k—1)" < (k+1).

We know
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and hence the last inequality can be written as

(a1 SJAYE
s 3y - ()5 )< () G )
n=0 n=0
The transposition of terms reduces this to an obviously valid inequality

2ak" > kka(gf i 2(“)((1_1)((1_2) _L L .“)

3! k?

where all the terms in the series are positive.

Theorem 2. Let a be given in (0,1) and suppose Be(0,1) i8 such
that a+ B < 1, then K K,(2) = h(2) is in H™.

Proof. An application of Lemma 1 to the coefficients of k(2) yields
the proof.

We wish to make a few remarks on the coefficients g,(a). The last

1
theorem is reasonably sharp in that if @ = f = _-one sees that the coeffi-

s (1 . : 1 :
cients ¢ (—2 ) of K,;,K,,(2) are of order of magnitude m so that K J,K,, is

in H? but not in H*. In fact the function is unbounded on the positive
axis ag z—>1—.
In the proof of Lemma 1 we used the expansion

00

(142)° = 2 (:) 2",

n=0

where

(a)'= (a)(a—1)(a—2) ... (a—n-+1)

n n!

) 7
-

n=

o= (i)

Thus one deduces

B2y = (S(e) ) Se-ar(

n=0 n

n

(2B

k=0

4

<

so that
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There are rather comprehensive reference works and tables on products
of similar forms (see [6] and [4]) but we have been unable to use any
arithmetic or combinatorial simplifications to obtain information about
the g,(a) or products of the g.(a).

2. Mappings of H' into H*.

The set of convex mappings can be divided into several groups.
The function k(z) = (1 —2) ' mapping A into the right half plane is the
identity under convolution. Other convex mappings onto half planes are
just rotations and translations of £ and their behavior under convolu-
tion is determined by the behavior of k. Also the integral representation
shows that the mapping induced by a function f(2) in H® maps H' into

2 1l—2
an infinite strip. A well known result of Hardy and Littlewood [5, p.]
will show that the operator

A(9)(2) = fg(2)
maps H' into H®. We have the following extension of this result.
Theorem 3. Let h be a function in &/ and assume that h is subor-
1+2
=3
mapping of H' into H™.
Proof. The convex mappings are continuous from 4 into the Riemann

sphere. The condition that h be subordinate to f means there exists a uni-
valent mapping 7(z) from A into 4 with 7 a Schwarz function and

h(z) = fon(z).
It is sufficient to prove that
log(1+7)"g

is in H® for all ge H'. First, we may choose g¢,(2) = g(rz) and observe
g, tends in H' to g and |g,|, < llgll,. Also g,eH*. A criterion developed
by C. Fefferman and E. Stein [2] states that a function H is in BMO
if and only if

1 T2
H*. The function f(z) =Klog(———) is a convex mapping of A onto

1
dinate to f(z) = = log( ) Then the operator A(g)(z) = g+h(z) is a

H=u+to
where » and v are in L® and » is the Fourier transform of . We write
log (1 +7(2)) = log[1+ n(2)| +iarg(l +7(2)).

The function arg(l+5(z)) is in L™ and its harmonic conjugate is its
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Fourier conjugate in this case so that log(1+n(z)) is in BMO. Now if
z = r¢"®, we may pass to the limit in the integral representation to obtain

2n
1 .
P,(2) = log(L+1)°g,(e) =5 [ Tog(L+n(e")g,(re~1)at.

We have, treating log(1+7) as a continuous linear functional on H',
[P, (2)| < Mlig,li, < Mllgll,
where M is a positive constant independent of z and ». But

P,(2) = log(1 +7)*g,(2)~>log (1 + )" g(z)
as p—1. Hence,

og (1 + )" gllw < M gl -
This is sufficient to show that h*g is in H® if geH'.

3. Some open questions.

There are integral representations of convex functions. For example
one can easily find an increasing function w,(t) such that

K.(2) = fsexp[——l'— f log(l—we“")duu(t)] dw,

X 4

where u,(27) —u,(0) = 2x. It is an easy consequence of the form of the
first three functions g,(a), k¥ = 0,1, 2 that h,, = K,"K, i3 never equal
to a K, (a, fet0,1)). Although we can determine the Fourier coefficients
of the measure corresponding to h,, we have not found a “simple” in-
creasing function l(¢) with du = dl. It is a problem then to determine
this function I(¢) for these cases.

A result of the St. Ruscheweyh and Sheil-Small paper is that if ¢
and yp are convex with f< y then ¢*f is subordinate to y*¢. Consider
an analogous question. Suppose a¢(0, 1) is fixed and g is convex function
with range g < rangeK. What conditions on range g will imply that
convolution of H' with ¢ will be in H*? For example it is easy to see that

dist.(rangeg, boundary K,) = 6 > 0
is not sufficient.
It would be interesting to find the precise values of a such that
gi(a) = 1.
We observe that the operators /4, on . induced by composition
with K, have non-void spectrum. In particular the spectrum of A, is the
countable set {g,(a)};_,. Note that our proof of Theorem 1 shows that
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the spectrum o(A,) is not compact. We can ask then, if the convex func-

tion f(z) = ) a,z" induces the operator A on o is the spectrum of A
n=0

the set {a,}i ,?
Finally, I would like to thank Professors John Pfaltzgraff and Ladnor
Geissinger for their helpful comments on parts of this material.
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STRESZCZENIE

Niech A oznacza zbiér wszystkich funkeji holomorficznych w kole
jednostkowym A4, za$ S, C podzbiory zbioru A funkeji odpowiednio jedno-
listnyeh i wypuklych.

Dla dowolnie ustalonego eclementu feC okre§lamy na zbiorze A
operator liniowy A4:

A(g)(2) = ["g(2).

Jesli f(2) = Y a,z2" g(2) = anz", wowcezas
0 0

A(g)(z) = D) anb,2"
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W pierwszej czeSci pracy autor zajmuje sie wlasno$ciami operatora
A gdy f(2) = (1+2)/(1—2)) 0< a< 1.

W drugiej czefci autor podaje warunki, przy ktoérych operator A
przeprowadza klase Hardy’ego H' w H™.

PE3IOME

ITycte A o6Go3Ha4aeT MHOMKECTBO BCEX ToJOMOPPHUECKUX (GyHKLMIA
B €IMHUYHOM Kpyre 4, 3aTo S, C NOAMHO¥ECTBO MHOKeCTBA A COOTBETCT-
BEIIHO OHOJIMCTHBIX M BHINYKIBIX (GyHKuUMIA.

JnA 1Ipou3BOIBHO YCTaHOBIEHHOro 3jneMmenTa f e C omnpepeiseM Ha
MHOMKecTBe A JnMHeliHblt onepaTop A:

A(9)(2) = f7g9(2).

Ecau ((2) = ) a,2",¢(2) = 3 b,2", Torna

n=0

A(9)(z) = D) a,b,2"
ne=0
B nepBoii yactTu pabGoTh aBTOpP 3aHMMAaeTCs CBOWCTBAMH omeparopa A,
Korma f(z) = ((1+2)/(1—2))° 0<a<1
Bo BTOpOit yacTH aBTOp NpejcTaBifeT YCIOBUA, B KOTOPBIX omepa-
Top A nposoaut knacc Tapau H' 8 H*.



