ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL.	XXIX, 5	SECTIO A	1975
	the second se		

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

the light of the set of the set of the set of the following the

WALDEMAR CIEŚLAK

Groups of Automorphisms of a Conus

Grupy automorfizmów stożka

Группы автоморфизмов конуса

Let \mathbb{R}^n denote the set of all real *n*-tuples $x = (x^1, \ldots, x^n)$ and let \langle , \rangle denote the Euclidean scalar product in \mathbb{R}^n .

Definition 1. A subset G of \mathbb{R}^n will be called an open conus, if it satisfies the following conditions:

 $0 \notin G$,

G is an open set in \mathbb{R}^n ,

if $x \in G$, then $\lambda x \in G$ for all $\lambda > 0$.

Let G be an open conus. We recall, that a function $f: G \rightarrow R$ is homogeneous of a positive degree k, if it satisfies the condition

(1)
$$f(\lambda x) = \lambda^k f(x)$$
 for all $\lambda > 0$ and $x \in G$.

We know that the condition (1) and the Euler identity

(2)
$$kf(x) = x^{s}f_{1s}(x)$$
 for $x \in G$

are equivalent, f being any function of the class $C^{1}(G)$; $f_{|s|}$ denotes here a partial derivative of f with respect to x^{s} .

Let $f^1, \ldots, f^n \in C^1(G)$ be homogeneous functions of a positive degree k^1, \ldots, k^n respectively, such that the function $f = (f^1, \ldots, f^n)$ maps G into itself. We denote by G^+ the set of all functions satisfying the above conditions.

Proposition 2.

(3)

If $x \in G$ is a fixed point of $f \in G^+$, then there holds

$$\det.\left(\left[f^i_{1eta}(x)
ight]-\left[k^i\delta^i_{eta}
ight]
ight)\,=\,0$$

Waldemar Cieślak

Proof.

Let $x \in G$ be a fixed point of $f \in G^+$, i.e.

(*)
$$f^i(x) = x^i$$
 for $i = 1, ..., n$.

Since f^{i} are homogeneous functions of the class $C^{1}(G)$ so they satisfy the Euler identity and we can rewrite (*) in the following form

(*)
$$(f_{is}^i(x) - k^i \delta_s^i) x^s = 0$$
 for $i = 1, ..., n$.

This system of equalities has a non-zero solution x, thus (3) is valid.

Q.E.D.

Theorem 3.

A point
$$x \in G$$
 is a fixed point of $f \in G^+$ iff

(4)
$$\langle x, F^i(x) \rangle = 0$$
 for $i = 1, \ldots, n$,

where $F^{i}(x) = (f^{i}_{|1}(x) - k^{i} \delta^{i}_{1}, \dots, f^{i}_{|n}(x) - k^{i} \delta^{i}_{n}).$

Proof.

Let $x \in G$ be a fixed point of $f \in G^+$. Thus we have (*) or $\langle x, F^i(x) \rangle = 0$. We assume now that (4) is satisfied. From Euler identity we have

$$k^i f^i(x) - k^i x^i = x^s f^i_{|s|}(x) - k^i x^i = (f^i_{|s|}(x) - k^i \delta^i_s) x^s = 0,$$

since $k^i \neq 0$, so we obtain

 $f^{i}(x) = x^{i}$ for i = 1, ..., n.

Q.E.D.

Let G_h denote a subset of G^+ which consists of all diffeomorphisms $f = (f^1, \ldots, f^n)$ of G such that the functions f^1, \ldots, f^n have the same positive degree. Obviously, the identity id_G , is an element of G_h and if $f, g \in G_h$ then $f \circ g \in G_h$. If $f \in G_h$ is a homogeneous function of degree k > 0, then there is

$$f^{-1}(\lambda f(x)) = (f^{-1} \circ f)(\lambda^{1/k} x) = \lambda^{1/k} x = \lambda^{1/k} f^{-1}(f(x))$$

hence $f^{-1} \epsilon G_h$. Thus we have

Theorem 4.

The G_h with a composition \circ of functions constitutes a group.

Definition 5.

Each G_h is called a group of automorphisms of a conus G. We obtain from the theorem 3.

Theorem 6.

An isotropy group of a fixed point $x \in G$ is characterized by the conditions

(5)
$$\langle x, \tilde{F}^i(x) \rangle = 0$$
 for $i = 1, ..., n$

where $ilde{F}^i(x) = \left(f^i_{\downarrow\downarrow}(x) - k\delta^i_1, \ldots, f^i_{\downarrow n}(x) - k\delta^i_n\right).$

44

We give an example of a Lie subgroup of automorphisms of a conus $G \subset \mathbb{R}^n$.

Let us fix an arbitrary non-negative even integer p. We will consider functions of the following form

$$(6) \qquad \qquad {}^{ab}f: x \mapsto a |x|^b x \quad \text{for } x \neq 0$$

where

$$|x|:=(x^1)^p+\ldots+(x^n)^p$$

and a is a positive real number and b satisfies the inequality 1 + pb > 0.

Obviously, the functions ${}^{ab}f^i(x) = a |x|^b x^i$, i = 1, ..., n are homogeneous of the same degree 1 + pb > 0. Since

$$\det \left[\left[{}^{ab}f^i_{\downarrow i}(x) \right] = a^n(1+pb) \left| x \right|^{bn} \neq 0 \quad \text{ for } x \neq 0$$

and ${}^{ab}f$ is an injection, so ${}^{ab}f$ is a diffeomorphism. It is easy to see, that the set

$$F(p) = \{ {}^{ab}f \mid a > 0 \, , \, 1 + pb > 0 \}$$

with the composition of functions constitute a Lie group for any nonnegative even integer p.

We know that a Lie group is locally isomorphic with its parameter group, so their Lie algebras are isomorphic. We have to find Lie algebra of a parameter group F_p of the group F(p).

The composition in F_p is given by the rule

(7)
$$(a, b) * (c, d) = (ac^{1+pb}, b+d+pbd).$$

We give the chart

$$u(x^1, x^2) = (x^1 - 1, x^2)$$

in a neighbourhood of the unity (1,0). Since

$$(8) f(x^1, x^2, y^1, y^2) = \mu \left(\mu^{-1}(x^1, x^2) * \mu^{-1}(y^1, y^2) \right)$$

 $= (x^{1} + y^{1} + x^{1}y^{1} + px^{2}y^{1} + higher degree terms, x^{2} + y^{2} + px^{2}y^{2})$

so we have

$$[(x^1, x^2), \ (y^1, y^2)]_p = \left(p \left| egin{smallmatrix} y^1 & y^2 \ x^1 & x^2 \end{bmatrix}, \ 0
ight).$$

Thus we obtain

Theorem 7.

The Lie algebra of F(p) is isomorphic with the Lie algebra $(\mathbb{R}^2, [,]_p)$.

Waldemar Cieślak

Remark 8.

Since each straight line passing by 0 is invariant with respect to the group F(p), so F(p) maps a given conus onto itself.

Theorem 9. The cross-ratio is an invariant of the group F(p). **Proof.** Let f = F(p) and let

Let $f \in F(p)$ and let

(i) z = ax + eta y $t = \gamma x + \delta y$.

From the remark 8 it follows the existence of λ , μ , φ , $\psi \in R$ such that

(ii)
$$f(z) = \lambda f(x) + \mu f(y)$$

 $f(t) = \varphi f(x) + \psi f(y)$

Substituting f in (ii) by (6) we obtain

$$({
m iv}) \hspace{1cm} azZ = \lambda axX + \mu ayY \ atT = arphi axX + \psi ayY,$$

where $V = |v|^b$.

By comparing (i) and (iv) we can find

$$egin{aligned} lpha &= rac{\lambda X}{Z} & eta &= rac{\mu Y}{Z} \ \gamma &= rac{arphi X}{T} & \delta &= rac{\psi Y}{T} \end{aligned}$$

Hence

 $\frac{\beta}{a}:\frac{\delta}{\gamma}=\frac{\mu}{\lambda}:\frac{\psi}{\varphi}.$

Q.E.D.

Proposition 10.

If $f \in F(2)$ and if g is an orthogonal mapping then there holds

$$g \circ f = f \circ g$$
 in $\mathbb{R}^n \setminus \{0\}$

Proof.

Let g be an orthogonal mapping in \mathbb{R}^n and let f be a function (6). We have

$$(g \circ f)(x) = a |x|^b g(x)$$

 $(f \circ g)(x) = a |g(x)|^b g(x) - ext{ for } x \neq 0.$

Since p = 2, so |g(x)| = |x|.

Q.E.D.

Theorem 11. The F_p is a solvable group. **Proof.** We put

$$ab: = a * b * a^{-1} * b^{-1}$$

for $a, b \in F_p$.

It follows from (7) that

 $\overline{ab} = (k, 0)$

where k is a some positive number. Thus we conclude that $\{ab \mid a, b \in F_p\}$ institutes an abelian group. By consequence, the F_p is a solvable group.

Theorem 12.

Let $t \to (g^1(t), g^2(t))$ be a 1-parameter group in the F_p such that $\dot{g}^1(0) = a$, $\dot{g}^2(0) = \beta$. This group has the following form

$$egin{aligned} p &= 0 \colon t o (e^{at}, t) \ p &= 0 \colon t o (e^{at}, 0) & ext{for } eta &= 0 \ t o (e^{a/eta u(t)}, u(t)) & ext{for } eta &\neq 0 \end{aligned}$$

where

$$u(t) = p^{-1}(e^{\beta pt} - 1).$$

Proof.

We put

(10)

 $egin{array}{ll} x^1(t) &= g^1(t) - 1 \ x^2(t) &= g^2(t) \,, \end{array}$

then we have

 $x^{1}(0) = x^{2}(0) = 0$ and $\dot{x}^{1}(0) = a$, $\dot{x}^{2}(0) = \beta$.

We obtain a 1-parameter subgroup in the F_p as a solution of the following system of differential equations

where f is given by (8), i.e.

 $\dot{x}^1(t) = a[1+x^1(t)][1+px^2(t)] \ \dot{x}^2(t) = \beta[1+px^2(t)].$

In view of (10) we obtain (9).

Q.E.D.

Q.E.D.

We remark that the group F_p may be considered by an arbitrary non-negative even integer p.

Let us take into considerations a group L of affine transformations of R,

$$x \mapsto ax + b$$
.

If we compute a Lie bracket of this group then we have

$$[(A_1, B_1), (A_2, B_2)] = (0, A_1B_2 - A_2B_1).$$

We see that by $p \neq 0$ the groups L and F_p have isomorphic Lie algebras. Thus the groups F_p may be viewed as generalisations of an automorphism group of the affine line.

STRESZCZENIE

W pierwszej części pracy udowodniono kilka własności odwzorowań typu $\mathbb{R}^n \to \mathbb{R}^n$ o składowych jednorodnych, zachowujących stożki w \mathbb{R}^n . Druga część pracy jest poświęcona zbadaniu konkretnej rodziny grup Lie'go.

РЕЗЮМЕ

В первой части работы доказано несколько свойств отображений из R^n в R^n с однородными компонентами, при которых конусы остаются инвариантами в R^n . Вторая часть работы посвящена изучению конкретного семейства групп Ли.