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1. Introduction

Let T,,P,, and P, denote the classes of polynomials
Pa(2) = 2+a,2*+ ... +a,2"

which are typically real, univalent, and starlike univalent in [z < 1.
Rogosinski [7] and Hummel [5] have completely determined the coeffi-
cient regions for typically real and starlike functions respectively in
[2] < 1; however their determination for 7', and Py would have a number
of useful applications. We note also the recent important work of T.
J. Suffridge on the coefficient regions for starlike functions [8], which
depends on the approximation of starlike functions by polynomials;
this is closely related to the corresponding results for P).

In this note we discuss the coefficient regions for polynomials in T
and Pj; special cases of our results may be compared with the following
observation of W. E. Kirwan:

(o =]

Lemma 1. Suppose f(z) = z— Y ¢,2", ¢, > 0. Then the necessary and
n=2

sufficient condition that f(z) be univalent, starlike, or typically real in 2| < 1

is that ¥ ne, < 1.
n=2
The sufficiency is an immediate consequence of a result of Alexan-
der [1], and the necessity follows since f’(z) cannot vanish in —1 <2< 1.

1 The second author was supported by N.S.F. grant GP 5714.
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Notice that z-+a,2? is starlike univalent in |2| < 1 if and only if
|a,] < 1/2, and typically real if and only if —1/2<a,<1/2.

Our fundamental tool will be:

Lemma 2. Let A, and A, be real. Then the mecessary and sufficient
conditions that 1+ A,co80 -+ A,c0826 be mon-negative for 0 < 6 < 2n are:
(@) 14,1 <1+4, if —1<4,<1/3, and
(b) 12, < V[84(1—2,)] if 13 <2, < 1.

Proof. Putting ¢ = cosf, the result follows at once by examining
the behaviour of

fle) =1—2,4+24,e+22,¢c?

and its derivative in the range —1 <e¢<1.

2. Coefficient regions for T,

First of all, we note the following:
Lemma 3. Suppose p,(2) = 2+ a2+ ... +a,2", where all the a, are

real, and
sinf-Imp(e®) >0 for 0 <6< 2a.

Then p,(2)eT,.
This follows from the definition of the class T, and the fact that
T,< T. We use this ia the proof of

Theorem 1. Suppose p(2) = 2+ a,2* + ay2°, where a, and a, are real.
Then the necessary and sufficient conditions that p(2)eTy are:

(a) oy < (1+3ay) if —3< @<}, and

(b) jazl < 2V[ay(1—ay)] if §<ay<1.

In particular:

(c) if —}<as<1}, p(r)eTs if and only if it also «Pg; and

(d) if p(2)eTs, |ay) <1, with equality only for z422432° (which ¢P;,
by [2, Theorem 2]).

Proof. The results follow from Lemmata 2 and 3, after some com-
putation.

3. Coefficient regions for P}, with a, and a, real

It is known [6] that a function is starlike univalent in [2| < 1 if and
only if so are all its de la Vallée Poussin means; starting from K (z) = 2/
/(1—2)?, this shows that z+ 322+ }2%P;. Further, if 2+ a,2? - a,2°¢P;,
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then |a,| < }, with equality only if a, = 0, [3]. This might have suggested
that |a,| < ! for P;. However we will show that, even for real a, and
ay, a, may be as large as 0.85...; this may be compared with the sharp
inequality |a,| < V2 — 0.94... for P,.

Suppose p(z)/z does not vanish in [2| < 1. Then the condition that
Pp(2) = 2+ a,z* + ay23¢P; (for real a, and a,) is that

eiop, (eiO)
p(e”)
which reduces to P,(6) > 0, where

Re >0 for 0 < 6 < 2m,

P,(0) =1+ 2a;+ 3a; + a,(3 + 5a,) cos 6 + 4a,cos26.
This may be compared with Lemma 2, with
A, = a,(3 +5a,)/(1 +2a; + 3a3) and A, = 4a,/(1 + 2a; + 3a;).

Doing this at once leads to impossible complication; consequently we use
a little geometrical intuition to cut the Gordian knot.

Suppose the radius of starlikeness of p(z) is unity, and let D be the
domain of variation of w = 2p’(2)/p(z) for |z] < 1. Then D is symmetric
about the real axis, since a, and a; are real; and so either (A) 0D meets
the imaginary axis in two distinet points, one above and one below the
real axis, or (B) 0/ passes through the origin.

Case A. Here P,(0) = L,+L,co86+L,cos260 has at least one real
zero, and that where 6 +# 0, n; hence P,(6) = 2L,(A + cos0)(B + cos6)
for some A, —1< A <1, and some real B. But then P,(6) >0 only
if A = B, and so

P,(6) = 2L,(A + cos 0)?
= L,[(24%2+1)+ 44 cos 0+ cos26].
We can now apply Lemma 2 with
A, = 44/(242+41) and 1, = 1/(242+1).

Here } < 1, <1, and so we must have i} = 84,(1 —4,); putting this in
terms of a, and a,, we find the condition

32a,(1 — 3a,)

By = —-——93;25(13? for §< as<§.

Case B. Here p’(z) has at least one zero on |2| = 1 and one in |2| > 1.
If both are on |z| = 1, we already know that p(2) = z+ 323, [3]. In the
other case, since a, and a, are real, both zeros must be real, and so p’(2)

2 — Annales t. XXIX, 1973
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is either of the form (1+2)(1+Bz) or (1—2)(1—Bz) for some B,
—1 < B< 1. In fact we restrict ourselves to the case

p'(2) = (1+2)(1+B2)

from which we may deduce the other; and, by Lemma 1, we may assume
that B > 0. Hence we deal with

p(z) =2+ 4(B+1)22+ 428 (0< B<1).

In the corresponding non-negative trigonometric polynomial, we
have

r 8B o 6 5B2+14B -9
®  B5B*+6B+1 " 5B 6B-9

Then ;< i, <1 if i< B<1, and so P,(6) >0 and p(z)eP; only if
B< 8}.2(1 4,), which is satisfied only if 4, =; and B =!. Finally,
0<2,<}if 0<B<?Z and then p(z)eP only if |4,|<1+4,, which
is also satlsﬁed

This completes the proof of the necessity part of

=1+ 12,.

Theorem 2. Suppose p(z) = z+4 a,2? + a2, where a, and a; are real.
Then the necessary and sufficient conditions that p(z) have radius of starli-
keness unity are:

(a) if —; <y <3y a4, = +3(1+3ay); in particular z 4+ 32° + 127 Py ;

(b) if 3 <3, @ = 32a3(1 — 3a5)/(9 —25a,); and moreover
(e) max |a,| = £ (3V6 —2), and this is attained only for
p(P‘

3

. 24 5(3V6 —2)2% + 5 (9 —V6)2%
On the other hand, both (a) and (b) imply |a,| < 1-a;, and so
la, (1 —ay)| < 1—a;.

Hence, by the Cohn Rule [2, Lemma C], p(#)/# cannot vanish in [z| <1
The sufficiency part of the theorem then also follows from the above
discussion.

The coefficient region (a,, a;) of Theorem 2 is convex. On the other
hand, we now establish

Theorem 3. The coefficient region (Rea,, Ima,, Reay, Ima,) for poly-
nomials z+ a,2:+ ayz® in P; i3 not conver.

Proof. Suppose V(2) = z+ $22+32® (which P, by Theorem 2).
It follows from Lemma 2 that ReV’'(%e) vanishes for some 6, in
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[0, 2n]. Let z, = je'. Now let
Vi(2) = €%V (¢e~*%z), and
V.(2) = [V (2)+ 7V, (2)].
Then V,(2,) = 0, since

V;(zo) = Vl(zo) = V'(2).

Consequently V, (2)¢P;, and the result follows.

4. Coefficient regions for P, with a, real

We now consider the class of starlike cubic polynomials
p(2) = 2+ a,2*+ B2?
where 0< B< }, a, = r¢'®* = u+iv, whose radius of starlikeness is
unity.

Suppose p(z)/z does not vanish in |2/ < 1; by the Cohn Rule [2,
Lemma o] a necessary and sufficient condition for this is that

1—B2> |a,—a,B|.
Under this assumption, p(z)eP; if and only if

0< Re [1+42r¢"®"?+3Be*][1+re”"®+9 4 Be 2]

0<0<2n
= 14272+ 3B%+ 4Bcos26 + 3rcos (¢ + 0) + 5rBcos (¢ — 0)
=Q(r, B, ¢, 0), say.
However, apart from a multiplicative constant, Q must be of the form [4]
[1+cos(6—0,)][1+2tcos(0—6,)]

for 0<t<1, 0<8,,0,< 2x. Comparing this with the terms in @, we
deduce that

142r2+3B*  (3+5B)u

1+4tcos26,  (1+t)cosh,

(5B—3)v 8B

(1—1t)sin6, t
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for —1<t<1, 0< 0, < 2n. Hence, after some computation, we may
establish

Theorem 4. Suppose p(z) = z+ a,2*+ Bz, where 0 < B<}. Then
the necessary and sufficient conditions that p(z) have radius of starlikeness
unity are:

(a) 1—B2 > |a,|'|B—€**%|; and
| 8B(1+t)_- . _S_B(].-—t) e T
(b) a, = + B 15B)t o(B,t)+1 R V[1—8%(B, t)]

N
where 0 < (B, t) <1 for —1<t<1, and 6*(B,1) =7 where

1—t \?
N = —4Bt2—t2—3B%2—128B2 | ———
8Bt —4Bt*—t*—3B%1 (3 5B)’

and

3-+5B 3—5B/ |

Note 1. We may replace condition (a) by the requirement that
p(2)ePy, and 80 a, and B satisfy [2, Theorem 2].

Note 2. Similar arguments may be used to establish the coefficient
region for quartic polynomials in P; with real coefficients.

D = 128B* {( e )2— (:t—)zl —8Bt*.
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STRESZCZENIE

W pracy tej autorzy rozwazaja nastepujacy problem: jakie warunki
muszy spelniaé wspotezynniki a,, a; wielomianu P(2) = 2+ a,2% 4 ay28, Zeby
jego promien gwiazdzistosci byl réwny jednosci lub zeby wielomian ten
byl typowo-rzeczywisty w kole jednostkowym.

PE3IOME

B naHuoit paboTe aBTOpH pewanT ciaepywouyo npobmemy: Hakne
YCIOBMA JOJMKHBl BBINOJHUTL KO3(duilIeHTH a,, a; MHorounena P(z2) =
= 2+ 0,22+ ay2®, 9TOGH €ero paauyc 3BE3JHOCTH pAaBHAJCA eJIUHCTBY
WA 4YTOOBl MHOTOWIEH TOT ABIAICA THUIIMYHO-PeasIbHhIl B eIMHHYHOM
Kpyre.






