ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXVIII, 5

SECTIO A

1074

Instytut Ekonomii Politycznej i Planowania, Uniwersytet Marii Curie-Skłodowskiej, Lublin Department of Mathematics, State University of New York, Brockport, New York 14420, USA Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Lublin

ZDZISŁAW LEWANDOWSKI, SANFORD MILLER¹, ELIGIUSZ ZŁOTKIEWICZ

Gamma-Starlike Functions

Funkcje gama-gwieździste

Гамма-звездообразные функции

1. In recent papers [3,4,5] several authors have investigated regular function f(z), defined in the unit disc D, with the property that the real part of an arithmetic mean of the quantities (zf'(z)/f(z)) and (1+zf''(z)/f'(z)) is positive, i.e.

$$\operatorname{Re}\left[(1-a)z\frac{f'(z)}{f(z)} + a\left(1+z\frac{f''(z)}{f'(z)}\right)\right] > 0$$

for $z \in D$ and for some fixed real a. Functions satisfying this condition are said to belong to the class of alpha-convex (or alpha-starlike) functions \mathcal{M}_a , and they have been shown to be starlike. In this paper we consider regular functions f(z), defined in D, with the property that the real part of a geometric mean of the quantities zf'(z)/f(z) and 1+zf''(z)/f'(z) is positive. We will show that these functions are starlike and will call such functions gamma-starlike to suggest the use of the geometric mean in their definition.

Definition 1. Let $f(z)=z+\sum\limits_{a}^{\infty}a_{n}z^{n}$ be regular in the unit disc D, with $f(z),\ f'(z)$ and $[1+zf''(z)/f'(z)]\neq 0$ in 0<|z|<1. Suppose γ is real and

(1)
$$\operatorname{Re}\left[\left(\frac{zf'(z)}{f(z)}\right)^{1-\gamma}\left(1+\frac{zf''(z)}{f'(z)}\right)^{\gamma}\right]>0,$$

for $z \in D$, where the powers appearing in (1) are meant as principal values.

¹ This work was carried out while the second author was an IREX Scholar in Poland.

Then we say that f(z) is a gamma-starlike function and we denote the class of such functions by \mathscr{L}^r .

Remarks. (i) Condition (1) is equivalent to the following condition:

$$\left|(1-\gamma)\arg\frac{zf'(z)}{f(z)} + \gamma\arg\left(1 + \frac{f''(z)}{f'(z)}\right)\right| < \frac{\pi}{2}$$

- (ii) If $\gamma = 0$, $\mathscr{L}_0 \equiv S^*$, the class of starlike functions, while if $\gamma = 1$, $\mathscr{L}_1 \equiv C$, the class of convex functions.
- 2. We now show that if f(z) is a gamma-starlike function then f(z) is starlike and univalent.

Theorem 1. $\mathcal{L}_{\gamma} \subset S^*$, for all real γ .

Proof. If $f(z) \in \mathcal{L}_{\gamma}$ and we set

$$\frac{1+w(z)}{1-w(z)} \equiv \frac{zf'(z)}{f(z)}.$$

for $z \in D$, then w(0) = 0, $w(z) \neq \pm 1$ and w(z) is a meromorphic function. We will show that |w(z)| < 1, and this will imply that

$$\operatorname{Re}\left[zf'(z)/f(z)
ight]>0$$
 .

Let $w(z)=R(z)e^{i\varphi(z)},\,R\geqslant 0$ for $z\in D,$ and suppose that z_0 is a point of D such that

(4)
$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Then $\frac{\partial}{\partial^{\theta}}R(z_{0})=0$, and since

$$\frac{zw'(z)}{w(z)} = \frac{\partial \Phi(z)}{\partial \theta} - i\frac{1}{R}\frac{\partial R(z)}{\partial \theta},$$

we must have $z_0w'(z_0)/w(z_0)=\partial\Phi(z_0)/\partial\theta$, and hence $z_0w'(z_0)/w(z_0)$ must be a real number. A simple geometric argument can show even more. If we assume $\partial\Phi(z_0)/\partial\theta<0$ then w(z) would be locally univalent at z_0 and this would lead to a contradiction of (4). Thus we see that $\partial\Phi(z_0)/\partial\theta$ must be non-negative and so we can set

(5)
$$\frac{z_0 w'(z_0)}{w(z_0)} = B,$$

where $B \geqslant 0$.

Since $|w(z_0)| = 1$ and $w(z_0) \neq \pm 1$, we must have

(6)
$$\frac{1+w(z_0)}{1-w(z_0)}=Ai,$$

where A is real and $A \neq 0$.

From (1) and (3) we have

$$\operatorname{Re}Iig(\gamma,f(z)ig) = \ = \operatorname{Re}\left[\left(rac{1+w(z)}{1-w(z)}
ight)^{1-\gamma}\left(rac{1+w(z)}{1-w(z)} + rac{zw'(z)}{w(z)}\left(rac{w(z)}{1+w(z)} + rac{w(z)}{1-w(z)}
ight)
ight)^{\gamma}
ight]$$

where

$$Iig(\gamma,f(z)ig) \, \equiv igg(rac{zf'(z)}{f(z)}igg)^{1-\gamma}igg(1+zrac{f''(z)}{f'(z)}igg)^{\gamma},$$

and thus at $z = z_0$, by using (5) and (6) we obtain

$$\operatorname{Re}Iig(\gamma,f(z_0)ig)=\operatorname{Re}ig[(Ai)^{1-\gamma}ig(Ai+rac{B}{a}ig(A+rac{1}{A}ig)iig]^{\gamma}.$$

If we let C=A+B(A+1/A)/2, then since $B\geqslant 0$ and $A\neq 0$ we have AC>0 and obtain

$$\operatorname{Re}I(\gamma,f(z_0))=\operatorname{Re}[(Ai)^{1-\gamma}(Ci)^{\gamma}]=\operatorname{Re}(|A|^{1-\gamma}|C|^{\gamma}i)=0.$$

This is a contradiction of (1) and so we must have |w(z)| < 1 for $z \in D$ and thus $f(z) \in S^*$.

Note that Theorem 1 shows that if $f \in \mathcal{L}_{\gamma}$, then $f \in \mathcal{L}_{0} \equiv S^{*}$. We can show more than this.

Theorem 2. If $0 \leqslant \delta \leqslant \gamma$ (or $\gamma \leqslant \delta \leqslant 0$) then $\mathscr{L}_{\gamma} \subset \mathscr{L}_{\sigma}$.

Proof. The case $\delta = 0$ has been handled in Theorem 1, so we only need to consider the case $0 < \delta/\gamma < 1$.

If $f \in \mathscr{L}_{\gamma}$, then there is a function $P_1(z) \in \mathscr{P} \equiv \{P(z) | P(0) = 1, P(z) \text{ is regular in } D \text{ and } \operatorname{Re} P(z) > 0\}$ satisfying

$$\left(rac{(zf'(z)}{f(z)}
ight)^{1-\gamma}\left(1+rac{zf''(z)}{f'(z)}
ight)^{\gamma}\equiv P_{\mathbf{1}}(z)\,.$$

By Theorem 1 we have $f(z) \in S^*$ and hence there exists $P_2(z) \in \mathcal{P}$ such that

(8)
$$\frac{zf'(z)}{f(z)} \equiv P_2(z).$$

If we raise sides of (7) to the δ/γ power we obtain

$$\left(\frac{(zf'(z)}{f(z)}\right)^{\delta/\gamma-\delta}\left(1+\frac{zf''(z)}{f'(z)}\right)^{\delta}\equiv P_1(z)^{\delta/\gamma},$$

and if we raise both sides of (8) to the $(1-\delta/\gamma)$ power we obtain

(10)
$$\left(\frac{zf'(z)}{f(z)}\right)^{1-\delta/\gamma} = P_2(z)^{1-\delta/\gamma}.$$

Multiplying equation (9) by equation (10) we obtain

$$(11) \qquad \left(rac{zf'(z)}{f(z)}
ight)^{1-\delta} \left(1+rac{zf''(z)}{f'(z)}
ight)^{\delta} \, \equiv P_{1}(z)^{\delta/\gamma} P_{2}(z)^{1-\delta/\gamma} \, \equiv P_{3}(z) \, .$$

Since $P_1(z) \in \mathscr{P}$ and $P_2(z) \in \mathscr{P},$ we have $P_3(0) = 1$ and $|{
m arg} P_3(z)| \leqslant rac{\delta}{\gamma}$

 $|{
m arg}\, P_1(z)| + \left(1-rac{\delta}{\gamma}
ight)|{
m arg}\, P_2(z)| < \pi/2\,, \quad {
m i.e.} \quad {
m Re} \quad P_3(z) > 0 \quad {
m and} \quad P_3(z) \in \mathscr{P},$ Consequently from (10) we have $f(z) \in \mathscr{L}_{\nu}$.

Note that the last theorem shows that if $f(z) \in \mathcal{L}$ and $\gamma \geqslant 1$, then f(z) is a convex function.

3. It is possible to obtain bounds on the coefficients of gamma-starlike functions by using certain "standard" methods.

Theorem 3. If $f \in \mathscr{L}_{\gamma}$, $f(z) = z + a_2 z^2 + n$, and if μ is a complex constant, then

$$|a_2(1+\gamma)|\leqslant 2\,,$$

$$|a_3(4+8\gamma)+a_2^2(\gamma^2-\neg\gamma-2)|\leqslant 4\,,$$

$$(14) \quad (1+\gamma)^2 |1+2\gamma| \, |a_3-\mu a_2| \leqslant \operatorname{Max} \left[(1+\gamma)^2, \, |4\mu(1+2\gamma)-3(3\gamma+1)| \right]$$
 all hold.

Remarks. (i) $\gamma = 0$ (14) reduces to

$$|a_3 - \mu a_2^2| \leq \text{Max}[1, |4\mu - 3|],$$

which is a result of Keogh and Merkes [2].

(ii) For $\gamma = 1$ (14) reduces to

$$|a_3-\mu a_2^2|\leqslant ext{Max.}\left[rac{1}{3},\,|\mu-1|
ight].$$

(iii) If $f(z) \in \mathcal{L}_{\gamma}$, $\gamma \geqslant 0$, then

$$|a_2| \leqslant 2/(1+\gamma)$$

and

$$|a_3| \leqslant \begin{cases} \frac{3(3\gamma + 1)}{(1 + 2\gamma)(1 + \gamma)^2}, & 0 \leqslant \gamma \leqslant \frac{7 + \sqrt{57}}{2}, \\ \frac{1}{1 + 2\gamma}, & \frac{7 + \sqrt{57}}{2} < \gamma. \end{cases}$$

hold.

Inequalities (12) - (16) may not be sharp. They would be sharp if it were possible to prove that the differential equation

(17)
$$\left(\frac{(zf'(z))}{f(z)}\right)^{1-\gamma} \left(1 + z\frac{f''(z)}{f'(z)}\right)^{\gamma} = \frac{1+z}{1-z},$$

with initial condition f(0) = 0, f'(0) = 1, has a solution that is a regular function in the unit disc. The authors have not been able to prove this for arbitrary γ , but suspect that a solution exists for $\gamma > 0$.

The class \mathcal{M}_a satisfies Theorems 1, 2 and inequality (13) and it is also true that $\mathcal{M}_0 \equiv \mathcal{Z}_0 \equiv S^*$ and $\mathcal{M}_1 \equiv \mathcal{L}_1 \equiv C$. However, in general $\mathcal{M}_p \not\equiv \mathcal{L}_\beta$; This can be seen by considering $\beta = 1/2$. By using infinite series, it is possible to show that (17) does have a regular solution for $\gamma = \beta = 1/2$, and for this solution $a_3 = 5/3$. For functions in $\mathcal{M}_{1/2}$ we must have $|a_3| \leq 29/18$ [3], and thus $\mathcal{M}_{1/2} \not\equiv \mathcal{L}_{1/2}$.

We conclude by indicating a refinement in the class of gamma-starlike functions.

Definition 2. Let $f(z)=z+\sum_{n=0}^{\infty}a_nz^n$ be regular in the unit disc D with f(z), f'(z), $1+zf''(z)/f'(z)\neq 0$ in 0<|z|<1, and suppose γ is a real constant, $0\leqslant \gamma<1$. If

(18)
$$\operatorname{Re}\left[\left(\frac{zf'(z)}{f(z)}\right)^{1-\gamma}\left(\left(1+z\frac{f''(z)}{f'(z)}\right)^{\gamma}\right]>\alpha.$$

for $z \in D$, then we say that f(z) is a gamma-starlike function of order a, and we denote the class of such functions by $\mathcal{L}_{\gamma}(a)$. If (18) is replaced by

$$\left| (1-\gamma) \arg \left(\frac{z f(z)}{f(z)} \right) + \gamma \arg \left(1 + \frac{z f^{\prime\prime}(z)}{f^{\prime}(z)} \right) \right| < \frac{\pi}{2} a$$

for $z \in D$, then we say that f(z) is a strongly gamma-starlike function of order a, and we denote the class of such functions by $\mathcal{L}_{\nu}^{*}(a)$.

Note that $\mathcal{L}^*(a)$ and $\mathcal{L}_1^*(a)$ are respectively the classes of strongly-starlike and strongly—convex functions of order a introduced by Brannan and Kirwan [1].

REFERENCES

- [1] Brannan D. A. and Kirwan W. E., On Some Classes of Bounded Univalent Functions, London Math. (2). 1 (1969), 437-443.
- [2] Keogh F. R. and Merkes E. P., A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 No 1, (1969) 8-12.
- [3] Kulshrestha P. K., Coefficients for Alpha-Convex Functions, Bull. Amer. Math. Soc. (to appear).
- [4] Miller S. S., Distortion Properties of Alpha-Starlike Functions, Proc. Amer. Math. Soc., 38 (1973), 311-318.
- [5] Miller S.S., Mocanu P. and Reade M. O., All Alpha-Convex Functions are Univalent and Starlike, Proc. Amer. Math. Soc., 37 (1973), 553-554.
- [6] Stankiewicz J., Some Remarks Concerning Starlike Functions Bull. Pol. Acad. Sci. 18(1970), 143-146.

STRESZCZENIE

Niech $f(z)=z+\sum\limits_{2}^{\infty}a_{n}z^{n}$ będzie funkcją holomorficzną w kole jednostkowym $D=\{z\colon |z|<1\}$ i taką, że $f(z)\neq 0$, $f'(z)\neq 0$ oraz

$$1 + zf''(z)/f'(z) \neq 0$$
 dla $0 < |z| < 1$.

Jeśli zachodzi nierówność

$$\operatorname{Re}\left\{[zf'(z)/f(z)]^{1-\gamma}\ [zf''(z)/f'(z)+1]\right\}>0\ \operatorname{dla}\ z\in D$$

dla dowolnego, ustalonego rzeczywistego γ to mówimy, że f(z) jest funkcją gamma-gwiaździstą.

W pracy tej autorzy dowodzą, że funkcje gamma-gwiaździste są jednolistne i gwiaź. dziste. Podane są też pewne oszacowania współczynników dla rozważanych funkcji-

РЕЗЮМЕ

Пусть $f(z)=z+\sum\limits_{2}^{\infty}a_{n}z^{n}$ будет голоморфной функцией в единичном круге $D=\{z\colon |z|<1\}$ подчиненной условиям $f(z)\neq 0$, $f'(z)\neq 0$ и $1+zf''(z)/f'(z)\neq 0$ для 0<|z|<1. Если исполнится неравенство для вещественого фиксированного γ

$$\text{Re}\{[zf'(z)/f(z)]^{1-\gamma}[zf''(z)/f'(z)+1]\}<0$$
 для $z \in D$

то тогда мы говорим, что f(z) — это гамма-звездообразная функция.

Авторы доказывают, что гамма-звездообразные являются однолистными и звездообразными функциями. Даются также некоторые оценки коэффициентов рассматриваемых функций.