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I. Introduction

Let M denote the class of functions f(z) which are analytic in the
unit disk 4, normalized by the conditions f(0) = 0 and f'(0) =1, and
which satisfy the condition f(2)f'(2)/z +# 0, ze A. If f(2) is in M and a
is a real non-negative number then the Mocanu angle ¥ is defined in
[2] as

¥ = (1—a)arg{f(z)} + a arg {izf' (2)};

f(2) is said to have bounded Mocanu variation if the total variation of
this angle on every circle |z| = #, 0 << r < 1, remains bounded as r—1.
The collection of 21l functions f(2) for which this variation is bounded
by krn (k> 2) is denoted by MV [a, k]. Equivalently, this condition can
be expressed as f(z)e MV [a, k] if f(2) is in M and

e O

For convenience we adopt the notation

d(a, f(2) = (1 —a)zf'(2)[f(2) + a(1 +2f"(2)[f (2)).

The motivation for the study of these classes in [2] was, in part,
due to the article of P. T. Mocanu [7]. In both [2] and [7] a is assumed
to be non-negative. Eenigenburg [4], Miller, Mocanu and Reade [6]
have extonded the work of [7] to the caso where a is real. It is the purpose
of this note to exteond the definition of MV [a, k] to the case where a



24 H. B. Coonce, P. J. Eenigenburg, M. R. Ziegler

is real and also to observe some other interesting properties of these
classes of functions. Thus in what follows a is assumed to be real unless
specifically restricted. )

II. Basic results

The following two theorems and their corollaries are straightforward
generalizations of results in [2]. The proofs have been omitted since they
require only minor modifications of the earlier results.

Theorem 1. If f(z) is in M and z = re’®, 0 <r <1 then

[ IRe(sf (2)If(2}1d0 < [ [Re{d(a, f(2)}|d0
0 0

for all real a.

Theorem 2. If f(z) is in M, a +# 0, § is real, and 2z = re”, 0 < r < 1,
then

[ Retate, gepas < PEBZE [ rela(a, po))as

0 0

Corollary 1. If af > 0 and |a| > |f] then
MVia, k] MV[B,k; if aB> 0 and |a| < B then
MVia, k] MV[B, (28 —a)k/a]; and if af < O then
MV(a,k]c MV[B, (a—28)k/a].

Corollary 2. If f(z) is in MV[a, k] for a # O then f(2) has bounded
boundary rotation.

Corollary 3. If f(z) is in M and is a convex univalent function then

7 - 2 B—1/2|<12
Rel(8, ()} a0 <127 . L g~y
uf ! 2=128—-1]; B —-1/2|> 1/2.
. . 142
These inequalities are sharp for f(z) = }log1 >

III. MV[a, k] and univalent functions

Let S denote the subclass of M consisting of univalent functions
and let m(a) = max([2, |2 +2aql].
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Theorem 3. If k < m(a) then MV [u, k] = S.

Proof. If a > 0 the result follows from Theorem 4 in [2]. For a < 0
we will make use of the following result of Ogawa [8]. If f(z) is in M,
a> —3/2, z = re’, and '

(3.1) [ Re{l 1 2f"(2)[f (2)  asf (2)[f (2)}d0 > —
6)

for each 7, 0 < » < R,and all 0,, 0,, 0 < 0, < 6, < 2z then f(2) is univalent
in |2 < R. Now let f(z)e MV [a, k], a < 0. Since

(3.2) ' Re{J(ua, f(2))}/d0 < kn and
0
| Re{J(a, f(2)))d0 = 2
0

for every », 0 <r <1, we have

Y2
| Re{(1—a)zf'(2)/f(2) + a(L - 2f"(2)[f (2))} 40 < (K +2)m/2
0
or
[ Refasf (2)[f(2) 11+ 3" (@) [f ()} 40 > (K +2)7[20
0
for each r, 0 < # < 1 and ull 6, and 0, satisfying 0 < 0, < 0, < 27 where
we have used (1—a)/a = a. Thus if (1 —a)/a> —3/2 or equivalently
a < —2 then Ogawa’s theorem shows that f(2) is univalent when (k 1-2)/
2a= —1 or k< —2a—2 = m(a). Finally if —2 < a < 0 then m(a) =2
and the only admissible value of k satisfying k < m(a) is ¥ = 2. Using
k =2 in (3.2) shows that RelJ(a,f(2))} >0 and functions satisfying
this condition are known to be univalent [6].

Comment. For all a, a routine calculation for the Koebe function
2
F(z) = (—1—2)—2 shows that F(2)e MV [a,m(a)], but F(z)¢ MV[a,k]
if k< m(a).
For k> m(a) anda< —2 we may make further use of Ogawa’s
theorem to estimate the radius of univalence for MV [a, k].
Suppose now that fe MV [a, k] with a< —2 and k> —2a—2. By
Ogawa’s theorem f will be univalent in |z]| < r if
a‘ T
f {Re(l/a—l)—zf—(—) 14 f { )
f@)

0<0,<6,<2n Note that we must have 1/a —1> =-3/2,i.e, a< —2.

=d0> —n
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Now given fe MV [a, k] there is a Ge V, such that

2f'(2) ( «‘Ef”{z)) 2G” ()
1—a +a\l+ Gl =14t ——r-
S e @ 2)
Defining, for 6 = 6,—g,,

Oy
— o TB L AE)
A, 6) _,.Jﬁfa,k] Jf Re!a/a ) 2t )

i,
G 1 . 26" (2
> inf = J "Re 1+ (z)}d():——sup Rel1+ ,‘)}do,
GV @ G'(2) a Gavy, o | G'(2)

it suffices to solve the mequa,lity

2G" (2))

sup Re{1+ @) |

Vi 6

——1db

AN
I
R
E]

(Note that — ax > 2n).
Referring to the proof of Theorem 1 in [3] we find

6y
2G'" (2)
= dao
y(r, 0) s’l’?o Re{l% @ () }

3 bot= Y} Ltl sy 2] ot ot ——li]
Bt EETR ey I | 7{2(1 —cos0)}' |’

ay 1—9p2 krsin6
(3.3) s .T[ A o A,
90 1—2re cosl |-r [2(1 —cosH)]

0
Noting that all zeros for (3.3) must occur for # < 6 < 27 we have Ba 0

1472

0
when cos o

0
— Let 0,¢(m,2n) be chosen so that cos —21
—kr
v 6 1472 9
= s . Then cot-—= ___+ and [2(1—cos86)]"? = — x
—kr Virt — (1 +12)2 kr

X[Kr* — (1 )12, Thus

ko
maxy(r, 0) = y(r, 0,) =k cot“‘(—z—) —2 cot™H(w) +2n
0
where o = (1 —72)[k?r2—(1+7°)*]""* and f is univalent whenever

k :
(3.4) k cot ™ (—5“1} —2(cot'w) < —an—2x.
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2
-3

The left hand side of (3.4) is an increasing function of » xo if k
< —2a-—2 = m(a),r =1 as expected from Theorem 3. If, however, k > m(a)

k
then there is & unique solution r(a, k) to the cquation k cot"(—;) —

—2 cot ™ '(w) = —a(a--2) and f is univalent at least in 2] < r(a, k).

IV. MV [a, k] and close-to-convex functions

In this section we restrict a to a > 0. It is well-known that if a = 0
or a =1 and fe WV [a,m(a)] then fe K, the class of close-to-convex
functions. We now show that these are the only values of « for which
MVia,m(a)] c I.

Lemma. ge MV[a, k] if and only if fe MV[ap, k], where g¢(z)
= [f(z")]".

The proof is essentiaxlly the same as that of Theorem 1 [1].

We first observe that there is a function fe MV [2, 6] which is not
close-to-convex. To this end, let g be a function in M which maps 4 onto
‘the complement of two slits symmetric with respect to the origin in the
w-plane, but not pointing at the origin. Then ge MV [1, 6] (e.g., see [5]).
Computing f from the lemma, we see that f maps 4 onto the complement
of part of a parabola. Clearly f is not close-to-convex but, by the lemma,
fe MV [2,6].

More generally, there exists for each positive a(a # 1) a function
in MV[a,m(a)]— K. To obtain such a function f, we require that f map
A onto the complement of & single, smooth, twice differentiable slit which
has the property that (1 —a)argP-+aargT is a constant function of
¢ = argP; P and T are the position and tangent vectors, respectively.
If the slit is defined locally by » = r(¢), then the differential equation

(4.1) arr —(a +1)(r)2—12 = 0

must be satisfied. On reducing (4.1) to a first order equation we obtain

as solutions
yl- B
r = A sec” (‘E )
Li §

A range of values of ¢ can be specified to obtain an infinite slit. The cons-
tants 4 and B allow sufficient freedom to bring f to normalization, and
geometric considerations show fe MV [a, m(a)].

Note that for ¢ = 1 we obtain a ray, in agreement with MV [1, 4] = K;
and for a = 2 we obtain a parabolic slit as cited in the example above.
Clearly, if a + 1, the curve is not & ray and so f¢ K.
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STRESZCZENIE

Autorzy wprowadzajs klase funkeji MV [a,k] (a> 0,k > 2), ktéra jest zdefi-
niowana w ten sposéb, iz wariacja wzdluz okregu |¢| = r tzw. kata Mocanu y jest
ograniczona przez kx. Kat y jest okreslony réwnaniem y = (1 — a)argf(z) + aargizf’(2).
W szczegélnodei, autorzy otrzymali relacje zawierania sie pomiedzy klasami MV [a, k]
odpowiadajacymi réznym wartoéciom parametréw.

PE3IOME

Beoautcs knacc dynkuuit MV [a, k](a > 0, k > 2) onpeneneHHsli TakuM cnocoboM, 4To
BapHaLMs BAOJIb OKPYXXHOCTH |z| = 7 Tak Ha3biBaeMoro yrjia MokaHy y orpaHuyeHa kx. Yron y
onpenenseTcs ypaBHeHHeM yp = (1 — a)argf(z) + aargizf’(z). B 4aCTHOCTH, aBTOPHI HOJYYHIIH
pensuMio conepxanus Mexay xnaccamd MV [a, K] COOTBETCTBYIOLUMM Da3HbIM 3Ha4CHHAM
napaMeTpoB.



