UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXVIII, 2

SECTIO A

1974

Mankato State College, Mankato, Minnesota 56001, USA Western Michigan University, Kalamazoo, Michigan 49001, USA Marquette University, Milwaukee, Wisconsin 53233, USA

H. B. COONCE, P. J. EENIGENBURG, M. R. ZIEGLER

Functions with Bounded Mocanu Variation II

Funkcje z ograniczoną wariacją Mocanu II Функции с ограниченной вариацией по Мокану II

I. Introduction

Let M denote the class of functions f(z) which are analytic in the unit disk Δ , normalized by the conditions f(0) = 0 and f'(0) = 1, and which satisfy the condition $f(z)f'(z)/z \neq 0$, $z \in \Delta$. If f(z) is in M and α is a real non-negative number then the Mocanu angle Ψ is defined in [2] as

$$\Psi = (1-a) \arg\{f(z)\} + a \arg\{izf'(z)\};$$

f(z) is said to have bounded Mocanu variation if the total variation of this angle on every circle |z| = r, 0 < r < 1, remains bounded as $r \to 1$. The collection of all functions f(z) for which this variation is bounded by $k\pi$ $(k \ge 2)$ is denoted by MV[a, k]. Equivalently, this condition can be expressed as $f(z) \in MV[a, k]$ if f(z) is in M and

$$\int\limits_0^{2\pi}\left|\operatorname{Re}\left\{(1-a)rac{zf^{\prime}(z)}{f(z)}
ight. + a\left(1+rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}
ight)
ight\}
ight|d heta\leqslant k\pi\,.$$

For convenience we adopt the notation

$$J\big(\alpha,f(z)\big)=(1-\alpha)zf'(z)/f(z)+\alpha(1+zf''(z)/f'(z)\big).$$

The motivation for the study of these classes in [2] was, in part, due to the article of P. T. Mocanu [7]. In both [2] and [7] a is assumed to be non-negative. Eenigenburg [4], Miller, Mocanu and Reade [6] have extended the work of [7] to the case where a is real. It is the purpose of this note to extend the definition of MV[a, k] to the case where a

is real and also to observe some other interesting properties of these classes of functions. Thus in what follows a is assumed to be real unless specifically restricted.

II. Basic results

The following two theorems and their corollaries are straightforward generalizations of results in [2]. The proofs have been omitted since they require only minor modifications of the earlier results.

Theorem 1. If f(z) is in M and $z = re^{i\theta}$, $0 \le r < 1$ then

$$\int\limits_{0}^{2\pi}|\mathrm{Re}\{zf'(z)/\!f(z)\}|\,d\theta\leqslant\int\limits_{0}^{2\pi}\left|\mathrm{Re}\big\{J\big(\alpha,f(z)\big)\big\}\right|d\theta$$

for all real a.

Theorem 2. If f(z) is in M, $\alpha \neq 0$, β is real, and $z = re^{i\theta}$, $0 \leqslant r < 1$, then

$$\int\limits_{0}^{2\pi}\left|\mathrm{Re}\{Jig(eta,f(z)ig)\}
ight|d heta\leqslantrac{|eta|+|lpha-eta|}{|lpha|}\int\limits_{0}^{2\pi}\left|\mathrm{Re}\{Jig(lpha,f(z)ig)\}
ight|d heta$$

Corollary 1. If $\alpha\beta > 0$ and $|\alpha| \ge |\beta|$ then $MV[\alpha, k] \subset MV[\beta, k]$; if $\alpha\beta > 0$ and $|\alpha| \le |\beta|$ then $MV[\alpha, k] \subset MV[\beta, (2\beta - \alpha)k/\alpha]$; and if $\alpha\beta < 0$ then $MV[\alpha, k] \subset MV[\beta, (\alpha - 2\beta)k/\alpha]$.

Corollary 2. If f(z) is in MV[a, k] for $a \neq 0$ then f(z) has bounded boundary rotation.

Corollary 3. If f(z) is in M and is a convex univalent function then

$$\int\limits_0^{2\pi} \big|\operatorname{Re}\big\{J\big(\beta,f(z)\big)\big\}\big|\,d\theta \leqslant \begin{cases} 2\pi \\ 2\pi|2\beta-1|\,;\, \left|\beta-1/2\right| \leqslant 1/2 \\ \beta-1/2\,|>1/2\,. \end{cases}$$

These inequalities are sharp for $f(z) = \frac{1}{2} \log \frac{1+z}{1-z}$.

III. MV[a, k] and univalent functions

Let S denote the subclass of M consisting of univalent functions and let $m(a) = \max[2, |2+2a|]$.

Theorem 3. If $k \leq m(a)$ then $MV[a, k] \subset S$.

Proof. If $a \ge 0$ the result follows from Theorem 4 in [2]. For a < 0we will make use of the following result of Ogawa [8]. If f(z) is in M, a > -3/2, $z = re^{i\theta}$, and

$$(3.1) \qquad \int\limits_{\theta_1}^{\theta_2} \mathrm{Re} \left\{ 1 + z f^{\prime\prime}(z) / f^\prime(z) + a z f^\prime(z) / f(z) \right\} d\theta \geqslant -\pi$$

for each $r, 0 \le r \le R$, and all $\theta_1, \theta_2, 0 \le \theta_1 < \theta_2 \le 2\pi$ then f(z) is univalent in |z| < R. Now let $f(z) \in MV[a, k]$, a < 0. Since

$$\int\limits_0^{2\pi} |\operatorname{Re} \left\{ J \big(\alpha, f(z) \big) \right\}| d\theta \leqslant k\pi \ \text{ and}$$

$$\int\limits_0^{2\pi} \operatorname{Re} \left\{ J \big(\alpha, f(z) \big) \right\} d\theta = 2\pi$$

$$\int\limits_{ heta_1}^{ heta_2} \operatorname{Re}\left\{\left(1-a)zf'(z)/f(z)+a(1+zf''(z)/f'(z)
ight)
ight\}d heta\leqslant (k+2)\pi/2$$
 $\int\limits_{ heta_1}^{ heta_2} \operatorname{Re}\left\{azf'(z)/f(z)+1+zf''(z)/f'(z)
ight\}d heta\geqslant (k+2)\pi/2a$

$$\int\limits_{a_{1}}^{ heta_{2}}\operatorname{Re}\left\{ azf^{\prime}\left(z
ight)/f(z)+1+zf^{\prime\prime}\left(z
ight)/f^{\prime}\left(z
ight)
ight\} d heta\geqslant\left(k+2
ight)\pi/2a$$

for each r, $0 \le r < 1$ and all θ_1 and θ_2 satisfying $0 \le \theta_1 < \theta_2 \le 2\pi$ where we have used (1-a)/a = a. Thus if (1-a)/a > -3/2 or equivalently a < -2 then Ogawa's theorem shows that f(z) is univalent when (k+2)/2 $2a \geqslant -1$ or $k \leqslant -2a-2 = m(a)$. Finally if $-2 \leqslant a \leqslant 0$ then m(a) = 2and the only admissible value of k satisfying $k \leq m(a)$ is k=2. Using k=2 in (3.2) shows that $\text{Re}\{J(\alpha,f(z))\}\geqslant 0$ and functions satisfying this condition are known to be univalent [6].

Comment. For all a, a routine calculation for the Koebe function $F(z) = rac{z}{(1-z)^2} ext{ shows} \quad ext{that} \quad F(z) \in MV[a, m(a)], \quad ext{but} \quad F(z) \notin MV[a, k]$ if $k < m(\alpha)$.

For k > m(a) and a < -2 we may make further use of Ogawa's theorem to estimate the radius of univalence for MV[a, k].

Suppose now that $f \in MV[\alpha, k]$ with $\alpha < -2$ and $k > -2\alpha - 2$. By Ogawa's theorem f will be univalent in |z| < r if

$$\int_{ heta_{\delta}}^{ heta_{2}} \Bigl\{ \operatorname{Re}\left(1/a - 1
ight) rac{z f'(z)}{f(z)} + 1 + rac{z f''(z)}{f'(z)} \Bigr\} d heta \geqslant -\pi$$

 $0 \leqslant \theta_1 < \theta_2 \leqslant 2\pi$. Note that we must have 1/a - 1 > -3/2, i.e., a < -2.

Now given $f \in MV[a, k]$ there is a $G \in V_k$ such that

$$(1-a)\frac{zf'(z)}{f(z)} + a\left(1+\frac{zf''(z)}{f'(z)}\right) = 1+\frac{zG''(z)}{G'(z)}.$$

Defining, for $\theta = \theta_2 - \theta_1$,

$$egin{aligned} arDelta(r,\, heta) &= \inf_{f\in M^{V[a,k]}} \int\limits_{ heta_1}^{ heta_2} ext{Re}igg\{(1/a-1)rac{zf'(z)}{f(z)}+1+rac{zf''(z)}{f'(z)}igg\}\,d heta \ &\geqslant \inf_{G\in V_k} rac{1}{a} \int\limits_{ heta_1}^{ heta_2} ext{Re}igg\{1+rac{zG''(z)}{G'(z)}igg\}\,d heta = rac{1}{a} \sup_{G\in V_k} \int\limits_{ heta_1}^{ heta_2} ext{Re}igg\{1+rac{zG''(z)}{G'(z)}igg\}\,d heta, \end{aligned}$$

it suffices to solve the inequality

$$\sup_{{V}_k}\int\limits_{ heta_1}^{ heta_2} \operatorname{Re}\left\{1+rac{zG^{\prime\prime}(z)}{G^\prime(z)}
ight\}d heta\leqslant -a\pi$$

(Note that $-\alpha\pi > 2\pi$).

Referring to the proof of Theorem 1 in [3] we find

$$egin{align} \gamma(r,\, heta) &= \sup_{V_k} \int\limits_{ heta_1}^{ heta_2} ext{Re} \left\{ 1 + rac{z G^{\prime\prime}(z)}{G^\prime(z)}
ight\} d heta \ &= 2 \cot^{-1} \left[rac{1-r^2}{1+r^2} \cot rac{ heta}{2}
ight] + k \cot^{-1} \left[rac{1-r^2}{r \{ 2 \, (1-\cos heta) \}^{1/2}}
ight], \ &3.3) \qquad rac{\partial \gamma}{\partial heta} = rac{1-r^2}{1-2r^2\cos heta + r^4} \left[1 + r^2 + rac{kr \sin heta}{\lceil 2 \, (1-\cos heta)
ceil^{1/2}}
ight]. \end{split}$$

Noting that all zeros for (3.3) must occur for $\pi < \theta < 2\pi$ we have $\frac{\partial \gamma}{\partial \theta} = 0$ when $\cos \frac{\theta}{2} = \frac{1+r^2}{-kr}$. Let $\theta_0 \in (\pi, 2\pi)$ be chosen so that $\cos \frac{\theta_0}{2} = \frac{1+r^2}{-kr}$. Then $\cot \frac{\theta_0}{2} = \frac{1+r^2}{\sqrt{k^2r^2-(1+r^2)^2}}$ and $[2(1-\cos\theta)]^{1/2} = \frac{2}{kr} \times [k^2r^2-(1+r^2)^2]^{1/2}$. Thus

$$\max_{\scriptscriptstyle 0} \gamma(r,\, heta) \, = \gamma(r,\, heta_{\scriptscriptstyle 0}) \, = \, k \, \cot^{-1}\!\left(\frac{k\omega}{2}\right) - 2 \, \cot^{-1}(\omega) + 2\pi$$

where $\omega = (1-r^2)[k^2r^2-(1+r^2)^2]^{-1/2}$ and f is univalent whenever

(3.4)
$$k \cot^{-1}\left(\frac{k\omega}{2}\right) - 2(\cot^{-1}\omega) \leqslant -a\pi - 2\pi.$$

The left hand side of (3.4) is an increasing function of r so if $k \le -2a-2 = m(a), r=1$ as expected from Theorem 3. If, however, k > m(a) then there is a unique solution r(a, k) to the equation $k \cot^{-1}\left(\frac{k\omega}{2}\right) = -2 \cot^{-1}(\omega) = -\pi(a+2)$ and f is univalent at least in |z| < r(a, k).

IV. MV[a, k] and close-to-convex functions

In this section we restrict a to $a \ge 0$. It is well-known that if a = 0 or a = 1 and $f \in MV[a, m(a)]$ then $f \in K$, the class of close-to-convex functions. We now show that these are the only values of a for which $MV[a, m(a)] \subset K$.

Lemma. $g \in MV[a, k]$ if and only if $f \in MV[ap, k]$, where $g(z) = [f(z^p)]^{1/p}$.

The proof is essentially the same as that of Theorem 1 [1].

We first observe that there is a function $f \in MV[2, 6]$ which is not close-to-convex. To this end, let g be a function in M which maps Δ onto the complement of two slits symmetric with respect to the origin in the w-plane, but not pointing at the origin. Then $g \in MV[1, 6]$ (e.g., see [5]). Computing f from the lemma, we see that f maps Δ onto the complement of part of a parabola. Clearly f is not close-to-convex but, by the lemma, $f \in MV[2, 6]$.

More generally, there exists for each positive $a(a \neq 1)$ a function in MV[a, m(a)] - K. To obtain such a function f, we require that f map Δ onto the complement of a single, smooth, twice differentiable slit which has the property that $(1-a)\arg P + a\arg T$ is a constant function of $\Phi = \arg P$; P and T are the position and tangent vectors, respectively. If the slit is defined locally by $r = r(\varphi)$, then the differential equation

(4.1)
$$ar\ddot{r} - (a+1)(\dot{r})^2 - r^2 = 0$$

must be satisfied. On reducing (4.1) to a first order equation we obtain as solutions

$$r=A \sec^a \left(rac{arphi+B}{a}
ight).$$

A range of values of φ can be specified to obtain an infinite slit. The constants A and B allow sufficient freedom to bring f to normalization, and geometric considerations show $f \in MV[a, m(a)]$.

Note that for a = 1 we obtain a ray, in agreement with $MV[1, 4] \subset K$; and for a = 2 we obtain a parabolic slit as cited in the example above. Clearly, if $a \neq 1$, the curve is not a ray and so $f \notin K$.

REFERENCES

- [1] Coonce H. B. and Miller S. S., P-Fold Symmetric Alpha Starlike Functions, Proc. Amer. Math. Soc. 44 (1974), 336-340.
- [2] Coonce H. B. and Ziegler M. R., Functions with Bounded Mocanu Variation, Revue Roumaine, 19 (1974), 1093-1104.
- [3] Coonce H. B. and M. R. Ziegler, The Radius of Close-to-Convexity of Functions of Bounded Boundary Rotation, Proc. Amer. Math. Soc., 35 (1972), 207-210.
- [4] Eenigenburg P. J., On a-Convex Functions, Revue Roumaine 19 (1974), 305-310.
- [5] Keogh F. R. and Miller S. S., On the Coefficients of Bazilevic Functions, Proc. Amer. Math. Soc., 30 (1971), 492-496.
- [6] Miller S. S., Mocanu P. T., and Reade M. O., All a-Convex Functions are Starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
- [7] Mocanu P. T., Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj), (11) 34 (1969), 127-133.
- [8] Ogawa S., Some Criteria for Univalence, J. of Nara Gakugei Univ. 10 (1961), 7-12.

STRESZCZENIE

Autorzy wprowadzają klasę funkcji MV[a,k] (a>0,k>2), która jest zdefiniowana w ten sposób, iż wariacja wzdłuż okręgu |z|=r tzw. kąta Mocanu ψ jest ograniczona przez $k\pi$. Kat ψ jest określony równaniem $\psi=(1-a)\arg f(z)+a\arg izf'(z)$. W szczególności, autorzy otrzymali relacje zawierania się pomiędzy klasami MV[a,k] odpowiadającymi różnym wartościom parametrów.

РЕЗЮМЕ

Вводится класс функций $MV[a,k](a>0,\ k>2)$ определенный таким способом, что вариация вдоль окружности |z|=r так называемого угла Мокану ψ ограничена $k\pi$. Угол ψ определяется уравнением $\psi=(1-\alpha)\arg f(z)+\alpha\arg izf'(z)$. В частности, авторы получили реляцию содержания между классами MV[a,k] соответствующим разным значениям параметров.