ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

Vol. XXVII, 12

SECTIO A

Instytut Matematyki, Uniwersytet Marii Curie-Sklodowskiej, Lublin

DOMINIK SZYNAL AND WIESŁAW ZIĘBA

On Infinitely Divisible Generalized Distributions in R_{ν}

O uogólnionych rozkładach nieskończenie podzielnych w R_k

Об обобщенных, безгранично делимых функциях распределения в R_k

1. Introduction. The concept of generalized probability distribution in R_1 and suggestions of its applications have been given in [1]. That distribution is generated by real function satisfying some regular conditions.

The purpose of this note is to extend that concept to R_k and to give some facts analogous to those that are well-known in the classical probability theory. The main result of this note gives us a canonical representation of the Lévy-Khinchine's type of infinitely divisible generalized distribution. As particular cases we obtain some results of [2].

2. The generalized probability distribution. Now we are going to introduce a concept generalized probability distribution in R_k as well as its characteristic function.

Definition 1. A generalized distribution function is a function $V(\mathbf{x}) = V(x_1, x_2, ..., x_k)$ on R_k with the following properties:

(1) V is continuous to the left in each variable

(2) $V(\mathbf{x}) \rightarrow 0$ as any one coordinate of \mathbf{x} goes to $-\infty$, and $V(\mathbf{x}) \rightarrow 1$ as all coordinates of \mathbf{x} go to ∞ .

(3) $\operatorname{var}_{R_k} V(\mathbf{x}) = \int_{R_k} |dV(\mathbf{x})| < \infty.$

The class of all functions satisfying (1), (2) and (3) will be denoted by \mathscr{C} . **The distribution function** V generates on (R_k, \mathscr{B}_k) a countable additive set function defined by Lebesgue-Stieltjes integral

$$P_k(A) = \int\limits_{\mathcal{A}} dV(\mathbf{x}),$$

where $A \in \mathcal{B}_k$ and $P_k(R_k) = 1$.

The triplet $(R_k, \mathcal{B}_k, P_k)$ is called the quasiprobability space.

1973

Definition 2. Fourier-Stieltjes transform of V i.e.

$$arphi(\mathbf{t}) = \int\limits_{R_k} e^{i\langle \mathbf{t}, \mathbf{x}
angle} dV(\mathbf{x}),$$

where $\langle \mathbf{t}, \mathbf{x} \rangle$ is the scalar product of vectors \mathbf{t} and \mathbf{x} is called the characteristic function of V.

One can immediately obtain

- (a) $\varphi(\mathbf{0}) = 1$, where $\mathbf{0} = (0, 0, ..., 0)$,
- (b) $\varphi(-\mathbf{t}) = \overline{\varphi(\mathbf{t})},$
- (c) $|\varphi(\mathbf{t})| \leq \operatorname{var}_{R_k} V(\mathbf{x}).$

In what follows we need the following theorems:

Theorem 1. For every $V \in \mathcal{C}$, we have

$$V(\mathbf{x}) = a_1 F_1(\mathbf{x}) + a_2 F_2(\mathbf{x}),$$

where F_1 and F_2 are distribution functions in the classical sense and $a_1 + a_2 = 1$.

Theorem 2. Every $V \in \mathcal{C}$ has at most a countable set of discontinuity hiperplanes.

Theorem 3. If $V \in \mathscr{C}$, then $\varphi(\mathbf{t})$ is uniformly continuous on R_k .

Proof. Let $\operatorname{var} V(\mathbf{x}) = L < \infty$. Then for given any $\varepsilon > 0$ there exists T > 0 such that

$$\int\limits_{K(T)} |dV(\mathbf{x})| > L - rac{arepsilon}{3},$$

where $K(T) = \{\mathbf{x} : |x_i| < T, i = 1, 2, ..., k\}.$

By continuity of $e^{i\langle h,x\rangle}$, there exists $\delta > 0$ such that if $||\mathbf{h}|| < \delta$ and $\mathbf{x} \in K(T)$, then

$$|e^{i\langle \mathbf{h},\mathbf{x}
angle}\!-\!\mathbf{1}|\!<\!rac{arepsilon}{3L}$$

holds, where $\mathbf{h} = (h_1, h_2, ..., h_k)$ and $||\mathbf{h}|| = \mathbf{V} \langle \mathbf{h}, \mathbf{h} \rangle$. Therefore, we have

$$\begin{split} |\varphi(\mathbf{t}+\mathbf{h})-\varphi(\mathbf{t})| &\leq \int\limits_{R_k} |e^{i\langle \mathbf{t}+\mathbf{h},\mathbf{x}\rangle} - e^{i\langle \mathbf{t},\mathbf{x}\rangle} ||dV(\mathbf{x})| \\ &\leq \int\limits_{K(T)} |e^{i\langle \mathbf{h}+\mathbf{t},\mathbf{x}\rangle} - e^{i\langle \mathbf{t},\mathbf{x}\rangle} ||dV(\mathbf{x})| + \int\limits_{R_k \setminus K(T)} |e^{i\langle \mathbf{t}+\mathbf{h},\mathbf{x}\rangle} - e^{i\langle \mathbf{t},\mathbf{x}\rangle} ||dV(\mathbf{x})| \\ &\leq \int\limits_{K(T)} |e^{i\langle \mathbf{h},\mathbf{x}\rangle} - 1| |dV(\mathbf{x})| + 2 \int\limits_{R_k \setminus K(T)} |dV(\mathbf{x})| < \varepsilon, \end{split}$$

independently of t, which completes the proof.

122

Definition 3. A class $\mathcal{F} \subset \mathcal{C}$ of generalized distributions is said to be tight if

 1^o for any given $\varepsilon>0$ there exists a positive number T_ε such that for every $V\,\epsilon\,\mathcal{F}$

$$\int\limits_{R_k \smallsetminus K(T_s)} |dV(\mathbf{x})| < \varepsilon$$

and if

2° there exists a positive constant C such that $\operatorname{var} V(\mathbf{x}) < C$ for every $V_{\ell} \in \mathscr{T}$.

Definition 4. A sequence $\{V_n, n \ge 1\}$ of generalized distributions is said to be weakly convergent to $V(V_n \rightarrow V)$ if $\lim_{n \to \infty} V_n(\mathbf{x}) = V(\mathbf{x})$ at

every point of continuity of V.

If $V_n \to V$ as $n \to \infty$ and $V \notin \mathscr{C}$, then a sequence $\{V_n, n \ge 1\}$ is said to be completly convergent to $V(V_n \to V)$.

By Theorem 1 we have

Theorem 4. Every $V \in \mathscr{C}$ is uniquely determined by its characteristic function.

Theorem 5. If $\mathscr{W} \subset \mathscr{C}$ is such that for every $V \in \mathscr{W}$

$$\operatorname{var}_{R_k} V(\mathbf{x}) < C,$$

where C depends on \mathcal{W} only, then \mathcal{W} is weak compact in the sense of the weak convergence.

Theorem 6. Let $\{V_n, n \ge 1\}$ be a sequence of generalized distributions. If there exists C such that $\operatorname{var} V_n(\mathbf{x}) < C$ independently of n and if $V_n \to V$ as $n \to \infty$, then for any given K(T) for which

 $\int\limits_{\overline{K(T)}\cap \overline{R_k\setminus K(T)}} \left| d\,V({f x})
ight| \,=\, 0$

and for an arbitrary continuous and bounded function, defined on K(T)

$$\lim_{n \to \infty} \int_{K(T)} f(x) \, dV_n(\mathbf{x}) = \int_{K(T)} f(x) \, dV(x)$$

holds.

Proof. A set K(T) is compact and $f(\mathbf{x})$ is continuous on K(T) so $f(\mathbf{x})$ being continuous on the compact set K(T) is uniformly continuous. Hence, for any given $\varepsilon > 0$ there exists $\delta > 0$ such that

 $||\mathbf{x} - \mathbf{y}|| < \delta \text{ implies } |f(\mathbf{x}) - f(\mathbf{y})| < \frac{c}{3C}.$

Now, let us divide k-dimensional cube by the means of (k-1) dimensional hiperplanes continuity of V into cubes $K(T_i)$, i = 1, 2, ..., M with diametres less than δ . Let $f_{\epsilon}(\mathbf{x})$ denote a simple function being constant on every $K(T_i)$ and equal to the value of $f(\mathbf{x})$ at the point being the centre of $K(T_i)$. Then

$$\begin{split} \left| \int\limits_{K(T)} f(\mathbf{x}) \, dV_n(\mathbf{x}) - \int\limits_{K(T)} f(\mathbf{x}) \, dV(\mathbf{x}) \right| &\leq \left| \int\limits_{K(T)} [f(\mathbf{x}) - f_\varepsilon(\mathbf{x})] \, dV_n(\mathbf{x}) \right| \\ &+ \left| \int\limits_{K(T)} f_\varepsilon(\mathbf{x}) \, dV_n(\mathbf{x}) - \int\limits_{K(T)} f_\varepsilon(\mathbf{x}) \, dV(\mathbf{x}) \right| + \left| \int\limits_{K(T)} [f(\mathbf{x}) - f_\varepsilon(\mathbf{x})] \, dV(\mathbf{x}) \right| \\ &\leq \frac{\varepsilon}{3C} \, 2C + \left| \int\limits_{K(T)} f_\varepsilon(\mathbf{x}) \, d[V_n(\mathbf{x}) - V(\mathbf{x})]. \end{split}$$

On the basis of the weak convergence of $\{V_n, n \ge 1\}$ there exists n_0 such that for $n > n_0$

$$|V_n(x) - V(x)| < \varepsilon/3 \cdot 2^k m M$$

at every point **x** which is a vertex at least one of cubes $K(T_i)$, where $m = \max_{\mathbf{x} \in K(T)} |f(\mathbf{x})|$.

Hence

$$\int_{K(T_i)} f_{\varepsilon}(\mathbf{x}) d[V_n(\mathbf{x}) - V(\mathbf{x})] \bigg| < \frac{\varepsilon}{3M},$$

and therefore

$$\int_{K(T)} f(\mathbf{x}) \, dV_n(\mathbf{x}) - \int_{K(T)} f(\mathbf{x}) \, dV(\mathbf{x}) \, \Big| < \varepsilon,$$

which completes the proof.

Theorem 7. If $V_n \rightarrow V$ as $n \rightarrow \infty$ and $\{V_n\} \subset \mathcal{T}$, where \mathcal{T} is tight, then

$$\lim \varphi_n(\mathbf{t}) = \varphi(\mathbf{t}),$$

where $\varphi_n(\mathbf{t})$ and $\varphi(\mathbf{t})$ are the characteristic functions of V_n and V respectively.

Proof. Let us note

$$\begin{split} |\varphi_n(\mathbf{t}) - \varphi(\mathbf{t})| &= \left| \int\limits_{R_k} e^{i < t, \mathbf{x} >} dV_n(\mathbf{x}) - \int\limits_{R_k} e^{i < t, \mathbf{x} >} dV(\mathbf{x}) \right| \\ &\leq \left| \int\limits_{R_k \setminus K(T)} e^{i < t, \mathbf{x} >} dV_n(\mathbf{x}) \right| + \left| \int\limits_{R_k \setminus K(T)} e^{i < t, \mathbf{x} >} dV(\mathbf{x}) \right| \\ &+ \left| \int\limits_{K(T)} e^{i < t, \mathbf{x} >} d\left[V_n(\mathbf{x}) - V(\mathbf{x}) \right] \right|. \end{split}$$

By the hypothesis and Theorem 6 for any given $\varepsilon > 0$ there exist T and n_0 such that

$$|\varphi_n(\mathbf{t}) - \varphi(\mathbf{t})| < 3\varepsilon$$

for $n \ge n_0$.

The following example shows that the condition $V_n \rightrightarrows V$ is not sufficient for $\varphi_n(\mathbf{t}) \rightarrow \varphi(\mathbf{t})$.

Let k = 1 and

-lation v is the V

$$T_n(x) = egin{cases} 0 & ext{for } x \leqslant -2n-1, \ 1 & ext{for } -2n-1 < x \leqslant -2n, \ 0 & ext{for } -2n < x \leqslant 0, \ 1 & ext{for } 0 < x \leqslant 2n, \ 0 & ext{for } 2n < x \leqslant 2n+1, \ 1 & ext{for } 2n+1 < x. \end{cases}$$

It is easily to see that $V_n(x) \rightrightarrows V(x)$ as $n \rightarrow \infty$, where

$$V(x) = egin{bmatrix} 0 & ext{for} \ x \leqslant 0 \ 1 & ext{for} \ x > 0 \end{cases}$$

and

$$arphi_n\!\left(\!rac{\pi}{2}\!
ight)=1\!-\!2\,(-\!1)^n,\,arphi(t)\equiv 1\,.$$

Theorem 8. If a sequence $\{\varphi_n(\mathbf{t}), n \ge 1\}$ of characteristic functions of V_n , where $\{V_n, n \ge 1\} \subset \mathcal{F}$ and \mathcal{F} is tight, converges to f at every point $\mathbf{t} \in R_k$, then $V_n \rightrightarrows V$ as $n \rightarrow \infty$ and f is characteristic function of V.

Proof. By Theorem 5 there is a subsequence $\{V_{n_k}, k \ge 1\}$ of the sequence $\{V_n, n \ge 1\}$ such that $V_{n_k} \rightarrow V$, where V is a function of bounded variation. By the assumption that $\{V_{n_k}\} \subset \mathcal{F}$ and on the basis of Theorem 7

$$\varphi_{n_k}(\mathbf{t}) \rightarrow \varphi(\mathbf{t}) = f(\mathbf{t}) \text{ as } n_k \rightarrow \infty$$

where

the states of the second

$$\varphi(\mathbf{t}) = \int\limits_{R_k} e^{i < \mathbf{t}, \, \mathbf{x} > d \, V(\mathbf{x})}.$$

Since, by the same reason, every subsequence $\{V_{n_k}\}$ contains a subsequence $\{V_{n_k}\}$ which weakly converges to some V uniquely determined by $\varphi(\mathbf{t})$, then the sequence $\{V_n, n \ge 1\}$ completely converges to V as $n \to \infty$.

The convolution of two generalized distributions V_1 and V_2 in R_k is defined by the formula

$$V_3(\mathbf{z}) = (V_1 * V_2)(\mathbf{z}) = \int\limits_{R_k} V_1(\mathbf{z} - \mathbf{x}) dV_2(\mathbf{x}).$$

Now, let us observe that if $V_1 \in \mathcal{C}$ and $V_2 \in \mathcal{C}$, then $V_3 \in \mathcal{C}$.

Moreover, it is possible to find such generalized distributions V_1 and V_2 that

$$\operatorname{var}_{R_k}(V_1*V_2)(\mathbf{z}) > \max_{R_k} \left(\operatorname{var}_{R_k}V_1(\mathbf{x}_1), \operatorname{var}_{R_k}V_2(\mathbf{x}_2) \right)$$

2. Infinitely divisible generalized distributions in R_k .

Definition 5. A generalized distribution V is called infinitely divisible if for any integer n there exists a generalized distribution V_n such that

$$V(\mathbf{z}) = V_n^{(n)}(\mathbf{z}),$$

where $V_n^{(n)}$ denotes *n*-fold convolutions of V_n and $\{V_n, n \ge 1\} \subset \mathcal{T}$, where \mathcal{T} is tight.

Theorem 9. The characteristic function of infinitely divisible distribution has no zeros.

Theorem 10. The convolution of infinitely divisible of generalized distributions is infinitely divisible.

Theorem 11. If $\{V_n, n \ge 1\}$ is a sequence of infinitely divisible of generalized distributions such that $V_{n,p}^{(p)}(\mathbf{x}) = V_n(\mathbf{x}) \{V_{n,p}(\mathbf{x})\} \subset \mathcal{F}$ and

$$\lim_{n\to\infty}V_n(\mathbf{x})=V(\mathbf{x}),$$

then $V(\mathbf{x}) \in \mathcal{C}$ and it is infinitely divisible.

The above theorems can be proved analogously to the theorems for classical distributions.

Definition 6. A generalized distribution V is said to be infinitely divisible in narrow sense if it is infinitely divisible and it satisfies the following conditions

(i)
$$n \int_{\mathcal{H}_{L}} \frac{\|\mathbf{x}\|^{2}}{1+\|\mathbf{x}\|^{2}} |d\nu_{n}| < C$$

where C is independent of n, and for any given $\varepsilon > 0$ there is $T_{\varepsilon} > 0$ such that

(ii)
$$n \int_{R_k \smallsetminus K \subset T_{\theta}} \frac{\|\mathbf{x}\|^2}{1 + \|\mathbf{x}\|^2} |dr_n| < \epsilon$$

where $K(T_s) = \{\mathbf{x} : \bigwedge_{x_i} |x_i| < T_s\}$ and ν_n is a countable function of set defined on \mathscr{B}_k corresponding to $V_n(\mathbf{x})$.

Theorem 12. Let **a**, **6** and μ denote a vector in R_k , a matrix of order k and a countable additive function of set such that

$$\int_{R_k} |d\mu| < \infty \text{ and } \int_{[0]} |d\mu| = 0 \text{ respectively.}$$

The function ψ defined by

$$arphi(\mathbf{t}) = i\langle \mathbf{a}, \mathbf{t}
angle - rac{1}{2}\mathbf{t}\mathbf{6}\mathbf{t}^{\mathsf{T}} + \int\limits_{R_L} \left(e^{i\langle t,x
angle} - 1 - rac{i\langle \mathbf{t},\mathbf{x}
angle}{1+\|\mathbf{x}\|^2}
ight) rac{1+\|\mathbf{x}\|^2}{\|\mathbf{x}\|^2} \, d\mu$$

determines uniquely a, 6 and μ .

The proof of this theorem is analogous to that of classical theory.

Theorem 13. The logarithm of characteristic function of infinitely divisible in the narrow sense generalized distribution is uniquely represented in the form

$$\log \varphi(\mathbf{t}) = i \langle \mathbf{a}, \mathbf{t} \rangle - \frac{1}{2} \mathbf{t} \mathbf{\delta} \mathbf{t}^{\mathsf{T}} + \int_{R_k} \left(e^{i \langle t, x \rangle} - 1 - \frac{i \langle \mathbf{t}, \mathbf{x} \rangle}{1 + \|\mathbf{x}\|^2} \right) \frac{1 + \|\mathbf{x}\|^2}{\|\mathbf{x}\|^2} \, d\mu,$$

where a, 6 and μ are the same as above.

Proof. On the basis of infinitely divisibility of V, we have

$$\log \varphi(\mathbf{t}) = \lim_{n \to \infty} n \left(\varphi_n(\mathbf{t}) - 1 \right) = \lim_{n \to \infty} n \int_{R_k} \left(e^{i \langle \mathbf{t}, \mathbf{x} \rangle} - 1 \right) dv_n.$$

Let us define a countable additive function of set μ_{μ} by

$$\mu_n(\mu) = n \int\limits_U rac{\|\mathbf{x}\|^2}{1+\|\mathbf{x}\|^2} dr_n$$

Then

$$egin{aligned} &n\int\limits_{\mathcal{R}_k}\left(e^{i\langle\mathbf{t},\mathbf{x}
angle}-1
ight)dr_n=n\int\limits_{\mathcal{R}_k}rac{i\langle\mathbf{t},\mathbf{x}
angle}{1+\|\mathbf{x}\|^2}dr_n-rac{1}{2}n\int\limits_{\mathcal{R}_k}rac{\langle\mathbf{t},\mathbf{x}
angle^2}{1+\|\mathbf{x}\|^2}dr_n\ &+\int\limits_{\mathcal{R}_k}\left(e^{i\langle\mathbf{t},\mathbf{x}
angle}-1-rac{i\langle\mathbf{t},\mathbf{x}
angle}{1+\|\mathbf{x}\|^2}+rac{1}{2}rac{\langle\mathbf{t},\mathbf{x}
angle^2}{1+\|\mathbf{x}\|^2}
ight)d\mu_n, \end{aligned}$$

where the integral function is defined at point **O** as the limit with $\|\mathbf{x}\| \rightarrow \mathbf{0}$.

Let us choose a subsequence n'such that $\mu_{n'} \rightarrow \mu_0$

$$\frac{1}{2} \operatorname{td}_{n} \operatorname{t}^{T} = n' \frac{1}{2} \int\limits_{R_{k}} \frac{\langle \mathbf{t}, \mathbf{x} \rangle^{2}}{1 + \left\|\mathbf{x}\right\|^{2}} dr_{n'} \rightarrow \frac{1}{2} \operatorname{td}' \operatorname{t}^{T}$$

almost They'r pait Frank, andre Frank

as $n' \rightarrow \infty$ Then

$$\begin{split} \log \varphi(\mathbf{t}) &= \lim_{n' \to \infty} n' \int\limits_{R_k} \frac{i \langle \mathbf{t}, \mathbf{x} \rangle}{1 + \|\mathbf{x}\|^2} \, d\nu_{n'} - \frac{1}{2} \, \mathbf{t} \mathbf{6}' \, \mathbf{t}^T + \\ &+ \int\limits_{R_k} \left(e^{i \langle \mathbf{t}, \mathbf{x} \rangle} - 1 - \frac{i \langle \mathbf{t}, \mathbf{x} \rangle^2}{1 + \|\mathbf{x}\|^2} + \frac{1}{2} \frac{\langle \mathbf{t}, \mathbf{x} \rangle^2}{1 + \|\mathbf{x}\|^2} \right) \frac{1 + \|\mathbf{x}\|^2}{\|\mathbf{x}\|^2} \, d\mu_0 \end{split}$$

and therefore there exists

$$\lim_{n'\to\infty} n' \int_{\mathcal{R}_k} \frac{i\langle \mathbf{t}, \mathbf{x} \rangle}{1 + \left\|\mathbf{x}\right\|^2} d\nu_n,$$

which we denote by $i \langle \mathbf{a}, \mathbf{t} \rangle$. Now putting $\mu(A) = \mu_0(A \setminus [\mathbf{0}])$, we obtain

$$\log arphi(\mathbf{t}) = i \langle \mathbf{a}, \mathbf{t}
angle + rac{1}{2} \mathbf{t} \mathbf{\tau} \mathbf{t}^T - rac{1}{2} \mathbf{t} \mathbf{6}' \mathbf{t}^T + \int_{\mathcal{H}_k} \left(e^{i \langle \mathbf{t}, \mathbf{x}
angle} - 1 - rac{i \langle \mathbf{t}, \mathbf{x}
angle}{1 + \|\mathbf{x}\|^2}
ight) rac{1 + \|\mathbf{x}\|^2}{\|\mathbf{x}\|^2} \ d\mu,$$

where

$$rac{1}{2} \operatorname{trt}^T = rac{1}{2} \int\limits_{R_k} rac{\langle \mathbf{t}, \mathbf{x}
angle^2}{\left\| \mathbf{x}
ight\|^2} d\mu.$$

Denoting

$$\frac{1}{2}\mathbf{t}\mathbf{\delta}\mathbf{t}^{T} = \frac{1}{2}\mathbf{t}\mathbf{\delta}'\mathbf{t}^{T} - \frac{1}{2}\mathbf{t}\mathbf{\tau}\mathbf{t}^{T}$$

we have

$$\log arphi(\mathbf{t}) = i \langle \mathbf{a}, \mathbf{t}
angle - rac{1}{2} \mathbf{t} \mathbf{\delta} \mathbf{t}^T + \int\limits_{R_k} \left(e^{i \langle \mathbf{t}, \mathbf{x}
angle} - 1 - rac{i \langle \mathbf{t}, \mathbf{x}
angle}{1 + \|\mathbf{x}\|^2}
ight) rac{1 + \|\mathbf{x}\|^2}{\|\mathbf{x}\|^2} \, d\mu$$

, huit i

what completes the proof.

REFERENCES

- [1] Studniew, J. P. (Ю. П. Студнев, Теоря безгранично делимых законов в классе В. I, Teor. Verojatnost. i Mat. Statist., 2 (1970), 183-192.
- [2] Takano Kinsaku, On some Limit Theorems of Probability Distributions, Annals Inst. Stat. Math. Vol. VI No. 1 (1954), 37-114.

STRESZCZENIE

W pracy określono uogólnione rozkłady prawdopodobieństwa generowane przez funkcje rzeczywiste spełniające pewne warunki regularności. Głównym wynikiem pracy jest wzór typu Lévy-Chinczyna dla uogólnionych rozkładów nieskończenie podzielnych.

РЕЗЮМЕ

В работе определяются обобщенные функции распределения, индуцированные вещественными функциями, удовлетворяющими некоторым условиям регулярности. Главным результатом работы является формула типа II. Леви-А. Хинчина для обобщенных безгранично-делимых распределений.

the high B 1. 179 a December India on Space 177 2 . Second and party of the