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1. Introduction. The concept of generalized probability distribution
in R, and suggestions of its applications have been given in [1]. That
distribution is generated by real function satisfying some regular condi-
tions.

The purpose of this note is to extend that concept to R, and to give
some facts analogous to those that are well-known in the classical prob-
ability theory. The main result of this note gives us a canonical representa-
tion of the Lévy-Khinchine’s type of infinitely divisible generalized dis-
tribution. As particular cases we obtain some results of [2].

2. The generalized probability distribution. Now we are going to intro-
duce a concept generalized probability distribution in R, as well as its
characteristic function.

Definition 1. A generalized distribution function is a function V(x)
= V(x,, @y, ...,2,) on R, with the following properties:

(1) V is continuous to the left in each variable

(2) V(x)—0 as any one coordinate of x goes to —oo, and V(x)—>1
as all cooxdinate% of x go to oo.

(3) \ar Vi(x jldV )| < oo.

The clm\ of all fllIlCthIlh satisfying (1), (2) and (3) will be denoted by .
The distribution function V generates on (R,, %,) a countable additive
set function defined by Lebesgue-Stieltjes integral

Pi(A) = [aV(x),
4
where A e, and Pp(R) = 1.

The triplet (R;, %, I’,) i3 called the quasiprobability space.
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Definition 2. Fourier-Stieltjes transform of V i.e.
p(t) = [PV (x),
Iy
wheredt, x) is the scalar product of vectors t and x is called the character-
istic function of V.

One can immediately obtain
(a) @(0) =1, where O = (0,0,...,0),

(b) p(—t) = @(1),
(e) lg(t) < ‘;f}r Vi(x).
"

In what follows we need the following theorems:
Theorem 1. For every Ve, we have
V(x) = a, F,(x) + a, Fy(x),

where F, and F, are distribution functions in the classical senge and a, + a,
="

Theorem 2. Every Ve% has at most a countable set of discontinwity
hiperplanes.
Theorem 3. If Ve €, then ¢(t) is uniformly continuous on R,.

Proof. Let var V(x) = L << oo. Then for given any & > 0 there exists
Ry
T > 0 such that
j v (x)| > L—?:,
K(T)
where K(T) = {x: || < T,¢ =1,2,..., k}.

By continuity of ¢“**, there exists 6 > 0 such that if ||h|| <  and
xe K(T), then

fMD 1| < &
| | 3L

holds, where h = (h,, hy, ..., h;) and |[h|] =V <¢h, h).
Therefore, we have

lp(t+h)—g(t) < [ 16/ — 0 aV (x)]

Ry
< [ 1R — P aV (x)] + f |e" R — 42| dV (x)|
K(T) R \K(T)
< [l —avixi+e [ dvmi<e,
T RK(T) RN K(T)

independently of t, which completes the proof.
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Definition 3. A class J < € of generalized distributions is said to
be tight if

1° for any given & > 0 there exists a positive number 7T, such that
for every Ve 7

[dV(x)| < e
IGNK(T,)
and if
2° there exists a positive constant C such that var V(x) < C for every
Ry,
Ke T

Definition 4. A sequence {V,,» > 1} of generalized distributions
is said to be weakly convergent to V (V, —V) if lim V (x) = V(x) at

n—00

every point of continuity of V.

If V, >V as n—>oco and V%, then a sequence {V,,n > 1} is said to
be completly convergent to V(V, V).

By Theorem: 1 we have

Theorem 4. Every Ve®% is uniquely determined by its characteristic
Sfunction.

Theorem 5. If # < % is such that for every Ve #"
var V(x)< C,
Ry
where C depends on W only, then W i weak compact in the sense of the weak
convergence.

Theorem 6. Let {V,,n = 1} be a sequence of generalized distributions.
If there exists C such that varV, (x) < C independently of n and if V,—~>V
R

k
as n—>oo, then for any given K (T') for which
J avmi=o
K(T)nR\K(T)
and for an arbitrary continuous and bounded function, defined on K (T')

lim [ f(@)dV,(x)= [ f(z)dV(x)
WA o) K(T)
holds.
Proof. A set K(T) is compact and f(x) is continuous on K (T) 8o f(x)
being continuous on the compact set K (T') is uniformly continuous. Hence,
for any given ¢ > 0 there exists 4 > 0 such that

1 &
IIx —yli < é implies |f(x) —f(y)I <55 -
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Now, let us divide k-dimensional cube by the means of (k—1) dimen-
sional hiperplanes continuity of V into cubes K (1),7 =1, 2,..., M with
diametres less than d. Let f,(x) denote a simple function being constant
on every K (T,) and equal to the value of f(x) at the point being the centre
of K(T;). Then

[rmavam— [fmave| < | [ fe-smav,e

'K(T) K(T) K(T)
fmanm— [ fmavm] v [ Fx-Lmldre)
K(T) K(T) K(T)
<420+ | [L0dVax) = V().

K(1)
On the basis of the weak convergence of {V,,n > 1} there exists n,
such that for n > n,
[V (x)—=V(z)| < /3-2*mM

at every point x which is a vertex at least one of cubes K (Z;), where

m = max |f(x)|.
xeK(T)

Hence

[r.mav.m-vm)| <

am’
K(Ty)
and therefore
[ rmav,— [ smave| <e,
'K(T) K(T)

which completes the proof.
Theorem 7. If V,—V as n—>oo0 and {V,} = .7, where 7 is tight, then
lim ¢, (t) = ¢(t),

n—o00

where @, (t) and p(t) are the characteristic functions of V, and V respectively.

Proof. Let us note

7at) —g®)] = | [é<t=dV,(x)— [ &<t=av(x)]

k. Ry

<| <>V, (x)| 1 e<t*> 4V (x)
RE(T) R AN '
+| [ é<t=alV 0 - V(x)],

K(T)
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By the hypothesis and Theorem 6 for any given ¢ > 0 there exist T and
ng such that
lpa (t) —@(1)] < 3¢

for n = n,.
The following example shows that the condition V,=2V is not suffi-
cient for ¢, (t)—>g(t).
Let ¥ =1 and
0 for x < =20 —1,
1 for —2n—-1<a< —2n,
0 for —2n< <0,
V"(.’D) —
1 for 0 < & < 2n,

0 for 2n < o < 2n {1,

1 for 2n 1< x.

It is easily to see that V, (x)=2 V(z) as m— o0, where

. |0f0rw<0
V(x) =
|1 for ¢ > 0

and
4 n
#al5) = 1=2(-1)" ¢(t) =1.

Theorem 8. If a sequence {¢,(t),n =1} of characteristic functions
of V., where {V,,n=>1} ¢ F and T is tight, converyes to f at every point
tell,, then V,—ZV as n—>oo and f is characteristic function of V.

Proof. By Theorem 5 there is a subsequence { V', , k > 1} of the sequence
{V,, n > 1} such that V, -V, where V is a function of bounded variation.
By the assumption that {V, } = 9 and on the basis of Theorem 7

"!'n,..(t]““f"(’} =f(t) &% N, — 00

where
p(t) = [ av(x).
Ry

Since, by the same reason, every subsequence {V, } contains @ sub-
sequence {Va, } which weakly converges to some 1 uniquely determined

by ¢(t), then the sequence {V,,n > 1} completely converges to V as
n—>o00.
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The convolution of two generalized distributions ¥V, and V, in R, is
defined by the formula

Va(z) = (Vyx 1) f Vi(z—x)dV,(x).
Ry
Now, let us observe that if V,¢¢ and V,e%, then V;e%.
Moreover, it is possible to find such generalized distributions ¥V, and
¥, that
' var(V,xV,)(z) > max (varV,(x,), vzu‘lz(xl))
Ry, Ry

2. Infinitely divisible generalized distributions in F, .

Definition 5. A generalized distribution V is called infinitely divisible
if for any integer n there exists a generalized distribution V, such that

V(z) = V{(z),

where V(" denotes n-fold convolutions of V, and {V,,n > 1} ¢ 7, where
F is tight.

Theorem 9. The characteristic function of infinitely divisible distribution
has no zeros.

Theorem 10. The convolution of infinitely divisible of generalized dis-
tributions is infinitely divisible.

Theorem 11. If {V, ,n > 1} is a sequence of infinitelu divisible of ge-
neralized distributions such that V¥ (x) = V,(x) {(Vop(x)} € J and

bV, (x) = V(x),
n —>00
then V(x)e% and it 18 enfinitely divisible.
The above theorems can be proved analogously to the theorems for
classical distributions.

Definition 6. A generalized distribution V is said to Dbe infinitely
divisible in narrow sense if it is infinitely divisible and it satisfies the fol-
lowing conditions

|Ix|®

i n ldv,| < C
(l) ) 1+”x”2 l vll ’
Ry,

where (' is independent of », and for any given ¢ > 0 there is 7', > 0 such
that

» lx]f*

(1) n ldr. | < &,

2
INKCT,) 1 + lixl
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where K(T,) = {x:Ale;] < T,} and », is a countable function of set
A

defined on 4, corres;)onding to V,(x).

Theorem 12. Let a, 6 and pu denote a vector in I, ¢ matric of order k
and a countable additive function of set such that

( l[du| < oo and f |[du| = 0 respectively.

¥

78 [o]
The function y defined by

. \ 2
1{t, X 1+ ||xi

(t) = i a, t) —L6t' [ (gt o e y
p(t) a, 2 R’ ( ] s ||x||2’ :!ng au
[

determines uniquely a, 6 and p.
The proof of this theorem is analogous to that of classical theory.
Theorem 13. The logarithm of characteristic function of infinitely divis-
ible in the narrow sense generalized distribution is wuniquely represented
in the form

i, x>\ 1+ x|

logg(t) = i‘a,t> —jt6t" + f olshe> ] - ———d
gelt) s 2 T AT
k

where a, 6 and p are the xame as above.
Proof. On the basis of infinitely divisibility of V', we have

logg(t) = lim (g, (t)—1) = limn [(&“ —1)dy,.

n--»>00 n—o00 ”.i-

Let us define o countable additive function of set u, by

I
() = , 13 x| dr,.
Then
, * i, X ~ (L, x)?
n If(»'“-"— L)dv, = n : ’| v, —in ‘ ; 2 E dv,
. x|IF d x!I®
By T i 1 +l

* N / 2
e f T 7L, X . L <, x\ du
- R TG R S YIcY

where the integral function is defined at point O as the limit with
lIx||—0.
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Let us choose a subsequence n'such that u,.—u,

1 7D , {t,x 1
16t = n 1 >2 v, - t6'tT
2 1+I|X" 2
as n'—oo
Then
ity x 1
loge(t) = lim »’ i > dv,, — —t6'tT +
n'—00 )< 1+”x“ 2
k
oy g G 1 x0T 1+’
{- J ¢V —1 =T ] o o
i Tl 21+ k] i

and therefore there exists

: o K XD
lim n =
n'==o0 B -]- + ”x“

ke

Vny

which we denote by i<a,t).
Now putting u(A) = pe(AN[0]), we obtain

it, x>\ 14+ |x|F
logg(t) = ia, ty+Jtm? —Jt6't” ¢ J("'> gl 245 ) L. i
14 |Ixif I
I‘k
where
)| y ¥ s , x)?
et = f 2 —d
2 2 % IIx*
k
Denoting
et = 1e't” —it?,
we have

-

i \t9 x) ) 1+ |xif
- 8 ]

1. .
logg(t) = i<a, t) — —tot" -+ (e'“")—l— - :
S 4 2 Ii o 3 > 3

what completes the proof.
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STRESZCZENIE

W pracy okre§lono uogélnione rozklady prawdopodobienstwa genero-
wane przez funkcje rzeczywiste spelniajagce pewne warunki regularnosci.
Glownym wynikiem pracy jest wzor typu Lévy-Chinezyna dla uogdlnio-
nych rozkladéw nieskoliczenie podzielnych.

PESIOME

B paGore onpenendAoTcA 00001eHHbe PYHKUMHA pacnpeaesleHua, MHEY-
uMpoBaHHble BelleCTBEHHBIMM QYHKUHAMU, YIOBIETBOPAIOIMMU HEKOTO-
pBIM YCJIOBUAM peryiaapHocTd. I'71aBHbIM peayibraToM paboThl ABiiAeTcA
dopmyana tuna II. JleBn-A. XuHuuHa 1A 0606iieHHHIX Ge3rpaHM4HO-[e-
JINMBIX pacripeesieHui.
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