UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXVII, 10

SECTIO A

1973

Instytut Matematyki, Uniwersytet Marii Curic-Skłodowskiej, Lublin

JAN STANKIEWICZ

The Influence of Coefficients on some Properties of Regular Functions

Wpływ współczynników na pewne własności funkcji regularnych Влияние коэффициентов на некоторые свойства регулярных функций

1. Let T be a fixed subclass of the functions of the form (1) $f(z) = a_0 + a_1 z + a_2 z^2 + \dots$

which are regular in the unit disc $K_1(K_r = \{z: |z| < r\})$ and having the following property

(2)
$$f(z) \in T \Rightarrow \bigvee_{0 \le r \le 1} f(rz) \text{ or } \frac{1}{r} f(rz) \text{ belongs to } T.$$

We say that the function f(z) belongs to T in K_r or that f(z) is the function of the class T in K_r if the function f(rz) or f(rz)/r belongs to T.

For the given function $f(z) \in T$ we change the coefficients a_n into \tilde{a}_n and form a new function

$$\tilde{f}(z) = \tilde{a}_0 + \tilde{a}_1 z + \tilde{a}_2 z^2 + \dots$$

This new function $\tilde{f}(z)$ in general does not belong to T in K_1 , but it may belong to T in a smaller disc K_r , 0 < r < 1.

In this paper we want to find the maximum of these radii r for which $f(z) \in T \Rightarrow f(z) \in T$ in K_r when T is the class of Caratheodory functions with positive real part in K_1 or when T is the class of functions with bounded rotation.

This problem when $\tilde{a}_n = a_n e^{i\theta_n}$ for some n was investigated by S A. Kasyanyuk and G.I. Tkačuk [1]. Q.I. Rahman [3] investigated the problem of the influence of coefficients on the zeros of polynomials.

2. Let $\{n_k\}$ be a finite or infinite subsequence of the sequence of natural numbers and $\{\varepsilon_{n_k}\}$ be a corresponding sequence of complex numbers and

let f(z) of the form (1) belong to T. Let us put

(3)
$$\tilde{a}_m = \begin{cases} a_m & \text{if } m \neq n_k, k = 1, 2, \dots \\ a_{n_k} + \varepsilon_{n_k} a_{n_k} & \text{if } m = n_k \text{ for some } k, \end{cases}$$

and

(4)
$$\tilde{f}(z) = \sum_{m=0}^{\infty} \tilde{a}_m z^m = f(z) + \sum_k \varepsilon_{n_k} a_{n_k} z^{n_k}.$$

Definition 1. For fixed $\{n_k\}$, $\{\varepsilon_{n_k}\}$ and $f(z) \in T$ let us denote by

$$R_1 = R_1(f, \{\varepsilon_{n_k}\}, T)$$

the radius of the largest disc K_r such that f(rz) or f(rz)/r belongs to T in K_r .

Definition 2. For fixed $\{n_k\}$, ϱ and $f(z) \in T$ we put

$$R_{2} \, = \, R_{2}(f, \, \{n_{k}\}, \, \varrho \, , \, T) \, = \inf_{\|{}^{\ell}n_{k}\| \leqslant \varrho} R_{1}(f, \, \{\varepsilon_{n_{k}}\}, \, T) \, .$$

Definition 3. For fixed $\{n_k\}$ and $\{\varepsilon_{n_k}\}$ we put $R_3 = R_3(\{\varepsilon_{n_k}\}, T) = \inf_{f \in T} R_1(f, \{\varepsilon_{n_k}\}, T)$.

 $\begin{array}{lll} \textbf{Definition 4. For fixed} & \{n_k\} & \text{and} & \varrho \text{ we put } R_4 = R_4(\{n_k\},\,\varrho\,,\,T) = \inf_{f \in T} R_1(f,\,\varepsilon_{n_k}\},\,T) = \inf_{f \in T} R_2(f,\,\{n_k\},\,\varrho\,,\,T) = \inf_{|\varepsilon_{n_k}| \leqslant \varrho} R_3(\{\varepsilon_{n_k}\},\,T)\,. \end{array}$

Remark 1. If we suppose that $|\varepsilon_{n_k}| \leqslant \varrho$ then

$$R_4 \leqslant egin{cases} R_2 \ R_3 \ \end{cases} \leqslant R_1.$$

3. Let P be a class of Caratheodory functions

(5)
$$f(z) = 1 + a_1 z + a_2 z^2 + \dots$$

which are regular in the unit disc K_1 and satisfy the condition

$$\mathrm{Re}f(z)>0$$
 for $z\,\epsilon K_1$.

Remark 2. The function f(z) belongs to P in K_r if and only if f(z) has the form (5) and Ref(z) > 0 in K_r .

In this part we shall find some estimations for R_k when T=P. Suppose for this and the next part that the sequences $\{n_k\}$ are finite or the series $\sum_{k} |\epsilon_{n_k} a_{n_k}| r^{n_k}$ are locally uniformly convergent in the interval <0, 1).

Theorem 1. For fixed $\{n_k\}$, $\{\varepsilon_{n_k}\}$ and $f(z) \in P$ the number $R_1 = R_1(f, \{\varepsilon_{n_k}\}, P)$ is greater or equal to a positive root of the equation

$$(1+r)\sum_{k}|\varepsilon_{n_{k}}a_{n_{k}}|r^{n_{k}}+r-1|=0.$$

There exist such functions $f(z) \in P$ and such sequences $\{\varepsilon_{n_k}\}$ that the result is the best possible.

Theorem 2. For fixed $\{n_k\}$, ϱ , and $f(z) \in P$ the number $R_2 = R_2(f, \{n_k\}, \varrho, P)$ is greater or equal to a positive root of the equation

$$\varrho (1+r) \sum_k |a_{n_k}| r^{n_k} + r - 1 \, = \, 0 \, .$$

There exist such functions $f(z) \in P$ and such sequences $\{\varepsilon_{n_k}\}$, $|\varepsilon_{n_k}| \leq \varrho$ that $R_2 = R_1$ and the result is the best.

Theorem 3. For fixed $\{n_k\}$ and $\{\varepsilon_{n_k}\}$ the number $R_3 = R_3(\{\varepsilon_{n_k}\}, P)$ is greater or equal to a positive root of the equation

$$2(1+r)\sum_{k}|arepsilon_{n_k}|r^{n_k}+r-1\>=0$$
 .

Theorem 4. For fixed $\{n_k\}$ and ϱ the number $R_4 = R_4(\{n_k\}, \varrho, P)$ is equal to a positive root of the equation

$$2\varrho(1+r)\sum_{k}r^{n_{k}}+r-1=0.$$

The extremal function is f(z)=(1-z)/(1+z) and $\varepsilon_{n_k}=-\varrho(-1)^{n_k}.$ Now we give some remarks

Remark 3. Putting $\{n_k\} = \{2k\}$ we do not change the odd coefficients but only some even coefficients. Then R_4 is equal to a positive root of the equation

$$2 arrho (1+r) \sum_{k=1}^{\infty} r^{2k} + r - 1 \, = 0$$

that is

$$(2\varrho - 1)r^2 + 2r - 1 = 0.$$

Thus

$$R_4=rac{1}{\sqrt{2arrho}+1}$$
 .

Remark 4. Putting $\{n_k\} = \{2k-1\}_1^{\infty}$ we do not change the even coefficients but only some odd coefficients. Then R_4 is the positive root of the equation

$$r^2-2(1+\varrho)r+1=0$$
.

Thus

$$R_4 = 1 + \varrho - \sqrt{\varrho(\varrho+2)}$$
.

Remark 5. If we put $\varepsilon_{n_k} = -1$ then $\tilde{a}_{n_k} = 0$, that is some coefficients of f(z) vanish.

a) If
$$\{n_k\} = \{2k\}, \ \varepsilon_{n_k} = -1 \ \text{then} \ \tilde{f}(z) = 1 + \sum_{k=1}^{\infty} a_{2k-1} z^{2k-1}$$

and

$$R_3=R_4=\sqrt{2-1}.$$

The extremal function is f(z) = (1-z)/(1+z).

If $\{n_k\} = \{2k-1\}$, $\varepsilon_{n_k} = 1$ then

$$R_3 = R_4 = 2 - \sqrt{3}$$
.

The extremal function is f(z) = (1-z)/(1+z).

c) If $\{n_k\} = \{2k-1\}, \ \varepsilon_{n_k} = -1 \ \text{then}$

$$ilde{f}(z) \, = 1 + \sum_{k=1}^\infty a_{2k} z^{2k} \, = {1\over 2} \, [f(z) + f(-z)] \, \epsilon \, P \, ,$$

that is $R_3 = 1$ is not equal to $R_4 = 2 - \sqrt{3}$.

Remark 6. If we put

out
$$\{n_k\} = \{lk+m\} \ \ l\geqslant 0\,,\, m\geqslant 1\,,$$

then R_4 is equal to a positive root of the equation

$$-r^{l+1}+r^{l}+2arrho(r^{m+1}+r^{m})+r-1=0\,,\,\, ext{if}\,\,\,l\,
eq0\,,$$

and

$$2\rho(r^{m+1}+r^m)+r-1=0$$
 if $l=0$.

If l=0 we change only one coefficient, $\tilde{a}_m=\varepsilon a_m$. For l=0 and m=1we have

$$egin{align} R_4 &= rac{2}{2arrho + 1 + \sqrt{4arrho^2 + 12arrho + 1}}\,, \ R_3 &= rac{2}{2\,|arepsilon| + 1 + \sqrt{4}\,|arrho|^2 + 12\,|arrho| + 1}\,, \end{gathered}$$

$$R_2\geqslantrac{2}{arrho\,|a_1|\,+1\,+{orall}\,arrho^2\,|a_1|^2\,+6\,arrho\,|a_1|\,+1}\,,$$

$$R_1\geqslant rac{2}{|arepsilon a_1|+1+\sqrt{|arepsilon a_1|^2+6\,|arepsilon a_1|+1}}\;.$$

Remark 7. For k=2 or 4 we have

$$\lim_{\epsilon \to 0} R_k = 1$$

and

$$\lim_{
ho o\infty} \mathcal{R}_k = 0$$
 .

Proofs of Theorems 1–4. From (4) we have (for |z|=r)

$$\begin{split} \operatorname{Re} \tilde{f}(z) &= \operatorname{Re} f(z) + \operatorname{Re} \sum_{k} a_{n_{k}} \varepsilon_{n_{k}} z^{n_{k}} \\ \geqslant & \frac{1+r}{1+r} - \Big| \sum_{k} a_{n_{k}} \varepsilon_{n_{k}} z^{n_{k}} \Big| \geqslant & \frac{1-r}{1+r} - \sum_{k} |a_{n_{k}} \varepsilon_{n_{k}} z^{n_{k}}|, \end{split}$$

that is

$$\operatorname{Re} \tilde{f}(z) \geqslant \frac{1-r}{1+r} - \sum_{k} |a_{n_k} \varepsilon_{n_k}| r^{n_k}.$$

From Remark 2 we have that $\tilde{f}(z)$ belongs to P in K_r if

$$arphi(r) = rac{1-r}{1+r} - \sum_k |a_{nk} arepsilon_{nk}| r^{n_k} \geqslant 0$$
 .

This proves Theorem 1. If we take the infimum of $\varphi(r)$ with respect to all sequences $\{\varepsilon_{n_k}\}$, $|\varepsilon_{n_k}| \leq \varrho$ then we obtain

$$\operatorname{Re} ilde{f}(z)\geqslant rac{1-r}{1+r}-arrho\sum_{k}|a_{n_k}|\,r^{n_k}$$

and Theorem 2 is proved. If we take the infimum of $\varphi(r)$ with respect to all functions $f(z) \in P$ then we have

$$\operatorname{Re} ilde{f}(z) \geqslant rac{1-r}{1+r} - 2 \sum_{k} r^{n_k} |arepsilon_{n_k}| \, .$$

This proves Theorem 3. If we take the infimum of $\varphi(r)$ with respect to all functions $f(z) \in P$ and all sequences $\{\varepsilon_{n_k}\} | \varepsilon_{n_k}| \leq \varrho$ then we have

$$\mathrm{Re} ilde{f}(z)\!\geqslant\!rac{1-r}{1+r}\,-2\,arrho\,\sum_{i}r^{n_{k}}$$

and Theorem 4 is proved too. (We used here only the facts that if $f(z) \in P$ then $|a_n| \leq 2$ and $\operatorname{Re} f(z) \geqslant \frac{1-r}{1-r}$ for |z| = r < 1).

Let us put f(z) = (1-z)/(1+z) and $\varepsilon_{n_k} = -\varrho(-1)^{n_k}$. Then for every given sequence $\{n_k\}$ we have

$$\tilde{f}(r) = f(r) + \sum_k \varepsilon_{n_k} a_{n_k} r^{n_k} = \frac{1-r}{1+r} - 2\varrho \sum_k r^{n_k}.$$

This proves that the results in Theorems 1, 2, and 3 are the best possible. $\S 4$. Let S_0 be the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

regular in the unit disc K_1 and such that

$$\operatorname{Re} f'(z) > 0$$
.

 S_0 is the class of functions with bounded rotation.

Now if we put $T = S_0$ then we obtain:

Theorem 5. For fixed $\{n_k\}$, $\{\varepsilon_{n_k}\}$ and $f(z) \in S_0$ the number $R_1 = R_1(f, \{\varepsilon_{n_k}\}, S_0)$ is greater or equal to a positive root of the equation

$$(1+r) \sum_k n_k |\varepsilon_{n_k} a_{n_k}| \, r^{n_k-1} + r - 1 \, = \, 0 \, .$$

Theorem 6. For fixed $\{n_k\}$, ϱ and $f(z) \in S_0$ the number $R_2 = R_2(f, \{n_k\}, \varrho, S_0)$ is greater or equal to a positive root of the equation

$$\varrho \left(1+r \right) \sum_{k} n_{k} \left| a_{n_{k}} \right| r^{n_{k}-1} + r - 1 \, = \, 0 \, . \label{eq:energy_energy}$$

There exist such functions $f(z) \in S_0$ and such sequences $\{\varepsilon_{n_k}\}$ that the results in Theorems 5 and 6 are the best possible.

Theorem 7. For fixed $\{n_k\}$ and $\{\varepsilon_{n_k}\}$ the number $R_3 = R_3(\{\varepsilon_{n_k}\}, S_0)$ is greater or equal to a positive root of the equation

$$2(1+r)\sum_{k}|arepsilon_{n_{k}}|r^{n_{k}-1}+r-1|=0$$
 .

Theorem 8. For fixed $\{n_k\}$ and ϱ the number $R_4=R_4(\{n_k\},\,\varrho\,,\,S_0)$ is equal to a positive root of the equation

$$2\varrho(1+r)\sum_{k}r^{n_{k}-1}+r-1=0.$$

The extremal function is $f(z) = -z + 2\log(1+z)$.

Proofs of Theorems 5–8. We can note that $f(z) \in S_0$ if and only if $f'(z) \in P$ and that if

$$ilde{f}(z) \, = f(z) + \sum_k arepsilon_{n_k} a_{n_k} z^{n_k}$$

then

$$ilde{f}'(z) = f'(z) + \sum_k n_k arepsilon_{n_k} a_{n_k} z^{n_k-1}.$$

It follows that

(7)
$$R_1(f, \{\varepsilon_{n_k}\}, S_0) = R_1(f', \{\eta_{m_k}\}, P),$$

where

$$\{m_k\} = \{n_k-1\}, \ \{\eta_{m_k}\} = \{\varepsilon_{m_k+1}\} = \{\varepsilon_{n_k}\}.$$

Thus simillary

(9)
$$R_2(f, \{n_k\}, \varrho, S_0) = R_2(f', \{n_k-1\}, \varrho, P),$$

(10)
$$R_3(\{\varepsilon_{n_0}\}, S_0) = R_3(\{\eta_{n_0}\}, P),$$

and

(11)
$$R_4(\{n_k\}, \varrho, S_0) = R_4(\{n_k-1\}, \varrho, P).$$

Now we can obtain Theorems 5-8 from Theorems 1-4 by using (7)-(11).

Remark 8. If $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ belongs to S_0 then the function $\tilde{f}(z) = z + \sum_{k=1}^{\infty} a_{2k} z^{2k}$ belongs to S_0 in K_r for every r such that $0 < r \le \sqrt{2} - 1$. The result is the best. The extremal function is $f(z) = -z + 2\log(1+z)$.

Remark 9. $f(z) \in S_0$ then the function

$$f(z) \, = z + \sum_{k=1}^{\infty} a_{2k+1} z^{2k+1} = rac{1}{2} \left[f(z) - f(-z)
ight]$$

belongs to S_0 too.

Remark 10. If $\{n_k\} = \{2k\}$ then

$$R_4(2k), 1, S_0) = 2 - \sqrt{3} = R_4(\{2k-1\}, 1, P).$$

If $\{n_k\} = \{2k+1\}$ then

$$R_4(\{2k+1\}, 1, S_0) = \sqrt{2} - 1 = R_4(\{2k\}, 1, P).$$

These remarks are implied by Remark 5.

5. It will be interesting to solve this problem for some other classes of regular functions: convex, starlike, close-to-convex,

We can also investigate a generalization of this problem, namely: Let T_1 and T_2 be two classes of regular functions in K_1 . Let us suppose that $f(z) \in T_1$ and that $\tilde{f}(z)$ is given by (4). To find the largest radius such that f(z) belongs to T_2 in K_r .

For instance; let T_1 be the class of convex univalent functions and let T_2 be the class of starlike univalent functions. If we put $\{n_k\}=\{2k\}$, $\epsilon_{n_k}=-1$ then we have

$$f(z) \in T_1 \Rightarrow \tilde{f}(z) \in T_2$$
.

(See Nehari [2]).

REFERENCES

- [1] Kasyanyuk, S. A. and Tkačuk, G.I. (Касьянюк, С. А., Ткачук, Т, У.), Об одном свойстве функций с положительный вещественной частю, Теория функций, функциональный анализ и их цриоожения, 1 (1965), 224-227.
- [2] Nehari, Z., Conformal Mapping, New York 1952.
- [3] Rahman, Q. I., The Influence of Coefficients on the Zeros of Polynomials, Journ. London Math. Soc. 36 (1961), 57-64.

STRESZCZENIE

Niech T będzie ustaloną klasą funkcji regularnych w kole jednostkowym mających w nim rozwinięcie postaci

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots$$

Niech dany będzie podciąg $\{n_k\}$ ciągu liczb naturalnych i ciąg $\{\varepsilon_{n_k}\}$ liczb zespolonych. Dla danej funkcji $f(z)\in T$ połóżmy

$$ilde{f}(z) = \sum_{l=0}^{\infty} ilde{a}_l z^l = f(z) + \sum_k arepsilon_{n_k} a_{n_k} z^{n_k}$$

gdzie

$$ilde{a}_l = egin{cases} a_l & ext{jeżeli} \ l
eq n_k \ n_{n_k} + arepsilon_{n_k} a_{n_k} \ ext{jeżeli} \ l = n_k \end{cases}.$$

W pracy tej rozwiązywane są problemy wyznaczenia możliwie największej wartości $r(0\leqslant r\leqslant 1)$ takiej, że

$$f(z) \, \epsilon \, T \, \Rightarrow \, ilde{f}(z)$$
 jest funkcją klasy T w kole $|z| < r$.

Problem ten został rozwiązany w przypadku gdy T jest klasą P funkcji Carathéodory'ego o części rzeczywistej dodatniej oraz gdy T jest klasą S_0 funkcji jednolistnych z ograniczonym obrotem.

РЕЗЮМЕ

Пусть T — Фиксированный класс регулярных функций в единичном круге, имеющий в этом круге следующее разложение:

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots$$

 \cdot Пусть $\{n_k\}$ -подпоследовательность последовательности натуральных чисел, $\{\varepsilon_{nb}\}$ -последовательность комплексных чисел.

Для данной функции $f(z) \in T$ пусть

$$\overline{f}(z) = \sum_{l=0}^{\infty} \ \overline{a}_l z^l = f(z) + \sum_k arepsilon_{n_k} z^{n_k}$$

гле

$$\overline{a}_l = egin{cases} a_l, & l
eq n_k \ a_{n_k} + arepsilon_{n_k} a_{n_k}, & l = n_k. \end{cases}$$

В этой работе автор занимался определением максимального значения $r(0\leqslant r\leqslant 1)$ так что $f(z)\epsilon T\Rightarrow f(z)$ является функцией класса T в круге |z| < r.

Эта проблема была разрешима автором в случае, когда Т является клас сом Р функции Каратеодори с положительной вещественной частью а также когда T — класс S_0 однодистных функций с ограниченным поворотом.