ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL.	XXVII, 7	SECTIO A	1973

Katodra Zastosowań Matematyki, Akademia Rolnicza, Lublin

HENRYK MIKOS

Orthogonality in the N-way Nested Classification

Ortogonalność w N-krotnej klasyfikacji hierarchicznej

Ортогональность в N-факторной иерархической классификации

Introduction. Let us consider an N-way hierarchical classification in which classification A_N is nested within classification A_{N-1} , classification A_{N-1} is nested within A_{N-2} and so forth until classification A_1 . Let $\eta_{i_1i_2...i_N}$ denote the "true" mean of the $(i_1, i_2, ..., i_N)$ th cell, i.e. the mean value of the yield obtained where classification A_1 is at the i_1 -th level, classification A_2 is the (i_1, i_2) th level, ..., and classification A_N is at the $(i_1, i_2, ..., i_N)$ th level. The mean $\eta i_1 i_2 ... i_N$ is usually broken up into a general mean μ , an effect $a_{i_1}^1$ due to the i_1 -th first stage class $A_{i_1i_2...i_N}^1$ due to the $(i_1, i_2, ..., i_N)$ th N-th stage class $A_{i_1i_2...i_N}^2$ is $A_{i_1i_2...i_N}^1$ due to the $(i_1, i_2, ..., i_N)$ th N-th stage class $A_{i_1i_2...i_N}^1$ i.e.:

(1)
$$\eta_{i_1 i_2 \dots i_N} = \mu + a_{i_1}^1 + a_{i_1 i_2}^2 + \dots + a_{i_1 i_3 \dots i_N}^N$$

where $i_1 = 1, 2, ..., a^1$; $i_p = 1, 2, ..., a^p_{i_1i_2...i_{p-1}}$ (p = 2, 3, ..., N). The $a^p_{i_1i_2...i_{p-1}}$ is the number of levels of the classification A_p within the $(i_1, i_2, ..., i_{p-1})$ th class of the classification A_{p-1} .

If nothing more is stated about the decomposition, these components of the decomposition are not uniquely defined. It is for this reason to impose some constraints among these components. In order to seek for a set of reasonable and intuitively acceptable constraints, we introduce for every class $(i_1, i_2, ..., i_p)$ of classification $A_p(p = 1, 2, ..., N)$ a positive weight $w_{i_1 i_2 ... i_p}^p$. The purpose of introducing such weights is to develop a unified treatment of the identification problem in the decomposition (1) of the mean $\eta_{i_1 i_2 ... i_N}$. The constraints are then as follows:

(2)
$$\sum_{i_p} w_{i_1 i_2 \dots i_p}^p a_{i_1 i_2 \dots i_p}^p = 0 \text{ for all } i_1, i_2, \dots, i_{p-1} \quad (p = 1, 2, \dots, N).$$

Without loss of generality we may assume that:

(3)
$$\sum_{i_p} w_{i_1 i_2 \dots i_p}^p = 1 \text{ for all } i_1, i_2, \dots, i_{p-1}; p = 1, 2, \dots, N.$$

The restrictions (2) and decomposition (1) give the following definitions of the general mean μ and the effects a_{i_1,i_2,\ldots,i_n}^p :

$$(4) \qquad \mu = \sum_{i_{1}} \sum_{i_{2}} \dots \sum_{i_{N}} w_{i_{1}}^{1} w_{i_{1}i_{2}}^{2} \dots w_{i_{1}i_{2}\dots i_{N}}^{N} \eta_{i_{1}i_{2}\dots i_{N}} \\ a_{i_{1}i_{2}\dots i_{p}}^{p} = \sum_{i_{p+1}} \sum_{i_{p+2}} \dots \sum_{i_{N}} w_{i_{1}i_{2}\dots i_{p+1}}^{p+1} w_{i_{1}i_{2}\dots i_{p+2}}^{p+2} \dots \\ \dots w_{i_{1}i_{2}\dots i_{N}}^{N} \eta_{i_{1}i_{2}\dots i_{N}} - \sum_{i_{p}} \dots \sum_{i_{N}} w_{i_{1}i_{2}\dots i_{p}}^{p} \dots w_{i_{1}i_{2}\dots i_{N}}^{N} \eta_{i_{1}i_{2}\dots i_{N}} \\ (p = 1, 2, \dots, N-1) \\ a_{i_{1}i_{2}\dots i_{N}}^{N} = \eta_{i_{1}i_{2}\dots i_{N}} - \sum_{i_{N}} w_{i_{1}i_{2}\dots i_{N}}^{N} \eta_{i_{1}i_{2}\dots i_{N}}.$$

Let $y_{i_1i_2...i_{N+1}}$ denote the i_{N+1} th observation in the $(i_1, i_2, ..., i_N)$ th subclass. The mathematical model of the N-way nested classification may be expressed as:

(5)
$$y_{i_1i_2...i_{N+1}} = \theta_{i_1i_2...i_{N+1}} + e_{i_1i_2...i_{N+1}},$$

 $i_{N+1} = 1, 2, ..., n_{i_1i_2...i_N}, n_{i_1i_2...i_N} > 0.$

The random error connected with the observation $y_{i_1i_2...i_{N+1}}$ is denoted as $e_{i_1i_2...i_{N+1}}$. We assume that the random variables. $e_{i_1i_2...i_{N+1}}$ have normal independent distributions with zero means and the same variances σ_e^2 .

In thus expressed model the true mean of the (i_1, i_2, \ldots, i_N) th cell is equal to:

(6)
$$\eta_{i_1 i_2 \dots i_N} = \overline{\theta}_{i_1 i_2 \dots i_N} = (n_{i_1 i_2 \dots i_r})^{-1} \sum_{i_{N+1}} \theta_{i_1 i_2 \dots i_{N+1}}$$

We now consider testing the following hypotheses $H_1, H_2, \ldots, H_{N+1}$ against \mathscr{G} where:

$$\mathscr{G}: \ \mathbf{v}_{i_1 i_2 \dots i_{N+1}} = \theta_{i_1 i_2 \dots i_{N+1}} - \theta_{i_1 i_2 \dots i_N} = 0$$

(7) $H_t: \nu_{i_1 i_2 \dots i_{N+1}} = 0, \ a_{i_1 i_2 \dots i_{N-t+1}}^{N-t+1} = 0. \ (t = 1, 2, \dots, N)$ $H_{N+1}: \nu_{i_1 i_2 \dots i_{N+1}} = 0, \ \mu = 0.$

56

For further considerations we find matrices A, $A_t(t = 1, 2, ..., N+1)$ which permit to introduce assumptions \mathscr{G} and the hypotheses H_t (t = 1, 2, ..., N+1) in the form:

$$\mathscr{G}: \theta \in \Omega \quad \text{where} \quad \Omega = \{\theta : A\theta = 0\}$$

$$H_t: \theta \,\epsilon \, \omega_t \text{ where } \omega_t = \{\theta: A \,\theta = 0 \text{ and } A_t \,\theta = 0\}.$$

The elements of the vector θ occurring in the formulas (8) are the values $\theta_{i_1i_2...i_{N+1}}$.

The matrix A will have n rows and n columns where

$$n = \sum_{i_1} \sum_{i_2} \dots \sum_{i_N} n_{i_1 i_2 \dots i_N}$$

The element in the $(i_1, i_2, ..., i_{N+1})$ th row and in the $(j_1, j_2, ..., j_{N+1})$ th column of the matrix A is equal to

(9)
$$\delta_{i_1 j_1} \delta_{i_2 j_2} \dots \delta_{i_{N+1} j_{N+1}} - \frac{1}{n_{j_1 j_2 \dots j_N}} \delta_{i_1 j_1} \delta_{i_2 j_2} \dots \delta_{i_N j_N}$$

where σ_{ii} is the Kronecker delta.

Similarly the matrix A_1 will have a^N rows and n columns where

$$a^N_{\cdot} = \sum_{i_1} \sum_{i_2} \dots \sum_{i_N} a^N_{i_1 i_2 \dots i_N}$$

The element in the $(i_1, i_2, ..., i_N)$ th row and $(j_1, j_2, ..., j_{N+1})$ th column of the matrix A_1 is equal to

$$\frac{1}{n_{j_1 j_2 \dots j_N}} (\delta_{i_1 j_1} \delta_{i_2 j_2} \dots \delta_{i_N j_N} - w_{j_1 j_2 \dots j_N}^N \delta_{i_1 j_1} \dots \delta_{i_{N+1} j_{N+1}}).$$

The matrix $A_t(t=2,3,\ldots,N)$ will be $a^{N-t+1} \ge n$ where

$$a^{N-t+1}_{\cdot} = \sum_{i_1} \sum_{i_2} \dots \sum_{i_{N-t+1}} a^{N-t+1}_{i_1 i_2 \dots i_{N-t+1}}$$

and the $(i_1, i_2, ..., i_{N-t+1})$ th row will have the $(j_1, j_2, ..., j_{N+1})$ th element of the form

The element in the $(j_1, j_2, \dots, j_{N+1})$ th column of the matrix A_{N+1} , which is 1 x n, will be equal to

(12) $\frac{1}{n_{j_1 j_2 \dots j_N}} w_{j_1}^1 w_{j_1 j_2}^2 \dots w_{j_1 j_2 \dots j_N}^N$

The identity of the expressions (7) and (8) can be easily proved by multiplying any row of the matrices A, $A_t(t = 1, 2, ..., N+1)$ and the vector θ . This gives us the definition of the $v_{i_1i_2...i_{N+1}}$ or the effect $a_{i_1i_2...i_{N-t+1}}^{N-t+1}$ respectively. For the above defined matrices A, A_t the following relations are satisfied:

Lemma 1. The matrices A, A, hold the conditions

(13)
$$A_t A' = 0 \ (t = 1, 2, ..., N+1)$$

Proof: For the proof it is enough to show that the product of any row of the matrix A_i and of any row of the matrix A equals zero. This consist in multiplying each of the expressions (10), (11), (12) by (9) and summing on $j_1, j_2, \ldots, j_{N+1}$.

Orthogonality. According to the definition of Darroch and Silvey [1], an experimental design (5) is orthogonal relative to a general linear model \mathscr{G} and linear hypotheses $H_1, H_2, \ldots, H_{N+1}$ [see (8)], if and only if, with this design, the subspaces $\Omega, \omega_1, \ldots, \omega_{N+1}$ satisfy the conditions

(14)
$$\omega_t^{\perp} \cap \Omega \perp \omega_r^{\perp} \cap \Omega \text{ for all } t, r,$$

 $t \neq r$, i.e. the orthogonal complements of ω_t , ω_r with respect to Ω , are mutually orthogonal. Seber [4] showed that the conditions (14) are equivalent to

(15)
$$A_t A'_r = 0, \text{ for all } t, r; t \neq r,$$

where the matrices A_i , $A_r(t, r = 1, 2, ..., N+1)$ defined by the formulas (10) - (12) satisfy Lemma 1.

Using the conditions (15), we derive necessary and sufficient conditions for this system of hypotheses to be orthogonal.

Theorem. N-way hierarchical classification, in which all $n_{i_1i_2...i_N} \neq 0$, is orthogonal relative to a general linear model \mathscr{G} and the hypotheses $H_1, H_2, ..., H_{N+1}$ if and only if

(16)
$$w_{i_1i_2...i_p}^p = \frac{n_{i_1i_2...i_p}^p}{n_{i_1i_2...i_{p-1}}^{p-1}} \quad (p = 1, 2, ..., N)$$

where $n^0 = n$, $n^N_{i_1 i_2 \dots i_N} = n_{i_1 i_2 \dots i_N}$,

$$n_{i_1i_2...i_N}^p = \sum_{i_{p+1}} \sum_{i_{p+2}} \dots \sum_{i_N} n_{i_1i_2...i_N}.$$

Proof: Let that design be orthogonal, i.e.

$$A_{q}A_{r}^{\prime}=0,\;q\neq r;\;q,r=1,\,2,\,...,\,N+1.$$

Then the product of the $(i_1, i_2, ..., i_{N-p+1})$ th row of the matrix $A_p(p = 1, 2, ..., N)$ and the matrix A'_{N+1} gives the condition

(w)
$$w_{i_1i_2...i_{N-p+1}}^{N-p+1} S_{i_0i_1...i_{N-p+1}}^{N-p+1} = S_{i_0i_1...i_{N-p}}^{N-p} \ (p = 1, 2, ..., N)$$

where $S_{i,i_1,\ldots,i_N}^N = n_{i,i_2,\ldots,i_N}$

It will be proved now that from the condition (w) the following condition can be derived

(w')
$$S_{i_0i_1...i_{N-p}}^{N-p} = \frac{1}{n_{i_1i_2...i_{N-p}}^{N-p}} \quad (p = 1, 2, ..., N).$$

To complete the proof it will be proved that the condition (w') is satisfied for p = 1. The condition (w) for p = 1 is expressed as

$$\frac{w_{i_1i_2...i_N}^N}{n_{i_1i_2...i_N}} = S_{i_0i_1...i_{N-p}}^{N-p}.$$

Multiplying this equation by $n_{i_1i_2...i_N}$ and summing on i_N gives

$$S^{N-1}_{i_0i_1\dots i_{N-1}} = \frac{1}{n^{N-1}_{i_1i_2\dots i_{N-1}}}$$

Similarly it can be proved that if the condition (w') is satisfied for a p < N-1, it is also satisfied for p+1. For the conditions (w) and (w') we have

$$\frac{w^{N-p+1}}{n_{i_1i_2\dots i_{N-p+1}}^{N-p+1}} = \frac{1}{n_{i_1i_2\dots i_{N-p}}^{N-1}} \qquad (p = 1, 2, \dots, N)$$

and hence the dependence (16) is directly derived. Let us now suppose that the conditions (14) hold. Then the elements of the matrix $A_t(t = 1, 2, ..., N+1)$ are as follows

$$\begin{split} &A_1 \colon \delta_{i_1 j_1} \dots \delta_{i_N j_N} (n_{j_1 j_2 \dots j_N})^{-1} - \delta_{i_1 j_1} \dots \delta_{i_{N-1} j_{N-1}} (n_{j_1 j_2 \dots j_{N-1}}^{N-1})^{-1}, \\ &A_p \colon \delta_{i_1 j_1} \dots \delta_{i_{N-p+1} j_{N-p+1}} (n_{j_1 j_2 \dots j_{N-p+1}}^{N-p+1})^{-1} - \\ &- \delta_{i_1 j_1} \delta_{i_2 j_2} \dots \delta_{i_{N-p} j_{N-p}} (n_{j_1 j_2 \dots j_{N-p}}^{N-p})^{-1} \quad (p = 1, 2, \dots, N), \end{split}$$

 A_{N+1} : 1/n. It can be easily proved that for these matrices hold

$$A_{p}A_{q}^{\prime}=0 \,\,\,(p \,
eq q, \,\, p,q=1,2,...,N+1)\,,$$

We shall prove the condition for p = 1, q = 2. The product of the $(i_1, i_2, ..., i_N)$ th row of the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ..., i'_N)$ the matrix A_1 and the $(i'_1, i'_2, ...,$

Entering of the second beauting

 \ldots, i'_{N-1})th row of the matrix A_2 is equal to

$$\begin{split} \sum_{j_1} \dots \sum_{j_N} & [\delta_{i_1 j_1} \dots \delta_{i_N j_N} (n_{j_1 \dots j_N})^{-1} - \delta_{i_1 j_1} \dots \\ & \dots \delta_{i_{N-1} j_{N-1}} (n_{j_1 j_2 \dots j_{N-1}}^{N-1})^{-1}] [\delta_{i'_1 j_1} \dots \delta_{i'_{N-1} j_{N-1}} (n_{j_1 \dots j_{N-1}}^{N-1})^{-1} - \delta_{i'_1 j_1} \dots \\ & \dots \delta_{i'_{N-2} j_{N-1}} (n_{j_1 \dots j_{N-2}})^{-1}] & n_{j_1 j_2 \dots j_N} \\ & = \sum_{j_1} \dots \sum_{j_{N-1}} [\delta_{i_1 j_1} \dots \delta_{i_{N-1} j_{N-1}} - \delta_{i_1 j_1} \dots \\ & \dots \delta_{i_{N-1} j_{N-1}} (n_{j_1 \dots j_{N-1}}^{N-1})^{-1} n_{j_1 \dots j_{N-1}}^{N-1}] [\delta_{i'_1 j_1} \dots \delta_{i'_{N-1} j_{N-1}} (n_{j_1 \dots j_{N-1}}^{N-1})^{-1} - \delta_{i'_1 j_1} \dots \\ & \dots \delta_{i'_{N-2} j_{N-2}} (n_{j_1 \dots j_{N-2}})^{-1}]. \end{split}$$

It is easy to see that it is equal to zero. In the same way we can prove the remaining conditions.

Thus we have shown that if all $n_{i_1i_2...i_N} > 0$, the orthogonality of an *N*-way nested classification depends only on the choice of weights occurring in restictions. It is easy to see that the assumption $n_{i_1i_2...i_N} > 0$ does not limit the generality of the theorem.

Analysis of variance. In further considerations our attention will be focused on an orthogonal case, i.e. on the case when all $n_{i_1i_2...i_N} > 0$ and the weights satisfy the conditions (16). To find the sums of squares due to the hypotheses $H_1, H_2, ..., H_{N+1}$ the two following Lemmas are indispensable:

Lemma 2. If the matrices A, $A_i(t = 1, 2, ..., N+1)$ satisfy the conditions (8), (13) and (15), the least squares estimate of the vector $A_i \theta(t = 1, 2, ..., N+1)$ is

 $A_t\hat{v}=A_ty.$

Proof. From the Gauss-Markov theorem (see theorem 3.51 [6]) we have $A_t \hat{\theta} = A_t P y$ but $P = I - \overline{A}' (\overline{A}\overline{A}')^{-1}\overline{A}$ where \overline{A} is the matrix of lineary independent rows of A. Hence $A_t \hat{\theta} = A_t (I - \overline{A}' (\overline{A}\overline{A}')^{-1}\overline{A}) y = A_t y$.

Lemma 3. If the matrices A, $A_i(t = 1, 2, ..., N+1)$ satisfy the conditions (8), (13) and (15), the acceptance of any of the hypotheses $H_j: \theta \in \omega_j$ (j = 1, 2, ..., N+1) does not cause any change of the least squares estimates of the vectors $A_i \theta(t \neq j, t = 1, 2, ..., N+1)$.

Proof. Let the hypothesis H_j : $\theta \in \omega_j$ be true, where $\omega_j = N \begin{bmatrix} A \\ A_j \end{bmatrix}$, i.e. ω_j is the null space of $\begin{bmatrix} A \\ A_j \end{bmatrix}$. If we denote the projection operator to the ω_j as P_j , then $I \cdot P_j$ is the projection operator to the $\omega_j^{\perp} = \left\{ N \begin{bmatrix} A \\ A_j \end{bmatrix} \right\}^{\perp} = R[A',$

 A'_{j}] where R[A] denotes the range space of A. On the other hand, it appears from the conditions $A'_{j}A'_{t} = 0$ $(t \neq j)$ and $AA'_{t} = 0$ (t = 1, 2, ..., N+1), that $R[A'_{t}]$ is orthogonal to $R[A', A'_{j}]$. Hence we have that $(I-P_{j})A'_{t}$ = 0 or $A_{t}(I-P_{j}) = 0$. The least squares estimate of the vector $A_{t}\theta(t \neq j)$ for $\theta \in \omega_{t}$ is

$$A_t P_j y = A_t y - A_t (I - P_j) y = A_t y,$$

but $A_i y$ is the least squares estimate of the vector A_i for $\theta \in \Omega$. It follows from lemma 2 and lemma 3 that the least squares estimates μ , $a_{i_1 i_2...i_p}^p$ in the orthogonal *N*-way nested classification can be derived immediately from the definitions (4), (6), (13) of the parameters, namely

$$\overline{x}_{i_1 i_2 \dots i_p}^p = \overline{y}_{i_1 i_2 \dots i_p}^p - \overline{y}_{i_1 i_2 \dots i_{p-1}}^{p-1} \ (p = 1, 2, \dots, N)$$

 $\hat{\mu} = \overline{y}$

where

$$y^{\mathfrak{o}} = \overline{y} = rac{1}{n} \sum_{i_1} \sum_{i_2} \cdots \sum_{i_{N+1}} y_{i_1 i_2 \cdots i_{N+1}}$$

$$\overline{y}_{i_1 i_2 \dots i_p}^p = (n_{i_1 i_2 \dots i_p}^p)^{-1} \sum_{i_{p+1}} \sum_{i_{p+2}} \dots \sum_{i_{N+1}} y_{i_1 i_2 \dots i_{N+1}} \quad (p = 1, 2, \dots, N).$$

The likelihood ratio criterion for testing $H_t(t = 1, 2, ..., N+1)$ is equivalent to

$$F_t = \frac{y'(P_{\Omega} - P_{\omega t})y}{v_t} \colon \frac{y'(I - P_{\Omega})y}{v_e}$$

where $v_e = n$ -dimension (Ω) and $r_t = \text{dimension} (\Omega)$ -dimension $(\omega_t) \cdot F_t$ has a central F distribution under the hypothesis H_t and a non-central F distribution under the alternative with v_t , v_e degrees of freedom. The sums of squares $SS_t = y'(P_{\Omega} - P_{\alpha t}) y$ and $SS_e = y'(I - P_{\Omega}) y$ can be found by means of Lemma 3, namely

$$SS_{t} = (\hat{\theta}_{\Omega} - \hat{\theta}_{\omega_{l}})'(\hat{\theta}_{\Omega} - \hat{\theta}_{\omega_{l}}) = \sum_{i_{1}} \sum_{i_{2}} \dots \sum_{i_{N-\ell+1}} n_{i_{1}i_{2}\dots i_{N-\ell+1}}^{N-\ell+1} (\hat{a}_{i_{1}i_{2}\dots i_{N-\ell+1}}^{N-\ell+1})^{2}.$$

It is so because the $(i_1, i_2, ..., i_{N+1})$ th element of the vector $\hat{\theta}_{\mathcal{D}}$ is equal to $\hat{\mu} + \sum_{p=1}^{N} \hat{a}^p_{i_1 i_2 ... i_p}$, whereas the $(i_1, i_2, ..., i_{N+1})$ th element of the vector $\hat{\theta}_{\omega_l}$ is equal to $\hat{\mu} + \sum_{\substack{p=1\\p \neq N-t+1}}^{N} \hat{a}^p_{i_1 i_2 ... i_p}$.

For the same reason

and

$$SS_{N+1}=nar{\mu}^2$$

$$SS_e = \sum_{i_1} \sum_{i_2} \dots \sum_{i_{N+1}} (y_{i_1 i_2 \dots i_{N+1}} - \overline{y}_{i_1 i_2 \dots i_N}^N)^2.$$

From the above results we obtain the following table of analysis of variance. Table 1. Null-hypotheses, degrees of freedom and sums of squares for orthogonal N-way nested classification.

Null-hypothesis	Degrees of freedom	Sum of squares
$H_t: a_{i_1i_2i_t}^t = 0$ for all $i_1i_2,, i_t$	$v_t = a_{\cdot}^t - a_{\cdot}^{t-1}$	$SS_t = \sum_{i_1} \dots \sum_{i_l} n^t_{i_1 i_2 \dots i_l} (\hat{a}^t_{i_1 i_2 \dots i_l})^2$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$v_{N+1} = 1$	$SS_{N+1}=n\hat{\mu}^2$
Error	$v_e = n - a^N$	$SS_e = \sum_{i_1} \dots \sum_{i_{N+1}} (y_{i_1 i_2 \dots i_{N+1}} - \overline{y_i^N})^2$

Acknowledgement. The author is indebted to Professor Dr. Victor Oktaba for suggesting the subject of this paper, and for his advice during its preparation.

REFERENCES

- Darroch, J. N.; Silvey, S.D. On Testing one or More Hypothesis. Ann. Math. Statist. 34 (1963), 555-567.
- [2] Gates, C. E. and Shiue, C. The Analysis of Variance of the S-stage Hierarchical Classification. Biometrics 18 (1962), 529-536.
- [3] Gaylor, D. W.; Hartwell, T. D. Expected Mean Squares for Nested Classifications, Biometrics, vol. 25 (1969), 427-430.
- [4] Seber, S. A. F. Orthogonality in Analysis of Variance. Ann. Math. Statist. 35 (1964). 705-710.
- [5] Seber, G. A. F. Linear Hypotheses and Induced Tests. Biometrika 51 (1964), 41-47.
- [6] Seber, G. A. F. The Linear Hypotheses. London 1966.

STRESZCZENIE

W pracy otrzymano warunki konieczne i dostateczne ortogonalności N-krotnej klasyfikacji hierarchicznej zgodnie z definicją ortogonalności

62

podaną w pracy Dorroch i Silvey [1]. Dla ortogonalnej N-krotnej klasyfikacji hierarchicznej podano estymatory parametrów oraz tabele analizy wariancji.

РЕЗЮМЕ

Получены необходимые и достаточные условия ортогональности *N*-факторной исрархической классификации в смысле определения ортогональности, приведенной в работе [1].

В случае ортогональной *N*-факторной исрархической классификации получены оценки нараметров и критерии значимости для проверки гипотез об эффектах исследуемых факторов.