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Orthogonality in the N-way Nested Classification
Ortogonalnodé¢é w N-krotnej klasyfikacji hierarchicznej
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Introduction. Let us consider an N-way hierarchical classification in
Which classification A, is nested within classification 4, _,, classifica-
tion A,_, is nested within 4y_, and so forth until classification A,.
Let Niyig...iy denote the “true” mean of the (i, 45, ..., dy)th cell, i.e.
the mean value of the yield obtained where classification A, is at the
i-th level, classification A, is the (i,, ,)th level, ..., and classification
Ay is at the (i, ig, ..., iy)th level. The mean #i,i,... iy is usually broken
up into a general mean u, an effect a}l due to the 4,-th first stage class
4, an effect af ;, due to the (i), i,)th second stage class A%, ... and

an effect ap);, . due to the (i, iz, ..., iy)th N-th stage class 4;, .\
Le.: ' ‘ i

_ JHALCUg | il N
(1) Migigewniy = BT @) T @iy T oee + Qg iy

Z-V_here 6h=1,2,...a8% i,=1,2,...,af;, ¢  (p=2,3,...,N).

‘he a,.”i,-,‘,__',.p__I is the number of levels of the classification A4, within the
(i1, 44, ..., 5,_,)th class of the classification 4,,_,.

It nothing more is stated about the decomposition, these components
?f the decomposition are not uniquely defined. It is for this reason to
Impoge some constraints among these components. In order to seek for
3 set of reasonable and intuitively acceptable constraints, we introduce
t'}“‘ every class (i, 44, ..., %,) of classification 4,(p =1,2,..., N) a posi-
tive weight w,”liz_nip. The purpose of introducing such weights is to
‘1.9Velop a unified treatment of the identification problem in the decompo-
Sition (1) of the mean Niiy...ix+ Lhe constraints are then as follows:

(2) zwi‘i,‘z‘_.‘”afmm‘p =0 for all 4,49, ..cp8p_, (P =1,2,...,N).

'p
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Without loss of generality we may assume that:

(3) D w0l ., =1 for all 4,85y .00yipq; p =1,2,..., N.
ip

The restrictions (2) and decomposition (1) give the following definitions

of the general mean s and the effects afi,.. iy
N .
(4) VZ Z"’ “‘;,.. Wity iy Mighy. . in
‘)l 12
B — v T" 1‘3
‘p+1tp+2 lN
V
"'wlla.‘ Ay Wity iy — "'Z wlliz o "‘wlltz an"liz---‘N
N

(p=1,2,..., N=1)

afriz...iN = Mijigen iy — 2, wﬁiz...mﬂiliz...m-
IN
Let 94,4y, denote the iy ,th observation in the (i, 1, ..., %y)th
subclass. The mathematical model of the N-way nested classification may

be expressed as:

(B Wty = Coopc.iniy TG i)
iN+1 = 1, 2, ceny ’n,l{z N ?I‘-l.’:.__[‘\. > 0.
The random error connected with the observation Yiyig.. ine is denoted
83 Cid.in, " We assume that the random variables. €ilig.nin i1 have
normal independent distributions with zero means and the same variances
0,2
o

In thus expressed model the true mean of the (iy, iy, ....1%5)th cell is
equal to:

= o

(6) Nedpitly —Peuuiby'= (”ila'z...i,.)_l )

37l 01'1(2...{1\“_,
IN+1

We now consider testing the following hypotheses H,, Hy, ..., Hy
against 4 where:

4: Vijigeingg oiliz...i_\v e 0.'=:.,..,.-.\' =0

(7) H,:v =0, a4, =0. (t=1,2,...,N)

- TN 4

}IAVJ_I: I“- .:.”'.‘\_ e =3 0, # — 0.
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For further considerations we find matrices A, A,(t =1,2,..., N41)
which permit to introduce assumptions 4 and the hypotheses H, (t =1,
2,...,N+1) in the form:

9:0e2 where 2 = {0:46 =0}

8
! H,:0ew, where w, = {0 : 40 =0 and 4,0 = 0}.

The elements of the vector 0 occurring in the formulas (8) are the values

tyfa... dar .
172+ N+1
The matrix 4 will have n rows and n columns where

L

i v

The element in the (i, iy ...y ix,,)th Tow and in the (j;,jsy ..., jus)th
column of the matrix A is equal to

1

(9) 0, 8;

iNvUING T 6‘111 o

.0

5 (Sizjz... iydet e Yinin

nflfz JN

Where oy, is the Kronecker delta.
Similarly the matrix 4, will have a” rows and » columns where

2; il’, Ay
‘l ‘lz 'Ar

The element in the (i, 4,5, ..., ix)th Tow and (jy,js, ...Jx41)th column
of the matrix A, is equal to

(10) 3

n (Biygy Oayige - iy — 1112 N Oty Oig iy )
]112 j[\

The matrix 4,(t =2,3,..., N) will be a¥**! x n where

a¥ =t = N N N @t

e £ ol iy A4
1 "v—t+1

and the (éy, 45, ...y ix_g41)th row will have the (j;, jay - ..y jn4a2)th element
of the form

N—={+2 N N—f+l
(11) n ( Jydg--dN- (.g.g"'w)|12-~-fNal'|f|"'6‘N-1+11N-H1 Wydg-dN—t41"
f|j2 IN
‘\'
Widgedyy Oy Oin_tin-1)"

The element in the (Juy Jay -+ Jng)th column of the matrix 4y.,, which

8 1xn, will be equal to

(12) 1 1o -
o ".Jl "‘j]j:”‘frjljz"'ja\”
MyigIn
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The identity of the expressions (7) and (8) can be easily proved by multi-
plying any row of the matrices 4, 4,(t =1, 2,... N-+1) and the vector 0.
This gives us the definition of the Vigigoiy,, OF the effect af,z “L,:v 44, TOS-
pectively. For the above defined ma,trlces A, A, the following relations
are satisfied:

Lemma 1. The matrices A, A, hold the conditions
(13) APAS==0’ (gl ot gy,

Proof: For the proof it is enough to show that the product of any row
of the matrix A4, and of any row of the matrix A equals zero. This consist
in multiplying each of the expressions (10), (11), (12) by (9) and summing
On jyy Jay -+ Insr-

Orthogonality. According to the definition of Darroch and Silvey [1],
an experimental design (5) is orthogonal relative to a general linear model
and linear hypotheses H,, H,, ..., Hy_, [see (8)], if and only if, with this
design, the subspaces 2, o,, ..., oy, satisfy the conditions

(14) w; N2 | w;NQ for all t,r,

t # r, i.e. the orthogonal complements of «,, , with respect to Q, are
mutually orthogonal. Seber [4] showed that the conditions (14) are
equivalent to
(15) A,A] =0, for all t,r; t ~7,
where the matrices A, 4,.(t,r =1,2,..., N +1) defined by the formulas
(10) — (12) satisfy Lemma 1.

Using the conditions (15), we derive necessary and sufficient conditions
for this system of hypotheses to be orthogonal.

Theorem. N-way hierarchical classification, in which all Wiyt 7 0,
i8¢ orthogonal relative to a general linear model ¥ -and the hypotheses
H,, H,,...,Hy,, if and only if

"?1'2 i )
» 4 -~ : E
(16) Wity = @=1,3,...,N)
» nr;
iyfg.ip—1
o N fie.
where W' = Ny Mg, iy = Migig..ix

w2y, o=y Z B T
%208 P g iN

ip+1 ip+2 N
Proof: Let that design be orthogonal, i.e.
A,4, =0, ¢ #r; ¢,r =1,2,..., N-L1,
Then the product of the (i), isy ..., iy_p.))th Tow of the matrix A,(p
=1,2,..., N) and the matrix 4y, gives the condition

r N-p+1 N-p+1 e 1 9
(“) w‘l‘z AN 1”481011 AN—p+1 S‘o‘l""}\'—p (p 17“7"'7N)
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N
where 8y oo =My ays
: -
SN=p S S L
xo',...iN_,, 2, P (Ry4,.. in—pin- M,,‘WPH..J‘V) 1
IN-p+1 N
’V-m N-p+2 N Py
X (w; oW, .
( Tyiz-- ‘N »IN pu“‘l‘z AN-pIN-piUIN-p+ 2’ tyig. Iy _piNn Ap+1"'fN)

It will be proved now that from the condition (w) the following condition
can be derived

i 1
(w') S?:il,l..{‘v_p = x5 — (P=12,...,,N).
M ig Sn—p
To complete the proof it will be proved that the condition (w’) is satisfied
for p = 1. The condition (w) for p = 1 is expressed as

=
Wity dy prny
T B gy Ar—im *
Niiy.dy SRS
Multiplying this equation by =, ; and summing on i, gives
IR g vE
.‘?t"l,“. =—5 1
i ..-!_\'__ -1
Vi Y i T i R

Similarly it can be proved that if the condition (w’) is satisfied for a
p < N-—1, it is also satisfied for p +1.
For the conditions (w) and (w') we have

w¥ P! 1
ANl = ! . (»=1,2,...,N)
tfg e IN_ gy Tyigedy—p

and hence the dependence (16) is directly derived. Let us now suppose
that the conditions (14) hold. Then the elements of the matrix 4,(t =
=1,2,..., N+1) are as follows

-1

Ay Opee e Ougs e (M, 1\)*1_'6‘:f|"‘6".\' 1JN—1(nj:;;<E-i‘\'— )
Ap: Oyje e uv_prN AL 3 % Pk B
— 853, 80y1++ Oiyy_pin (" Wiain—p) (P =1,2,...,N),
Apn4: 1/n. It can be easily proved that for these matrices hold
A,A; =0 (p #¢, P,q=1,2,..., N+1).

We shall prove the condition for p =1, ¢ = 2.
The product of the (i,, i3, ..., iy)th row of the matrix 4, and the (i, 1, ...
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«.vy iy_)th row of the matrix 4, is equal to

S

~1
7 e [6"11'1"'6"1\%\’("1'1---11\7) _"-'m---
7] iN

\ sy —1 =1 alv—1 =3 __
"'éf.\'—lf.\' :("tili:v‘-f.\' 1/ -‘[éi'lh"'6"1\-‘—z'a‘.-\'—l{nh---i.\‘—|) = Ot gy
-1
Oy iy (Mpedyg) ] Mrig.. iy
—N 2 : ] it
‘_,_‘ ven [6,111...6,‘\7_1}1\7_1 ‘)'ljl...
7 iN—1

N-1 Vo1 N P N—=1 T
Jyeedy ! Miein—y I[é"'lh' e é'"N—l’N-l (njl" 'jN—l) 6"\11' e

s

.o

In—1In—-1

(e
: =1
",v—zf.v—z[n'fr ..JN—z) J-

It is easy to see that it is equal to zero. In the same way we can prove the
remaining conditions.

Thus we have shown that if all »;;, ;. > 0, the orthogonality of an N-way
nested classification depends only on the choice of weights occurring in
restictions. It is easy to see that the assumption =, iy > 0 does not

ig...
limit the generality of the theorem. l

Analysis of variance. In further considerations our attention will be
focused on an orthogonal case, i.e. on the case when all Woty...ipy > 0 and
the weights satisfy the conditions (16). To find the sums of squares due

to the hypotheses H,, H,,...,Hy, , the two following lLemmas are
indispensable:

Lemma 2. If the matrices A, A;(t =1,2,..., N+1) satisfy the condi-
tions (8), (13) and (15), the least squares estimate of the vector 4,0(t = 1,2,
oy N+1) 18

Alé == Afy'

Proof. From the Gauss-Markov theorem (see theorem 3.51 [6]) we have
A6 = APy but P =I—A'(AA4')"'4 where 4 is the matrix of lineary
independent rows of A. Hence A,60 = A,(I—A4'(4A4")‘4A)y = A,y.

Lemma 3. If the matrices A, A,(t =1,2,..., N-+1) satisfy the condi-
tions (8), (13) and (15), the acceptance of any of the hypotheses H;: 0w

(j =1,2,..., N+1) does not cause any change of the least squares estimates
of the vectors A,0(t #j,t=1,2,...,N+1).

Proof. Let the hypothesis H;: fle o; be true, where w; = N[j ], le.w;
/
is the null space of [‘: ] If we denote the projection operator to the «; as
/| 1L
P;, then I-P; is the projection operator to the w;" = iﬁ[‘: H = R[4,
-
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A;] where R[A4] denotes the range .space of 4. On the other hand, it appears
from the conditions A;4; =0 (¢ + j) and AA; =0 (¢ =1,2,..., N +1),
that R[4,] is orthogonal to R[A', A]]. Hence we have th‘mt (I —P)) 4,

=0 or A,(I —P;) = 0. The least squares estimate of the vector 4,0(t +* j)
for Oecw,; is

APy = Aty_At(I_Pj)y = Ay,

but A,y is the least squares estimate of the vector A4, for 0 Q.
It follows from lemma 2 and lemma 3 that the least squares estimates u,
U iy...ip 1D the orthogonal N-way nested classification can be derived

immediately from the definitions (4), (6), (13) of the parameters, namely

wo=y
&;;iz. J,l. _J:i‘gl sip (p =1,2,...,N)
where®
. 120 O )
o2 N1
— s 1 €
Pty ty = Wiy ty) ‘l D D ity 2 =12, W),
i1 ipt2 N+1
The likelihood ratio criterion for testing H,(t =1, 2,..., ¥ 1) is equiva-
lent to
g Y Pa—Lu)y y(I—Po)y
I —-— ————————. ——
% Ve
Where », = n-dimension (£2) and », = dimension (£)-dimension (w,)-F,

has a central F distribution under the hypothesis H, and a non-central

F Qistribution under the alternative with %, », degrees of freedom.

The sums of squares 88, = y'(P,—P,) vy and S8, = 'J (1 —Pgy) y can be
found by means of Lemma 3, namely

—6+1 AI\r i+1 Ve
A8, = (69_0“'() 24 Z '1'2 ANt 1( i iN—t1)

iy iy iy- t 1
It is so becau%e the (i;y %5y ..., ¥5,,)th element of the vector é,, is equal

to 4 IZ a” i » whereas the (i, is, ..., iy,,)th element of the vector
o D=1 & N
0“‘! is equal to u+ I';Z: uln‘. Ap*

VE N=C:-1
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For the same reason
)“j‘_\l'\._j_j - ’n//jtz
and

— N
2 "'1'2""4\".—1 ‘/il'-2"'i.v

8y, = S" \1 Y (u, .
" ot IN41

12

From the above results we obtain the following table of analysis of variance.

Table 1. Null-hypotheses, degrees of freedom and sums of squares for
orthogonal N-way nested classification.

Degrees of
Null-hypothesis Sum of squares
yp freedom | 1
Nt peil =N S )| | - Al v ] 2
H,: T S s | 88, = Z _l LN (7 P
for all 7,25, ..., 1% ' 4 3
[
(t=1,2,...,,N)
Hy ,:p=0 | v =1 ‘ S8y, = npu?
\J ’ — — N ¥ Y \ |
Errox v, =n—a . 88, = 2‘ 2‘ (Wagtaen gy —
f IN{1

=N 3
— Yisiy.. i)
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STRESZCZENIE

W pracy otrzymano warunki konieczne i dostateczne ortogonalnosci
N-krotnej klasyfikacji hierarchicznej zgodnie z definicja ortogonalnoéci
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Podang w pracy Dorroch i Silvey [1]. Dla ortogonalnej N-krotnej klasy-
fikacji hierarchicznej podano estymatory parametrow oraz tabele analizy
wariancji.

PESIOMLE

[ouydennl HCOOXOUMMbBIC M [OCTATOYHLIC YCIIOBUA OPTOrOHAJILHOCTIL
N-paxtopHoii MepapXuyeckoii KiaccuPUKAUMM B CMHICJIe OIIpeaesenns
OPTOroHa;ILHOCTH, NMPUBCAEHHOI B paborte [1].

B civyae oproronainbnhoii N-akropHoii Mepapxuueckoii luraccHu-
Kaiinn mojyyeHH OlleHKM 11apaMeTPOB U KPUTCPUM 3HAUMMOCTH [UUIH IIPO-
Bepkn rimore3 o6 aPdeKTax uccieayeMux ¢antopos.



