ANNALES

UNIVERSITATIS MARIAE CURIE-SK\&ODOWSKA LUBLIN-IOI」ONIA

VOL. XXVII, 7
SECTIO A
1973

Katodra Zastobowań Matematyki, Akademia Rolnicza, Lublin

HENRYK MIKOS

Orthogonality in the \mathbf{N}-way Nested Classification

Ortogonalnosé w N-krotnej klasyfikacji hierarchicznej Ортогональность в N -факторнои иерархичөснон классифинации

Introduction. Let us consider an N -way hierarchical classification in which classification A_{N} is nested within classification A_{N-1}, classification A_{N-1} is nested within A_{N-2} and so forth until classification A_{1}. Let $\eta_{i_{1} i_{2} \ldots i_{N}}$ denote the "true" mean of the $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ th cell, i.e. the mean value of the yield obtained where classification A_{1} is at the i_{1}-th level, classification A_{2} is the (i_{1}, i_{2})th level, \ldots, and classification A_{N} is at the $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ th level. The mean $\eta i_{1} i_{2} \ldots i_{N}$ is usually broken up into a general mean μ, an effect $\alpha_{i_{1}}^{1}$ due to the i_{1}-th first stage class $A_{i_{1}}^{1}$, an effect $\alpha_{i_{1} i_{2}}^{2}$ due to the $\left(i_{1}, i_{2}\right)$ th second stage class $A_{i_{1} i_{2}}^{2}, \ldots$ and an effect $a_{i_{1} i_{2} \ldots i_{N}}^{N}$ due to the $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ th N-th stage class $A_{i_{1} i_{2} \ldots i_{N}}$, i.e.:

$$
\begin{equation*}
\eta_{i_{1} i_{2} \ldots i_{N}}=\mu+a_{i_{1}}^{1}+a_{i_{1} i_{2}}^{2}+\ldots+a_{i_{1} i_{2} \ldots i_{N}}^{N} \tag{1}
\end{equation*}
$$

Where $i_{1}=1,2, \ldots a^{1} ; i_{p}=1,2, \ldots, a_{i_{1} i_{2} \ldots i_{p-1}}^{\bar{p}}(p=2,3, \ldots, N)$.
The $a_{i_{1} i_{2} \ldots i_{p-1}}^{p_{1}}$ is the number of levels of the classification A_{p} within the $\left(i_{1}, i_{2}, \ldots, i_{p-1}\right)$ th class of the classification A_{p-1}.
If nothing more is stated about the decomposition, these components of the decomposition are not uniquely defined. It is for this reason to impose some constraints among these components. In order to seek for a set of reasonable and intuitively acceptable constraints, we introduce for every class $\left(i_{1}, i_{2}, \ldots, i_{p}\right)$ of classification $A_{p}(p=1,2, \ldots, N)$ a positive weight $w_{i_{1} i_{2} \ldots i_{p}}^{p}$. The purpose of introducing such weights is to develop a unified treatment of the identification problem in the decomposition (1) of the mean $\eta_{i_{1} i_{2} \ldots i_{N}}$. The constraints are then as follows:

$$
\begin{equation*}
\sum_{i_{p}} w_{i_{1} i_{2} \ldots i_{p}}^{p}{a i_{1} i_{2} \ldots i_{p}}_{p}=0 \text { for all } i_{1}, i_{2}, \ldots, i_{p-1} \quad(p=1,2, \ldots, N) . \tag{2}
\end{equation*}
$$

Without loss of generality we may assume that:

$$
\begin{equation*}
\sum_{i_{p}} w_{i_{1} i_{2} \ldots i_{p}}^{p}=1 \text { for all } i_{1}, i_{2}, \ldots, i_{p-1} ; p=1,2, \ldots, N . \tag{3}
\end{equation*}
$$

The restrictions (2) and decomposition (1) give the following definitions of the general mean μ and the effects $\alpha_{i_{1} i_{2} \ldots i_{p}}^{p}$:

$$
\begin{gather*}
\mu=\sum_{i_{1}} \sum_{i_{2}} \ldots \sum_{i_{N}} w_{i_{1}}^{1} w_{i_{1} i_{2}}^{2} \ldots w_{i_{1} i_{2} \ldots i_{N}}^{N} \eta_{i_{1} i_{2} \ldots i_{N}} \tag{4}\\
a_{i_{1} i_{2} \ldots i_{p}}^{p}=\sum_{i_{p+1}} \sum_{i_{p+2}} \ldots \sum_{i_{N}} w_{i_{1} 1_{2} \ldots i_{p+1}}^{p+1} w_{i_{1} i_{2} \ldots i_{p+2}}^{p+2} \ldots \\
\ldots w_{i_{1} i_{2} \ldots i_{N}}^{N} \eta_{i_{1} i_{2} \ldots i_{N}}-\sum_{i_{p}} \ldots \sum_{i_{N}} w_{i_{1} i_{2} \ldots i_{p}}^{p} \ldots w_{i_{1} i_{2} \ldots i_{N}}^{N} \eta_{i_{1} i_{2} \ldots i_{N}} \\
\quad(p=1,2, \ldots, N-1) \\
a_{i_{1} i_{2} \ldots i_{N}}^{N}=\eta_{i_{1} i_{2} \ldots i_{N}}-\sum_{i_{N}}^{N} w_{i_{1} i_{2} \ldots i_{N}}^{N} \eta_{i_{1} i_{2} \ldots i_{N}} .
\end{gather*}
$$

Let $y_{i_{1} i_{2} \ldots i_{N+1}}$ denote the i_{N+1} th observation in the $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ th subclass. The mathematical model of the N -way nested classification may be expressed as:

$$
\begin{align*}
y_{i_{1} i_{2} \ldots i_{N+1}}=\theta_{i_{1} i_{2} \ldots i_{N+1}}+ & e_{i_{1} i_{2} \ldots i_{N+1}} \tag{5}\\
& i_{N+1}=1,2, \ldots, n_{i_{1} i_{2} \ldots i_{N}}, n_{i_{1} i_{2} \ldots i_{N}}>0
\end{align*}
$$

The random error connected with the observation $y_{i_{1} i_{2} \ldots i_{N+1}}$ is denoted as $e_{i_{1} i_{2} \ldots i_{N+1}}$. We assume that the random variables. $e_{i_{1} i_{2} \ldots i_{N+1}}$ have normal independent distributions with zero means and the same variances σ_{e}^{2}.
In thus expressed model the true mesm of the $\left(i_{1}, i_{2}, \ldots i_{N}\right)$ th cell is equal to:

$$
\begin{equation*}
\eta_{i_{1} i_{2} \ldots, i_{N}}=\bar{\theta}_{i_{1} i_{2} \ldots i_{N}}=\left(n_{i_{1} i_{2} \ldots i_{r}}\right)^{-1} \sum_{i_{N+1}} \theta_{i_{1} i_{2} \ldots i_{N+1}} \tag{6}
\end{equation*}
$$

We now consider testing the following hypotheses $H_{1}, H_{2}, \ldots, H_{N+1}$ against \mathscr{G} where:

$$
\begin{gather*}
\mathscr{G}: v_{i_{1} i_{2} \ldots i_{N+1}}=0_{i_{1} i_{2} \ldots i_{N+1}}-\bar{\theta}_{i_{1} i_{2} \ldots i_{N}}=0 \\
H_{t}: v_{i_{1} i_{2} \ldots i_{N+1}}=0, a_{i_{1} i_{2} \ldots+1 N_{-t+1}}^{N-}=0 .(t=1,2, \ldots, N) \tag{7}\\
H_{N+1}: v_{i_{1} i_{2} \ldots i_{N+1}}=0, \mu=0 .
\end{gather*}
$$

For further considerations we find matrices $A, A_{\imath}(t=1,2, \ldots, N+1)$ which permit to introduce assumptions \mathscr{G} and the hypotheses $H_{t}(t=1$, $2, \ldots, N+1$) in the form:

$$
\begin{align*}
& \mathscr{G}: \theta \in \Omega \text { where } \Omega=\{0: A \theta=0\} \tag{8}\\
& H_{t}: \theta \in \omega_{t} \text { where } \omega_{t}=\left\{\theta: A \theta=0 \text { and } A_{t} \theta=0\right\} .
\end{align*}
$$

The elements of the vector θ occurring in the formulas (8) are the values $\theta_{i_{1} i_{2} \ldots i_{N+1}}$.
The matrix A will have n rows and n columns where

$$
n=\sum_{i_{1}} \sum_{i_{2}} \ldots \sum_{i_{N}} n_{i_{1} i_{2} \ldots i_{N}}
$$

The element in the $\left(i_{1}, i_{2}, \ldots, i_{N+1}\right)$ th row and in the $\left(j_{1}, j_{2}, \ldots, j_{N+1}\right)$ th column of the matrix A is equal to

$$
\begin{equation*}
\delta_{i_{1} j_{1}} \delta_{i_{2} j_{2}} \ldots \delta_{i_{N+1} j_{N+1}}-\frac{1}{n_{j_{1} \delta_{2} \ldots j_{N}}} \delta_{i 1_{1}} \delta_{i_{2} j_{2}} \ldots \delta_{i_{N} j_{N}} \tag{9}
\end{equation*}
$$

where $\sigma_{i j}$ is the Kronecker delta.
Similarly the matrix A_{1} will have a^{N}. rows and n columns where

$$
a^{N}=\sum_{i_{1}} \sum_{i_{2}} \cdots \sum_{i_{N}} a_{i_{1} i_{2} \ldots i_{N}}^{N}
$$

The element in the $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ th row and $\left(j_{1}, j_{2}, \ldots j_{N+1}\right)$ th column of the matrix A_{1} is equal to

$$
\begin{equation*}
\frac{1}{n_{j_{1} j_{2} \cdots j_{N}}}\left(\delta_{i_{1} j_{1}} \delta_{i_{2} j_{2}} \ldots \delta_{i_{N} j_{N}}-w_{j_{1} j_{2} \ldots j_{N}}^{N} \delta_{i_{1} j_{1}} \ldots \delta_{i_{N+1} j_{N+1}}\right) . \tag{10}
\end{equation*}
$$

The matrix $A_{t}(t=2,3, \ldots, N)$ will be $a^{N-t+1} \mathrm{x} \mathrm{n}$ where

$$
a^{N-t+1}=\sum_{i_{1}} \sum_{i_{2}} \cdots \sum_{i_{N-\ell+1}} a_{i_{1} i_{2} \cdots i_{N-t+1}}^{N-\ell+1}
$$

and the $\left(i_{1}, i_{2}, \ldots, i_{N-\ell+1}\right)$ th row will have the $\left(j_{1}, j_{2}, \ldots, j_{N+1}\right)$ th element of the form

$$
\begin{gather*}
\frac{1}{n_{j_{1} j_{2} \cdots j_{N}}}\left(w_{j_{1} j_{2} \cdots j_{N-t+2}}^{N-t+2} \cdots w_{j_{1} j_{2} \cdots j_{N}}^{N} \delta_{i_{1} j_{1} \ldots \delta_{i_{N-t+1}} j_{N-t+1}}-w_{j_{1} 1_{2} \cdots j_{N-t+1}}^{N-t+1} \cdots\right. \tag{11}\\
\left.\ldots w_{j_{1} j_{2} \cdots j_{N}}^{N} \delta_{i_{1} j_{1}} \ldots \delta_{i_{N-t} j_{N-t}}\right) .
\end{gather*}
$$

The clement in the $\left(j_{1}, j_{2}, \ldots j_{N+1}\right)$ th column of the matrix A_{N+1}, which is $1 \times n$, will be equal to

$$
\begin{equation*}
\frac{1}{n_{j_{1} j_{2} \ldots j_{N}}} w_{j_{1}}^{1} w_{j_{1} j_{2}}^{2} \ldots w_{j_{1} j_{2} \ldots j_{N}}^{N} . \tag{12}
\end{equation*}
$$

The identity of the expressions (7) and (8) can be easily proved by multiplying any row of the matrices $A, A_{\ell}(t=1,2, \ldots N+1)$ and the vector θ. This gives us the definition of the $v_{i_{1} i_{2} \ldots i_{N+1}}$ or the effect $a_{i_{1} i_{2} \ldots i_{N-\ell+1}}^{N-i+1}$ r'espectively. For the above defined matrices A, A_{l} the following relations are satisfied:

Lemma 1. The matrices A, A_{l} hold the conditions

$$
\begin{equation*}
A_{t} A^{\prime}=0(t=1,2, \ldots, N+1) \tag{13}
\end{equation*}
$$

Proof: For the proof it is enough to show that the product of any row of the matrix A_{ℓ} and of any row of the matrix A equals zero. This consist in multiplying each of the expressions $(10),(11),(12)$ by (9) and summing on $j_{1}, j_{2}, \ldots, j_{N+1}$.

Orthogonality. According to the definition of Darroch and Silvey [1], an experimental design (5) is orthogonal relative to a general linear model \mathscr{G} and linear hypotheses $H_{1}, H_{2}, \ldots, H_{N+1}$ [see (8)], if and only if, with this design, the subspaces $\Omega, \omega_{1}, \ldots, \omega_{N+1}$ satisfy the conditions

$$
\begin{equation*}
\omega_{t}^{\frac{1}{~} \cap \Omega \perp \omega_{r}^{\perp} \cap \Omega \text { for all } t, r, ~} \tag{14}
\end{equation*}
$$

$t \neq r$, i.e. the orthogonal complements of ω_{t}, ω_{r} with respect to Ω, are mutually orthogonal. Seber [4] showed that the conditions (14) are equivalent to

$$
\begin{equation*}
A_{t} A_{r}^{\prime}=0, \text { for all } t, r ; t \neq r \tag{15}
\end{equation*}
$$

where the matrices $A_{6}, A_{r}(t, r=1,2, \ldots, N+1)$ defined by the formulas (10) - (12) satisfy Lemma 1.

Using the conditions (15), we derive necestary and sufficient conditions for this system of hypotheses to be orthogonal.

Theorem. N-way hierarchical classification, in which all $n_{i_{1} i_{2} \ldots i_{N}} \neq 0$, is orthogonal relative to a general linear model ${ }^{G}$ and the hypotheses $H_{1}, H_{2}, \ldots, H_{N+1}$ if and only if

$$
\begin{equation*}
w_{i_{1} i_{2} \ldots i_{p}}^{p}=\frac{n_{i_{1} i_{2} \ldots i_{p}}^{p}}{n_{i_{1} i_{2} \ldots i_{p-1}}^{p-1}} \quad(p=1,2, \ldots, N) \tag{16}
\end{equation*}
$$

where $n^{0}=n, n_{i_{1} i_{2} \ldots i_{N}}^{N}=n_{i_{1} i_{2} \ldots i_{N}}$,

$$
n_{i_{1} i_{2} \ldots i_{N}}^{p}=\sum_{i_{p+1}} \sum_{i_{p+2}} \cdots \sum_{i_{N}} n_{i_{1} i_{2} \ldots i_{N}}
$$

Proof: Let that design be orthogonal, i.e.

$$
A_{q} A_{r}^{\prime}=0, q \neq r ; q, r=1,2, \ldots, N+1
$$

Then the product of the $\left(i_{1}, i_{2}, \ldots, i_{N-p+1}\right)$ th row of the matrix $A_{p}(p$ $=1,2, \ldots, N$) and the matrix A_{N+1}^{\prime} gives the condition
(w)

$$
w_{i_{1} i_{2} \cdots i_{N-p+1}}^{N-p+1} S_{i_{0} i_{1} \cdots i_{N-p+1}}^{N-p+1}=S_{i_{0} i_{1} \cdots i_{N-p}}^{N-p}(p=1,2, \ldots, N)
$$

where $S_{i_{0} i_{1} \ldots i_{N}}^{N}=n_{i_{1} i_{2} \ldots i_{N}}$,

$$
\begin{aligned}
& \mathbb{N}_{i_{0} i_{1} \cdots i_{N-p}}^{N-p}=\sum_{j_{N-p+1}} \ldots \sum_{j_{N}}\left(n_{i_{1} i_{2} \ldots i_{N-p} j_{N-p+1} j_{N-p+2} \cdots_{N}}\right)-1
\end{aligned}
$$

It will be proved now that from the condition (w) the following condition can be derived

$$
S_{i_{0} i_{1} \cdots i_{N-p}}^{N-p}=\frac{1}{n_{i_{1} i_{2} \cdots i_{N-p}}^{N-p}} \quad(p=1,2, \ldots, N)
$$

To complete the proof it will be proved that the condition (w^{\prime}) is satisfied for $p=1$. The condition (w) for $p=1$ is expressed as

$$
\frac{w_{i_{1} i_{2} \ldots i_{N}}^{N}}{n_{i_{1} i_{2} \ldots i_{N}}}=\boldsymbol{S}_{i_{0} i_{1} \ldots i_{N-p}}^{N}
$$

Multiplying this equation by $n_{i_{1} i_{2} \ldots i_{N}}$ and summing on i_{N} gives

$$
S_{i_{0} i_{1} \ldots i_{N-1}}^{N-1}=\frac{1}{n_{i_{1} i_{2} \cdots i_{N-1}}^{N-1}} .
$$

Similarly it can be proved that if the condition $\left(w^{\prime}\right)$ is satisfied for a $p<N-1$, it is also satisfied for $p+1$.
For the conditions (w) and (w^{\prime}) we have

$$
\frac{w^{V-p+1}}{n_{i_{1} i_{2} \cdots i_{N} N-p+1}^{N-p+1}}=\frac{1}{n_{i_{1} i_{2}, i_{N-P}}^{N-1}} \quad(p=1,2, \ldots, N)
$$

and hence the dependence (16) is directly derived. Let us now suppose that the conditions (14) hold. Then the elements of the matrix $A_{\ell}(t=$ $=1,2, \ldots, N+1$) are as follows

$$
\begin{aligned}
& A_{1}: \delta_{i_{1} j_{1} \ldots \delta_{i_{N} j_{N}}}\left(n_{j_{1} j_{2} \cdots j_{N}}\right)^{-1}-\delta_{i_{1} j_{1}} \ldots \delta_{i_{N-1} j_{N-1}}\left(n_{j_{1} j_{2} \cdots j_{N-1}}^{N-1}\right)^{-1}, \\
& A_{p}: \delta_{i_{1} j_{1}} \ldots \delta_{i_{N-p+1} j_{N-p+1}}\left(n_{j_{1} j_{2} \cdots j_{N-p+1}}^{N-p+1}\right)^{-1}- \\
& -\delta_{i_{1} j_{1}} \delta_{i_{2} j_{2}} \ldots \delta_{i_{N-p} j_{N-p}}\left(n_{j_{1} j_{2} \cdots j_{N-p}}^{N-p}\right)^{-1} \quad(p=1,2, \ldots, N),
\end{aligned}
$$

$A_{N+1}: 1 / n$. It can be easily proved that for these matrices hold

$$
A_{p} A_{q}^{\prime}=0 \quad(p \neq q, p, q=1,2, \ldots, N+1)
$$

We shall prove the condition for $p=1, q=2$.
The product of the $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ th row of the matrix A_{1} and the $\left(i_{1}^{\prime}, i_{2}^{\prime}, \ldots\right.$
\ldots, i_{N-1}^{\prime})th row of the matrix A_{2} is equal to

$$
\begin{aligned}
& \sum_{j_{1}} \cdots \sum_{j_{N}}\left[\delta_{i_{1} j_{1}} \ldots \delta_{i_{N} j_{N}}\left(n_{j_{1} \ldots j_{N}}\right)^{-1}-\delta_{i_{1} j_{1}} \ldots\right. \\
& \left.\cdots \delta_{i_{N-1} j_{N-1}}\left(n_{j_{1} j_{2} \cdots j_{N-1}}^{N-1}\right)^{-1}\right]\left[\delta_{i_{1} j_{1} \cdots} \ldots \delta_{i_{N-1}^{\prime} j_{N-1}}\left(n_{j_{1} \cdots j_{N-1}}^{N-1}\right)^{-1}-\delta_{i_{1} j_{1} \cdots} \ldots\right. \\
& \left.\ldots \delta_{i^{\prime}{ }_{N-2} j_{N-1}}\left(n_{j_{1} \ldots j_{N-2}}\right)^{-1}\right] n_{f_{1} j_{2} \ldots j_{N}} \\
& =\sum_{j_{1}} \cdots \sum_{j_{N-1}}\left[\delta_{i_{1} j_{1}} \ldots \delta_{i_{N-1} j_{N-1}}-\delta_{i_{1} j_{1}} \ldots\right. \\
& \left.\ldots \delta_{i_{N-1} j_{N-1}}\left(i_{j_{1} \cdots j_{N-1}}^{\mathrm{N}-1}\right)^{-1} n_{j_{1} \cdots j_{N-1}}^{N-1}\right]\left[\delta_{i^{\prime} j_{1} \ldots} \ldots \delta_{i^{\prime} N-1^{j} j_{N-1}}\left(n_{j_{1} \cdots j_{N-1}}^{N-1}\right)^{-1}-\delta_{i_{1} j_{1}} \ldots\right. \\
& \left.\ldots \delta_{i^{\prime},-2} j_{N-2}\left(n_{j_{1} \ldots j_{N-2}}\right)^{-1}\right] .
\end{aligned}
$$

It is easy to see that it is equal to zero. In the same way we can prove the remaining conditions.
Thus we have shown that if all $n_{i_{1} i_{2} \ldots i_{N}}>0$, the orthogonality of an N-way nested classification depends only on the choice of weights occurring in restictions. It is easy to see that the assumption $n_{i_{1} i_{2} \ldots i_{\mathrm{N}}}>0$ does not limit the generality of the theorem.

Analysis of variance. In further considerations our attention will be focused on an orthogonal case, i.e. on the case when all $n_{i_{1} i_{2} \ldots i_{N}}>0$ and the weights satisfy the conditions (16). To find the sums of squares due to the hypotheses $H_{1}, H_{2}, \ldots, H_{N+1}$ the two following Lemmas are indispensable:

Lemma 2. If the matrices $A, A_{\ell}(t=1,2, \ldots, N+1)$ satisfy the conditions (8), (13) and (15), the least squares estimate of the vector $A_{t} 0(t=1,2$, $\ldots, N+1)$ is

$$
A_{t} \hat{\delta}=A_{t} y
$$

Proof. From the Gauss-Markov theorem (see theorem 3.51 [6]) we have $A_{\ell} \hat{\theta}=A_{\ell} P y$ but $P=I-\bar{A}^{\prime}\left(\bar{A} \bar{A}^{\prime}\right)^{-1} \bar{A}$ where \bar{A} is the matrix of lineary independent rows of A. Hence $A_{\ell} \hat{\theta}=A_{\ell}\left(I-\bar{A}^{\prime}\left(\bar{A} \bar{A}^{\prime}\right)^{-1} \bar{A}\right) y=A_{\imath} y$.

Lemma 3. If the matrices $A, A_{t}(t=1,2, \ldots, N+1)$ satisfy the conditions (8), (13) and (15), the acceptance of any of the hypotheses $H_{j}: \theta \in \omega_{j}$ ($j=1,2, \ldots, N+1$) does not cause any change of the least squares estimates of the vectors $A_{t} \theta(t \neq j, t=1,2, \ldots, N+1)$.

Proof. Let the hypothesis $H_{j}: \theta \in\left(\omega_{j}\right.$ be true, where $\omega_{j}=N\left[\begin{array}{l}A \\ A_{j}\end{array}\right]$, i.e. ω_{j} is the uull space of $\left[\begin{array}{l}A \\ A_{j}\end{array}\right]$. If we denote the projection operator to the ω_{j} as P_{j}, then $I-P_{j}$ is the projection operator to the $\omega_{j}^{\perp}=\left\{N\left[\begin{array}{l}A \\ A_{j}\end{array}\right]\right\}^{\perp}=R\left[A^{\prime}\right.$,
$\left.A_{j}^{\prime}\right]$ where $R[A]$ denotes the range space of A. On the other hand, it appears from the conditions $A_{j}^{\prime} A_{t}^{\prime}=0(t \neq j)$ and $A A_{t}^{\prime}=0(t=1,2, \ldots, N+1)$, that $R\left[A_{l}^{\prime}\right]$ is orthogonal to $R\left[A^{\prime}, A_{j}^{\prime}\right]$. Hence we have that $\left(I-P_{j}\right) A_{t}^{\prime}$ $=0$ or $A_{\ell}\left(I-P_{j}\right)=0$. The least squares estimate of the vector $A_{i} \theta(\mathrm{t} \neq j)$ for $\theta \epsilon \omega_{j}$ is

$$
A_{t} P_{j} y=A_{t} y-A_{t}\left(I-P_{j}\right) y=A_{t} y
$$

but $A_{t} y$ is the least squares estimate of the vector A_{ℓ} for $\theta \epsilon \Omega$.
It follows from lemma 2 and lemma 3 that the least squares estimates μ, $a_{i_{1} i_{2} \ldots i_{\rho}}^{p}$ in the orthogonal N-way nested classification can be derived immediately from the definitions (4), (6), (13) of the parameters, namely

$$
\begin{gathered}
\hat{\mu}=\bar{y} \\
\hat{a}_{i_{1} i_{2} \ldots i_{p}}^{p}=\bar{y}_{i_{1} i_{2} \ldots i_{p}}^{p}-\bar{y}_{i_{1} i_{2} \ldots i_{p-1}}^{p-1}(p=1,2, \ldots, N)
\end{gathered}
$$

where ${ }^{\circ}$

$$
\begin{gathered}
y^{0}=\bar{y}=\frac{1}{n} \sum_{i_{1}} \sum_{i_{2}} \ldots \sum_{i_{N+1}} y_{i_{1} i_{2} \ldots i_{N+1}}, \\
\bar{y}_{i_{1} i_{2} \ldots i_{p}}^{p}=\left(n_{i_{1} i_{2} \ldots i_{p}}^{p}\right)^{-1} \sum_{i_{p+1}} \sum_{i_{p+2}} \ldots \sum_{i_{N+1}} y_{i_{1} i_{2} \ldots i_{N+1}} \quad(p=1,2, \ldots, N) .
\end{gathered}
$$

The likelihood ratio criterion for testing $H_{\ell}(t=1,2, \ldots, \mathrm{~V}+1)$ is equivalent to

$$
F_{t}=\frac{y^{\prime}\left(P_{\Omega}-P_{a t}\right) y}{v_{t}}: \frac{y^{\prime}\left(I-P_{\Omega}\right) y}{v_{e}}
$$

where $\nu_{e}=n$-dimension (Ω) and $\nu_{t}=$ dimension (Ω)-dimension $\left(\omega_{t}\right) \cdot F_{t}$ has a central F distribution under the hypothesis H_{l} and a non-central F distribution under the alternative with v_{t}, v_{e} degrees of freedom. The sums of squares $S S_{t}=y^{\prime}\left(P_{\Omega}-P_{o \ell}\right) y$ and $S S_{e}=y^{\prime}\left(I-P_{\Omega}\right) y$ can be found by means of Lemma 3, namely

$$
S S_{t}=\left(\hat{\theta}_{\Omega}-\hat{\theta}_{a_{l}}\right)^{\prime}\left(\hat{\theta}_{\Omega}-\hat{\theta}_{a_{l}}\right)=\sum_{i_{1}} \sum_{i_{2}} \ldots \sum_{i_{N-l+1}} n_{i_{1} 1_{2}+\ldots+i_{N-t+1}}^{N-t+1}\left(\hat{a}_{i_{1} i_{2}+i_{N-t+1}}^{N-t+1}\right)^{2} .
$$

It is so because the $\left(i_{1}, i_{2}, \ldots, i_{N+1}\right)$ th element of the vector $\hat{\theta}_{\Omega}$ is equal to $\hat{\mu}+\sum_{p=1}^{N} \hat{\boldsymbol{a}}_{i_{1} 2_{2} \ldots i_{p}}^{p}$, whereas the $\left(i_{1}, i_{2}, \ldots, i_{N+1}\right)$ th element of the vector $\hat{0}_{\omega_{t}}$ is equal to $\hat{\mu}+\sum_{\substack{p=1 \\ p \neq i=1}}^{N} \hat{\alpha}_{i_{1} i_{2} \ldots i_{p}}^{p}$.

For the same reason

$$
S S_{N+1}=n \hat{\mu}^{2}
$$

and

$$
S S_{c}=\sum_{i_{1}} \sum_{i_{2}} \cdots \sum_{i_{N+1}}\left(y_{i_{1} i_{2} \cdots i_{N+1}}-\bar{y}_{i_{1} i_{2} \cdots i_{N}}^{N}\right)^{2}
$$

From the above results we obtain the following table of analysis of variance. Table 1. Null-hypotheses, degrees of freedom and sums of squares for orthogonal N-way nested classification.

Null-hypothesis	Degrees of freedom	Sum of squares
$H_{t}: a_{i_{1} i_{2} \ldots i_{i}}=0$ for all $i_{1} i_{2}, \ldots, i_{t}$	$v_{t}=a_{0}^{t}-a^{t-1}$	$S S_{t}=\sum_{i_{1}} \ldots \sum_{i_{l}} n_{i_{1} i_{2} \ldots i_{l}}^{t}\left(\hat{a}_{i_{1} i_{2} \ldots i_{i}}^{t}\right)^{2}$
$\begin{aligned} & (\mathbf{t}=1,2, \ldots, \mathrm{~N}) \\ & H_{N+1}: \mu=\mathbf{0} \end{aligned}$	$v_{N+1}=1$	$\boldsymbol{S S} S_{N+1}=n \hat{\mu}^{2}$
Error	$v_{e}=n-a_{0}^{N}$	$\begin{aligned} & S S_{e}=\sum_{i_{1}} \cdots \sum_{i_{N+1}}\left(y_{i_{1} i_{2} \ldots i_{N+1}}-\right. \\ & \left.-\bar{y}_{i_{1} i_{2} \ldots i_{N}}\right)^{2} \end{aligned}$

Acknowledgement. The suthor is indebted to I'rofessor Dr. Victor Oktabar for suggesting the subject of this paper, and for his advice during its preparration.

REFERENCES

[1] Darroch, J. N.; Silvey, S.D. On Testing one or More Hypothesis. Ann. Math. Statist. 34 (1963), 555-567.
[2] Gates, C. E. and Shiue, C. The Analysis ot Variance of the S-stage Hierarchical Classification. Biometrics 18 (1962), 529-536.
[3] Gaylor, D. W.; Hartwoll, T. D. Expected Mean Squares for Nested Olassifications, 13iometrich, vol. 25 (1969), 427-430.
[4] Seber, S. A. F. Orthogonality in Analysis of Variance. Ann. Math. Statist. 35 (1964). 705-710.
[5] Scber, G. A. F. Linear IIypotheses and Induced Tests. Biometrika 51 (1964), 41-47.
[6] Seber, G. A. F. The Linear Hypotheses. London 1966.

STRESZCZENIE

W prescy otrzymano warunki konieczne i dostateczne ortogonalnoścs N-krotnej klasyfik̊cji hierarchicznej zgodnie z definicjaz ortogonalności
podaną w pracy Dorroch i Silvey [1]. Dla ortogonalnej N-krotnej klasyfikacji hierarchicznej podano estymatory parametrów oraz tabele analizy wariancji.

PE З1OME

Получены необходимые и достаточные условия ортогональностл N-факторної иерархнческой классификации в смысле определения ортогонаіьности, приведенной в работе [1].

В случае ортогональноіі N-факгорной исрархическоіі нлассификацин получены оценни параметров и критерии значимости для проверки гинтез об эффсктах исслсдуемых фанторов.

