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Let a, 0 < a < 1, be an arbitrary fixed number and let k be an arbitrary
fixed natural number.

Denote by S, the family of regular and univalent functions of the form

(1) f(2) = 2+ ¥ afpa™!
J=1
defined in the circle K = {z: |z] < 1} while E(a) stands for the subclass

of the family S; made up of all functions of form (1) of the family S,
which satisfy the condition

o) 4
&)
l—a
i.e. which satisfy the condition
( #f'(2)
| f@)
Moreover we accept the following denotations:
8, = § — the family of all regular and univalent functions of form (1)
defined in the circle A,
Se — the subelass of all starlike functions of the family 8, i.e. the
subclass of functions of form (1) which map the circle K
onto starlike regions with respect to the origin,

<1

--1l<1-—a.

S5, — the subclass of all starlike functions of the family S,,
8%(a) — the family of all functions of form (1) which are starlike of
order a i.e. satisfy the condition
re () > a for every ze K.

J(2)
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Evidently the family E,f(a) is a subclass of the family S3(a). In fact,
condition (2) means that

of' @)
= J@ kA1) = e r—1 < 1)
l1—a
by which
o)
re J@) 0
l—a
and thus
zf’(2)
ref(—z) > a

Since 8%(a) = S, and Si(a) = Si(a)

Sk(a) = 8.
The problem formulated in this paper consists in determining the radius

of convexity r, of the family S}(a), i.c. the radius of the largest circle
|z| < r <1 which is mapped by every function of the class S}(a) onto
a convex region. A function f(2)e 8 is convex, i.e. it maps the circle K

onto a convex region if and only if

re \1 + z;""(iz))) > 0 for every ze K.

Now we shall come back to the definition of the radius of convexity which
is to be made more precise. Let for every fixed function f = f(z)e S} (a)

r(f) = sup{r: ro(].+?f:'{z)—)> 0, 2| <r}
f(2)
o =nindler (e
ftg';;(ﬂl

Since the family Sq; (a) is compact and since it is a subclass of the family S,
7o i8 the radius of the largest circle which is mapped onto a convex region
by every function of the class S} (a), or which is the same, 7, is the smallest
root of the equation w(r) = 0 contained in the interval (0, 1) where

(3) w(r) = min . re[1+ :}‘(S)]

|§| = l.ﬂn]«‘i,:lul
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Next denote by B;k(a) the family of all regular functions of the form

(4) P(z) =1+ ) bfde’™
defined in the circle K which satisfy the condition
P(z)—a
T —1{ < 1 for cvery ze K

and by #,(a) the family of all functions p(z) of form (4) such that

rep(z) > a for every ze K.

1t follows from what has been said above that 2,(0) = &, where 2 is
the family of Carathéodory functions, and that ?k(a) < Py (a). It follows

from the definitions of the families Sk(a) and ?k(a) that f(2)e Sk(a) if
#f' (@) =

and only if @ € #;(a). Let f(2) be an arbitrary function of the class
S~;(a). Then
2f'(2)
5 = P(z
(5) o — PO

for some function P(z)e ék(a). Hence by differentiating we easily obtain
equation (5) and after simple transformations the relationship

2f"" (2) 2P’ (2)
1+ = P(2) ~
(6) @) (2) o
Thus by (3) and (6) we have
i 2P ()]
= minxe|pe+ 2L
v 2] =r<1, P(s)eFy(a) L P(z)

Let p(2)e #,(a) then, as it is easily seen, the function

(1+B)p(2) +1—8
p2)+1

belongs to the family ék(a), the converse being also true. In fact, the
function P(z) defined by formula (7) is the superposition of the function
{ = p(2) which maps the circle K onto the semiplane re{ > a and of
(L+p)l+(—-p)
{+1
semiplane rel > a on to the circle |w—1| < . Thus |P(2)—1l|<1l—a

(7) P(2) =

, B =114,

the homograph function w({) =

which maps the

§ — Annales
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and consequently reP(z) > a. The function P(z) defined by formula (7)
is regular in the circle K as the superposition of regular functions, we
also have P(0) = 1. Consider the functional

(8) F(P) = P(0), P(2)eZy(a).

Lemma 1. The set of values of functional (8) i the closed circle K (C,p)
with the centre at C and the radius o, where C = 1 and o = pr¥, r = |z|.

Proof. Every boundary function P,(z) of the family £, (a) with respect
to functional (8) is of form (7) where

(9) pd2)=4135f-|s|=l-womp-[lh-
1—e’
Thus
P,y(2) = 1+ pez.

Consequently for z = re'®, 0 < ¢ < 2=,

Py(2) = C+ 01y,
where .
No = ce'*®

which ends the proof. Further denote by 9";‘,2(0) the subclass of the family
#,(a) consisting of all functions of form (7) with

) 1-2
(10) p(2) =—2—P1(2)+ ) D.(2),
142" ¥
(11) p;(2) :W, lgl =1,j=1,2, —1<A<1.

Next let F(u, v) be an arbitrary analytic function defined in the semiplane
reu > 0 and in the plane v and let |F,|? +|F,|2 > 0 at every point (u, v).
Then it is known that every boundary function p(z) with respect to the
functional F(p(2), 2p’(2)), |2| = 7 is of form (10) [1]. Thus every boundary
function with respect to the functional

F(P(2),2P'(2), P(D)ePila), sl =7
is of form (7) where p(2) is of form (10). Therefore

2P’ (2)
P() I

w(r) = min re [P(z} +
|5|=r<1, Ps)ePy, o(a)

Now we shall prove the following lemma:
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Lemma 2. If P(z)eg}.’,‘_,(a) and z = re', 0 < ¢ < 2m, then

(12) 2P (2) = K[P(2) 1]~ ka[o*— |P(s) ~ 11%]n,
with
13) o= ol = phe = a() — st and bl ~ 1.

Proof. Differentiating function (7) with respect to z and then multi-
plying the result by z we get

, 2fzp’ (2)
P (2) — PP
(14) 2P’ (2) (p(e) + 1)

According to formula (11) we have

142 2r* & — o

W) = .
PP AT 1— gk’

thus

1+r% 27k g — ok
1% Ty 1— g™’
1f p,(2) is of form (11), we have for z = rc'

pj(re’®) =

(15) pi(re®) = ¢’ +o'y;, j=1,2
with
147%* 20
LN . _ )
19 =g & T =
kg , l_éfrke_ikw

R i -t et et

Let now p(2) be of form (10), then taking into account formula (15) we
obtain

-A 1—4
(et ety - (¢* +e%yy), z = re®,

an  pe) =—, 3

¢*, 0" and y;, j = 1,2 being defined by formulas (16). By (17) we find
that for z = re'®

1+4 1—-1
p(Z)—c'+e'-( g P+ —g y:)
holds.
Let
144 1—-1
(18) x#.=e'(—2--->71+ = yz)
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with
1+4 1-1

9 ="M
(19) x [ 2 "+ 5

Yals gl =1

Multiplying both sides of (18) by xu, we get the formula

a2

# = S A L= A+ (=2 (1 7a + 7a79)].

Putting
(20) y=e% j=1,2
we get
% = o [ — (1 — A%)gin® by ﬂ’]
i.e.
(21) % — p*?—p**(1— ).’)sm’ ﬂ e

o

It follows from formula (21) that
0<x< g'.

Thus if p(z) is of form (10), then according to formulas (18) and (19)
we have

(22) p(re’®) = ¢ +xp,.
Now we shall evaluate the expression zp’(z) for z = 7, p(2) being of

form (10) and then multiplying both sides of the result by z we get on
some transformations the formula

k k12
(23) 2p{ @) = Zpllp’ed s dinty 5~k EE=pla)]

Further applying formula (15) to the function p;(2), j = 1,2 for z = re'®
we find, with the denotations of (20) that

(24) [P1(2) — Pa(2)]* = @™ y1ys-[2c08(8, —Ba) —2].
Denoting
(25) y1ye = &1t — 4,

We reduce formula (24) to the form

(26) [91(&) = Pa(9)]t = — 4™ msin® P2
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Taking into account formula (21) in formula (26) we obtain

142 7

[91(2) —p2(2)]* = —5[9'2—%’]-
Thus formula (23) becomes
' k 2 k 2 ()
(27) zp’ (2) :-5[1)(2)—1]—?1)[9 —x?], z = re".
From formula (22) we have
|| = |p(re*®) —c*}.

Substituting the obtained value for |x| into formula (27) we get ultimately
k k
(28) - 2p'(2) =5 [P*(2) — 1]~ [e™~Ip(2) — " 1] -9, Inl = 1.

Thus taking into account (14) and (28) we have for |z| =7

S N
(p(2) +1)

From formula (7) we obtain

2P'(2) = ] Ak[p2(2) —1]1—k[0™* — |p(2) — c*|2]n}.

1-f—P(2)
= Pe) = B Tt )
Hence
(30)  Ple)+1 = 2B ey —
i “Pa-a+p’ P

21-P@) pE)—-1 P)-1
P@)—(1+p) p@+1 B
Then we get for z — re®, 0 < ¢ < 27

o’ — |[P(z)—1|*
(1—r*)|P(2) —(1 +p)I2

By (29) — (31) we obtain ultimately formula (12) which ends the proof
of lemma 2. According to lemma 2 we have

(31) e —Ip(z)—c"? =4

(32) w(r) = min re [P(z)—}— 2P () I
|g|=r<l (z) l
nl'l'k n{ﬂ)
L 2
Pe)e?y a(a)

Let
P(re®) —se*, 8> 0, imt =0.
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By lemma 1 ¢ and t satisfy the conditions
1—p<8<1l+pand —W(s) <t< ¥Y(s),
with
+ 82 — 92
28 .

(33) Y(8) = arccos !

Moreover we introduce the denotations
G ={(8,t): 1—p<8<l+p, —P(@B)<t< ¥(s)},
0G = {(8,t): 1—p<8<1+p,t = +¥(s)},
I={:1-p<8<1l+yp}.
Then formula (44) becomes

kcost
w(r) = min {scost—{-k— - —ka[ —38%+2cost — (1L — p?)]re 1 )
lg]=r<1 P(z)i
(8.8)eG v 6G
where 2scost— 82— (1 — p%) > 0 for (8,1!)e GUOIG. Since
7 1
(34) re ——<
P(z)  |P@)’
(36) w(r) =
PI
min re [P(z) - ¢ (z)] > min B(s,t) = w(r)
iri=r<1, P(g)e®}, 5(a) P(z) 18] =r<1, (8,8)eG v OG
where
k . 1— ot
(36) B(s, t) =[ 8—-;)008t+k] -+ ka [s—2cost+ . .

Now we proceed to determining the minimum of the function B(s,t)

and then we shall find the radius of convexity 7, of the family S;(a).
We consider two cases: I (8,t)eG, II (s,t)e 0G.
I. (8,t)e G. Consider the system of equations

By(s,1) = (—8+% +2ak) sint = 0
B,(8,1) =%[(1 +ka)s*+k(1_a(1_ez)” —0.

k

Finding that —8 + — +2ak +# O for s8¢ I we get that sint = 0 and because
8

of cost > 0, we have cost = 1. Thus

w(r) = min B(3,t) = min C(s),
gl =r<l,(8,8)eG |8 =r<],8el
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where
k 1_(,2]
C(s) ='B(3’0)=3—;+k+ka[s—2+ s i
Since
. 1
C (s) =3[(1+ka)82—k(a(1_ez)_1)l
and

7 2k — p?%) —
¢ (s) =ﬂ;"L 1]

the function C(s) attains a local minimum at the point

(37) 8 = l/k 6(1—¢%)—1 .
1 +ka

i.f 81 € I.

Now we shall find out for what values of re (0, 1), 8,¢ I. It is easily veri-
fied that the inequality 8, <1 4 p always holds. In order to determine
the values of r for which 1 — ¢ < 8, holds we assume the following notation

Ur) =(1—¢) = (1—pr¥)

(38) 14pr*
m(r) = 8(r) = k(1 —p) - i) —pr
Then 1—p < s, if
liry—m(r) < 0.
Since
1(0) =1, I(1) = (1-p)®
and
U(r) =2(1—=Br¥)-(—kpr* ') < 0 for re (0, 1),

l(r) is a decreasing function for re(0,1,. By an analogous argument
we obtain

k(1) 2
mo) = 5y m) ~ 1
and
m(n = 2ip— P

[(B +k) — Br**}

thus m(r) is an increasing function in the interval (0, 1>. Moreover taking
into account that

a—-B) < ﬂﬂ <l1-pf*<1
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we get 1—p < 8, for r > r* where 7° is the only root, 0 < r* < 1, of the
equation

(39) l(r)—m(r) = 0.

Now we shall transform equation (39). Employing in it denotations (38),
(37) and (13) we obtain

p

)=ml) =

() =0,
with
(40) h(r") - ﬂzr4k_2ﬂr3k+

+[A—28)k +(1 =)™ +2(k +B)r* — (k +1).

Since
el o s &7 re(0,1)
k+p(1—r")
r*, 0 < r* <1 is the only root of the cquation
(41) h(r*) = 0 for re (0,1).

It follows from the above considerations that

R(7*)>0for r*<r<1
and that

(42) h(¥*)<0 for 0 <r<r*
Summing up we find that s e I for re(r*, 1) and then

loc min B(8,t) =loec min C(8)
lz| =r<1,(8,t)eG 8] =r<1,8¢I

il +ak)81—k(2a—1)+3£[a(1—9’)—1]-
1
By (37) and (13)
(43) C(s;) = min locC(8)

lel=r<1,8¢l

kU s s
T B—ry[2(1 tak)s, +k@a—1)] T <7<

where
(44) U™ = -k +4(1—B)]r** -
—2[kB +2(1—B)*1r™* — [kf— 4(1—p)]

and
B —7r*)?[2(1 +ka)s, +k(2a—1)]> 0 for re (0, 1)
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We have
U(0) > 0 for k < k,(8),
where
o e i (1 —
(45) ky(py = 22=A)
It is easily verified that if
k< ki (B)

then function (44) of the variable »** has in the interval (0,1) exactly
one root given by the formula

21— BV2B(k+2) +(1— ) —kB—2(1—B)
Blk+4(1—p)]

%__
while if k > k,(8), then U(r*) < 0 for 0 < r < 1. Accepting r, = VX we
have by (46)

(46) X =

*/2(1—pIV2P(k+2) + (1—pP— kf—2(1— B
(47) r, = l/ : - e = 7] 3
with, according to (43)

min  B(s$,t) = C(s,) =0 for r =r, > r".
bl-'<l'(a)‘)‘(;

I1. (3,t)e 0G. Then we obtain from formula (33)
14 82— p2
28
and substituting this value for cost in formula (36) we get
8+ (k+1—g")s* — k(1 — ¢

L]
2s?

cost =

B(s, ¥(s)) = H(Is) =

Hence
. k(11— p? .
H'(s) :-:s+—(—3—9—) > 0 for sel =1 —p,1+p).
8

Thus H(8) is an increasing function in the interval I and thus it attains
its minimum at the point 8, = 8,(r¥), 8,(7*) = 1—p(r*) cqual to

min ' H{s) = H(1=p) = —= ~TTL

\sl=r<), mel
By o(r*) = pr*

(48) i B(s,t) H (8,) F(r)
min = = B
8| =r< :. (8,8)e0G (3, i L= ﬁ"k
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where
(49) F (%) = Br* —(k+2)pr" +1.
We have

F(0)>0.
It is easily verified that if

k > ky(B)
with

1 i & 2

(50) ko (B) = %

then function (49) of the variable 7* has exactly one root given by the
formula

(51) St aa 4 Uan

2p
in the interval (0, 1), while if k < k;(8), then F(r*)> 0 for 0 <7 < 1.
A~
Accepting 7, = ¥y, by (61) we have

k e [
) . ‘/L+2 ‘V);c(k +4)

when k = ky(B).

We sum up the results obtained. According to the performed considerations
the function C(s8) = B(s, 0) attains its local minimum at the point s,(r);
this minimum is equal zero for r = r; only if r, > r*. Next the function
H(s) = B(s, ¥(s)) attains its local minimum at the point s,(r*); this
minimum is equal zero for r = r, independently of the position of the
number r, relatively to 7*. Moreover if r, < 77, then the function B(s, t)
defined in the region GUJ@ attains its absolute minimum equal zero at
the point r,. It is easily verified that H(sy) = C(8;) > C(s,). In fact for
se I we have

(8 —8,)°

C(8)—C(8;) = (s —8,)C"(8,) + ("”(31 +(s—8,)6), 0 <6 <1.
Thus taking into consideration that C’(s,) =0 and C"(s) > 0 for sel
we obtain C(s)—C(s,) > 0 for every se I, thus C(sy) > C(s,). Hence it
immediately follows that if » > »* then minimum B(s, t) = C(s,), thus if
r, > r°, the function B(s, t) attains its absolute minimum at the point r,.
Since

—kf—B(1—prye

H:,,(s,(r‘)) —Zi:'ﬂ7)2—" < 0 for re(0,1)
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we have moreover that r, < r, for 7, > r*. Thus, because of the definition
of the radius of convexity r, and inequality (35) we have proved

Lemma 3. The radius of convexity r, of the family Si(a) satisfies the
inequalities
ry when 0 < r, < r* and k > ky(B)

53 o=
s 7| r, when r, > " and k < k,(f)

where r, and ry are defined by formulars (47) and (62) and r° is the only
root of equation (41) which belongs to the interval (0,1) Now we shall
prove

Lemma 4. The radius of convexity r, of the family ;S;;(a) satisfies the
inequalities
ry when 0 <r, < r* and k > ky(B)

r, when r* <7r, <1 and k < k,(B).

To

By which, because of lemma 3 we will prove that r, = r, or r, =1,
respecitvely.
Proof. We distinguish two cases:
A. r,<r* and k> ky(B), B. »* < r, and k < k,(f)-
A. Let P(2) be a function of the family gq;“(a) such that for z = r,e',

0 < ¢ < 2, B(s, t) attains its minimum equal zero. Since this minimum
is attained at the point { = 0,8 = 8,(r,) where 8,(r) = 1 — (%), o(r*) = pr¥,

(54) P(r;e") = 1—o(r}).
Formula (7) assigns uniquely some function p(z) of the family (,(a) to

the function P(2), p(z) being uniquely defined by the formulas (10) and
(11). By (54) and (31) we have for z = r,e”® and r =7,

" —Ip(2)—c** = 0.
Thus by formula (22) we have
x(rs) = o' (ra).
Therefore according to formula (22)
(66) P(rse®) = C*(rg) + 0" (r)py, Il =1

Hence it follows that

56 _ 1+ le] =1
(56) pl2) = T - ol

and consequently
P(z) = 1 +pe?~.
We have to determine e.
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From formula (54) it follows that imP(rse*) = 0 thus by (41) also
imp(r,e’®) = 0. Consequently (55) implies x; = 1. On the other hand by
(64) and (29) we have

1-rk

14rE

(57) p(ree”) —
Thus because of (16), (55) and (57) we find that u, = —1. Accepting z = r,0*®
in (56) we get by (57) se*° = —1, hence

g = —e %,
Thus

(58) P(z) = 1fef =1—pe %2k

Denote by f.(z) a function of the class §;(a) which satisfies the equation

with P(2) defined by formula (58). This equation is equivalent to the
following

Hence

]ogj (’z) gy ﬂ'e‘.""’ Z, logl = 0.
Thus ; '
(59) £ (2) = zexp (_ "“';_“. ;*).

We have for the function (59)
" (2) F(e %)
ey 1—peto
with F(r*) given by (49). Thus at the point z = r,e'
i (I zf”w)
+ £ e e
1 (2

holds. Thus the function fiz) is not convex in the circle |z| < r for r > r,.
Consequently 7, < r, and by r, =7, [comp. (53)] we find

ro = 7, when 0 < r, < r* and k= ke(8).
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B. Let now P(z) be a function of the family g, ,(a) such that for z — r,e®,
0 < ¢ < 27, B(s,t) attains its minimum equal zero. Since this minimum
is attained at a point ¢t = 0, 8 = 8,(r,),

(60) P(r,e®) = 8,(r,) when r* <r, <1 and k < k,(8).
Since # = 1 [comp. (34)], by (25)
Yati= ;1-

Thus taking into account (16) we obtain

- —1k ik
5 et’h._]_'l’rf.g_w‘ — & 0o, 1_81"'1‘9‘ ‘
2 1_821J1‘e(k¢ 1 l—Elrte_‘kv .
Hence we have
(61) &8y = g 2ike

and because of (7), (10) and (11) the function P(z) becomes

28,2 — (e, + )2 +1
[(e, +¢&,) _}-(31—82)]2"—2 )

(62) P(z) =1+p8+28"

Therefore

£r8,0" % % _ (g +g,)eiPr* 11
[(e1 +&5) — A(e, — £5) ] **r* — 27

P(re'®) = 1+p+26-

thus because of (60) and (61)

¥ — (e, + &) e ok 11
[(e1 +&3) — A(g, _82)]3‘“7"1‘—2 ;

8,(r) =1+p+28-

By (61) we have
&1 +eg = e~ (e,e™ 17,07 %e),
Accept further
(63) d = 5|('"w+510_“¢ = 2re(e, e'*?),
then
A —drf 1

[d— A(e, — &) e**]rt —2 °

(64) 8 = 1+8+28-

It follows from (64) that
(65) im {A(g, — &5)e**} = 0.
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By (61)
(66) (E, —83)0"” - sle“k¢—éle—‘kw
holds, thus condition (65) because of (66) becomes

}.(8] O‘kq’ T Ele_‘kw) = 0
hence

(67) A(2e?™*®—1) = 0.

By (67) we have

1° ge’**—1 =0,
or

2° 1 =0.

We shall prove that case 1° does not occur. In fact, assuming for the
sake of proof, that the opposite holds we would have

(68) & = ye~*® where y = +1
and then by (68) we would get from (61)
— ik

£y = %0
and thus

81 == 6‘2.
The function p(z) would then be of form (9), thus we would have
P(r,e") = 14 ferk.

Hence because of ymP(r,e*) = 0 [comp. (60)] and |¢] =1 we would
have ¢ =1 or ¢ = —1 which is impossible because of

P(rye®) = 1+rf + 8,(ry)

as well as
P(r,e") = 1—ﬂr‘,‘ 7= 8,(ry)-
Thus
A =0.
Then formula (64) becomes
r* —drf +1

8(ry) =1+8-+28 Ertr

Hence we get

ﬂ’ik +8,(r)—1

69 d = .
99) [o2(r0) — (1 — A1)
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Now we can determine the function P(z) which satisfies condition (60).
By formulas (61), (62) and (63) we find

2B~ 2ke 2k 4 (1 1+ B)e *PF —2
(70) Pla) =e———— -j,,(,, ——”kﬂ) it
e d~ _2
with d defined by formula (69). Similarly as in casc A denote by _;'(z)
a function of the class S;(a) which satisfies the equation

T _ pa),
f(2)

P(2) being a function defined by formula (70) with d # 0. This equation
is equivalent to

f 28 _. 4—d?) o Rg
ff(i:)) _% =7ﬂe"’“’z"“ + Ld p s ef""¢d::—2 with d # 0.
Hence
log f@) =8 e log (1— ic‘"‘":"\ﬁ-ﬁe“""z", log1 = 0.
2 ka? 2 ] kd
Thus

4—d?
ka?

(11) fe) = -exn g -z

d 28,
log (1— Et-‘“"‘z") . v""";*] with d # 0.
For function (71) we have

1+ 7@ kU (e~ %)
frz) B —e ™22 [2(1 +ak)s, +k(2a—1)]

with U (r*) given by formula (44). Thus at the point z = r,¢" we have

(14 T

rejl + — = 0.
\ f(z) !

So the function f-(z) is not convex in the cirele |z| < r for » > r;. Thus
ro<r, and by r,=> 17, [comp. (53)] we obtain

ro = r, when r* < r, <1, k < k,(f) and d # 0.
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Let further d = 0. Then

) 1 A
P(z) = —fe ket — _“;_ﬁe-""z" !
thus
L_'E’. L — peiike k=1 __ 1HP - pe
fl@)e A
Hence
f(z 1 5
log f(T) = = g ¢ H[Be 1 (1+6)], logl =0,
and consequently
=t = svmcots Boen v 0ol aithudyos Oy

exp {% e ek . [fo ek L (1 + ﬂ)]}

Similarly as before we find that in the case d = 0 we also have
ry =7, When r* <r <1, k< k;(f) and d = 0.

In lemmas 3 and 4 inequalities are given which being satisfied imply
7o = T, O 7, = 7, Tespectively. They do not specify explicitely the con-
ditions for g and ¥ under which the radius of convexity is determined
by one or the other formula. Such conditions will be found now.

Lemma 3. Let
D, ={(B,k): 0 <p<1, k= k(p),
D, = {(B,k): 0 < B=<1, ky(B) < k < ky(B)},
Dy = {(B,k): 0 < B<1, k< ky(B)},
with k,(B) and k,(B) defined by the formulas (45) and (50). Then
ry when (B, k)e D, or (B, k)e D, and r, <7r°
ry when (B, k)e D, and r, > 1* or (B, k)e Dy.

Proof. Retaining the denotations accepted earlier, by (48) and (43)
we have

(72)  w(r) = min _ re ‘1 + z{:’[f))
el =r<1,/(e)eSgla) \?)
F ()

gy for 0 <r<r*
— Br

& kU (r*)
B(1—r*)2[2(1 + ka)s, + k(2a —1)]

for r* <r<1.
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By (49) we find that if (8, k)e D, U D, then the function F(*) is positive
for 0 < r < ry, negative when r, < r <1 and equal zero at the point
r = r4. Similarly, it follows from (44) that the function U (r*) is positive
in the interval (0, r,), negative in the interval (r,, 1) and equal zero for
r = r,. Hence by (72) and by the definition of the radius of convexity
we obtain the assertion of the lemma.

Lemma 6. Let (8, k)e D, and let
8(B, k) = B*(k +2)*—2B(B*— B +1)(k +2)*— (1 — f2)%(k +2) —2(1 - B)".

The condition r, < r* i8 satisfied if and only if S(B, k)= 0.
Proof. Let r, < r*. Then by (40) and (42)

(73)  h(y) = B*y' — 2By +[(1 —2B)k (1 —*)]y? +2(k + )y — (kK +1)

< 07 Yy = 7"._f
holds. We have

(74) F(y) = p*y*—(k+2)fy +1 = 0.
Thus
(15) (1—93)F(y) = — B2 +B(k+2)y* —(1— B2y —B(k+2)y +1 = 0.
Adding side-wise (73) and (75), then dividing by k and finally adding to
both sides (74) we obtain

By +(1—B)*y* +(2—kp —3B)y < 0.

Ultimately we multiply both sides of this inequality by B/y and then
subtract F(y). In this way we obtain the inequality

Bl(k+2)+(1—pB)2ly—[(1—B)*+42(k+2)]<0.
Thus if r, <r*, then
g D 0P
Bk +2)+(1—p)*]
Hence we get the inequality S(8, k) > 0. It follows from the above argu-
ment that if the last inequality is satisfied, then r, < r*.
Corollary. r, >r* if and only if S(B, k) < 0.

Lemma 7. The equation S(B, k) = 0 with unknown k has one solution
k(B) for every B, 0 < B < 1; this solution satisfies the condition ky(B) < k(B)
< k,(B), with k,(B) and k,(B) defined by the formulas (50) and (45).

Proof. Since

(76) 8(B, k,(B)) > 0 and 8(B, k:(B)) <0 for 0 <f <1

7 — Annales
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the equation S(B, k) = 0 has at least one solution in the interval (k,(B),
ky(f#)). Then we have

(77) 8B, k) = 3B%(k +2)*—4B(B2— B +1)(k +2) — (1 — p*)?
and
Six(B, k) = 682k —48(B>—4p +1).

By Si(B, k) > 0 for k,(B) < k < k,(B) and 0 < 8 < 1 the derivative (77)
is an increasing function of the variable k for every fe (0, 1]. Moreover
we have 8,(0, k,(0)) < 0 and 8;(1, k(1)) > 0, thus there exists a number
8%, 0 < B* < 1 such that for every fe (0, 8*) S, (B, ka(f)) < 0 holds, while
8i(By k2(B)) > 0 for Be(B*,1]. In the first case since the derivative (77)
increases there exists k*(8) such that for k,(8) < k < k*(8) the function
S(B, k) of the variable k decrcases, while it increases in the interval
(k* (B), kl(ﬂ)), because of (76) the lemma has been proved in this case.
In the other case i.e. if f* < <1 we have S;‘(ﬂ, k,(B)) > 0 and since
Si(B, k) increases, S(B, k) is an increasing function of the variable k defined
in the interval (k,(B), k,(8)). Consequently because of (76) the lemma
has been proved in the second case. The lemmas (6) and (7) imply:

Corollary. If k = k(B), then r, < r*, while if k < k(B) then r, >1".
Lemmas 4 — 7 immediately imply the following

Theorem. Let

4(1—p) (1-—p)?

— k:(B) =
3 (8)

8(B, k) = p2k+2)*—28(B2—B+1)(k+2)*—(1—B3)%(k+2)—2(1—p)*

and let k(p) be the only solution of the equation S(k, ) = 0 with the unknown k
in the interval (ky(B), ky(B)). Accept

E, ={B,k): 0<p<1, k<k(B)}
E, ={(B,k): 0<p<1, k= k(B)}.

k() = for 0 < <1,

Then the radius of convexwity of the family b_';(a)

ry  if (Byk)e B,

e Ly lr, if (B, k)e By,

with

F/k2—VeG+4)
e -
R e e
Bk +4(1—p)]
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B =1—a, ac0,1).

With r.c{f’ (2)} = ry and r.c{f (2)} = r, where

and

f (2)

and

= &

2

3 [ 4— a2 4 _. e
zexp!‘:a-[ 3 log (l—gu"""'"z*) +2e"""’z"“, logl =0
with d #+ 0

rvas- ’ with & =0
T a—tke —ike

{2ke #[pe z"+(1+ﬂ)]=

__g’%k——i—ﬁ;_];_ =y /,n o 1+ﬂr¥

—a—pna’ =V M G e
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STRESZCZENIE

Niech a, 0 < a < 1, bedzie dowolng ustalong liczbg i niech k bedzie

dowolng ustalong liczbg naturalng. Oznaczmy przez S;(a) rodzine
wszystkich funkeji postaci

f(2) = 2+ D aff, 2!

j=1

holomorficznych, jednolistnych i gwiazdzistych w kole K = {z: |2| < 1}
speliajgcych warunek

AT
&)
l—a

a
- —1|{< 1 dla kazdego ze¢ K.
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Oznaczmy nastepnie przez ék(a) rodzing wazystkich funkecji postaci

1) P(z) =1+ ) bfp*
j=1
holomorficznych w kole K, spelmiajgcych warunek
P(z)—
‘ iz) Sl < 1 dla kazdego ze K
—a

oraz przez %.(a) rodzine wszystkich funkeji p(z) postaci (1) takich ze
rep(z) > a dla kazdego ze¢ K.

Z powyiszego wynika, ze 2,(0) = 2, gdzie # jest rodzing funkecji Cara-
theodory’ego oraz ze 2,(a) c #;(a). Korzystajac z wlasnoéci rodziny
P?,(a) oraz ze zwigzkdéw, jakie zachodzg miedzy odpowiednimi funkcjami
rodzin S} %), ék(a) i 2,(a) wyznaczamm dokladng wartodé promienia

—

wypukloéei rodziny funkeji 8 (a).

PE3IOME
Mycts a,0 < a <1 Oyger mpou3BO/ILHLIM (HKCAPOBAHHBIM YHCJIOM, a k —
O POU3BOJIbHBIM (HKCUPOBAHHBIM HAaTypPaJIbHBIM THCJIOM.

Iycts S} (a) o6o3navaer cemeiictBO BCex (yHKuHil BANA

f(@) =z+ fa‘lﬂ l2./k+1

J=1

roJIoMOp@HEIX, ONHOJMCTHLIX H 3BE3MHbIX B Kpyre k ={z:|z| < 1} ynosuerso-
PAIOLUMX YCJIOBHAIO

76 .
/) ——=1l|<l1l. A
1—a 2eK

Iyctb .é"k(a) o603HavaeT ceMeicTBO Bcex GyHKLUMA BHIa
' b \ V706

e)) P() =1+ ,2.‘ B *

ronoMopdHbIx B Kpyre K, yIOBJIETBOPSIOIHX YCIOBHIO

P(2)—a
l1—-a

2K

-1,<1. A
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a #;(a) — cemeiictBo Bcex (yukumii p(z) supa (1), Takux, 9TO

rep(2) > a. A
ze K

H3 BbineckaszaHHoro ciaenyer, 910 &(0) = & rone # — ceMeiicTBO QyHRIm

Kapateonopn ¥ @ (a) = #;(a). Ucnoanays coiictBa ceMeiictBa P, (a) a Takxe
CBOMCTBa, KOTOpble BO3HHKAIOT MEXIY COOTBETCTBYIOIUMMH (DYHKOUAMH CeMeHCTB

S;(a), Z#.(a) B P,(a) onpenensiercs TouHas BeJHYHHA PAAMYCa BHINYKJIOCTH ce-

MeiictBa ¢pynkumit S} (a).



