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Introduction

The generalized union of Bayes and Bernoulli problems were investi-
gated in the paper [1]. They unite with the search for joint, conditiona
and marginal distributions of the following three random variables:

P — Probability which is a random variable taking values p from
the interval (0, 1).

A,, By — random variables taking respectively values a = 0,1,...,7n
and # = 0,1, ..., N, standing for the number of favourable events taking
place in runs of » and N experiments, of composite experiment carried
out in the following way:

1. The realization of random variable P is being obtained from the
mterval (0, 1).

2a. The a realization of random variable 4, is bcing obtained from
runs of experiments carried out according to Bernoulli scheme with the
constant conditional probability p of a favourable event D, (k¥ = 1, 2, ..., n)
equal to p which was defined at the point 1.

It means that, P(D,|P =p) =p, (k =1,2,...,n), where D), is the
result of the k-th experiment.

2b. The B realization of random variable By is being obtained in
a run of N further experiments executed according to Bernoulli scheme
with the same (conditional) probability of the favourable event I
l=n+1,n+2,...,n+N).

It means that, P(DJP = p) = p(l =n+1,n+2,...,n+ N), where D;
is the result of l-th experiment.
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The random variable A, specifies the number of favourable events D,
(k =1,2,...,n) taking place during the whole complex experiment
taking into consideration 1. and 2a.

The random variable By, specyfies the number of favourable events D,
l=n+1n+2,...,n+N) in the same experiment taking into consi-
deration the points 1. and 2b.

A total probability formula allows to compute an unconditional pro-
bability of favourable event. For

D, (k=1,2,...,m) and D;(Il=n+1,n+2,...,n+N)

we get
1 1
P(Dy) = [ PID, |P = p)f(p)dp = [ pf(p)dp = EP, k =1,2,...,m,

P(D,) = [ P(D4P= p)f(p)dp= EP

=PD)y l =n+1,n+2,...,24+N,

where f(p) is a density function of random variable P.
From the construction of random variables results that conditional
distributions

M) plelp) = PL4, — alP = p) ~(") o0 = 0, 1,2, ),

2)  p(Bip) = P[By = fIP = p) =(ﬁ')p‘q-"'*’m ~0,1,2,..., N),

are Bernoulli ones.

The knowledge of these distributions allows to determine the un-
conditional distributions of random variables A4, and B,. The distri-
butions of these random variables and the conditional distribution
p(Bla) = P[By = BlA4, = a], as well as suggestions relative to their
applications to a quality control were given in [1].

However, random experiments exist in which an examined pheno-
menon i8 being well described by Binomial distribution except case when
the number of favourable events is zero (or more general k,). So called
“Inflated” Binomial distribution [3] describes precisely such the phe-
nomenons. The probability function of that distribution in the case
inflated at the point k,, where k, is a positive integer is given by the
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formula

lld's“(:)r”‘“q““"% k= ko,
(3), ,  PX =k) e i

s(Z)pkq"-ﬁ PR B IR e (5 S R
where P(X = k) is probability that X takes value k, being a number of
favourable events, and s is the proportion of population which follows
simple Binomial, and p +¢ = 1. In the case k, = 0 the formula (3) takes
the form

1—8+s8¢", k =0,

3’ P(X =k) =
3 ( ) s(Z)p"q""‘,k=1,2,,...n.

In that what follows we assume s and p being values of the random
variables 4 and P respectively, where 1 and P are independent.

The generalization of Bayes problems and ones connected with above
inflated Binomial distributions we would like to consider in this paper.
The results given here under the assumption i = const. = 1 reduce to
the results, relative to the generalized Bayes and Bernoulli problems
from [1].

Moreover in further parts of this paper, the random variable P has
such a property that conditional distributions of the remaining ones
are independent with regard to its optional, possible value. It means
that P(A,, By|P) = P(A,|P)-P(By|P).

Now let us introduce the following notations

(4) a2 m

(5) b—1—Ei,

(6 ) = 0 if a # k,,

) (e bif a = ky;
0 if B +# k,,

7 =

(@) d(8) lb it B = ko

Remark. In particular cases we assume that 4 is a random variable
uniformly distributed. However, it should be noted that, in general,
one does not known what values 4 takes [4]. Sometimes, taking 4 as
a constant, we can estimate its value experimentally. Then, one could
consider particular cases: P being uniformly or beta distributed and 2
being a constant. But, desirable results in these or other cases can be
obtained from the general formulas in the same way as given below.
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1. Probability distribution (unconditional and conditional ones) of three
random variables P, 4., B,

First let us observe that in case of inflated binomial distributions the
formulas (1) and (2) take on the forms

1 — B2+ K2 (ko)p g™ ", ‘a. =k,

(1.1)  p(alp) = -\

2] (t’l 'paq"_a’ B E= 0’ 1’ 2’ 0000 ko_‘l, ko +1’ ey n;
A

1—Ei +Ez(;:'}pk0¢\v-ko, g=m,
(1.2) p(Blp) :

El(;)p B =0,1,2,..., k=1, kog+1,..., N.

Thus by means of the notations (4)-(7), the formulas (1.1) and (1.2)
are as follows

a3 plap) ~e@tall)pe @ - 0,1,2, . m),

(1.4) p(Blp) = d(ﬂ)+a(2)1’ﬂ¢v‘ﬁ, (8 =0,1,2,..., N).

Theorem 1.1. Unconditional distributions of random variables A, and By
are given by the formulas

1
(1.5) p(a) = c(a)+a(:) fpaqn “f(p)dp, (a =0,1,2,...,n),

w6y p@) —a@)+ay) [ 20 Swap, (¢ = 0,12, 3.

The proof results from the total probability formula.

Theorem 1.2. A joint distribution of random variables A, and By is
given by the formula

1.7  p(a,B) =6(a)d(ﬂ)+ad(ﬂ)(f)fp“q"“’f(p)dp i

¥ a)( )ff’ “14(pydp +a* ( )( ) [ prEgh a8 f(p)dp

where here and in what follows f =0, 1,2,..., N; a =0,1,2,...,n
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Proof. ¥rom the assumption, we have

p(a, p) = fp(a BIp)f(p)dp —fp(alp)p(ﬂlp)f(p)dp

Now, profiting by the formulas (1.3) and (1.4) we get (1.7).
Let us observe that the formula (1.7), explicite is given as follows

] & n
El(l—Ei)(ﬂ)ufp"q” ’f(p)dp +E=1(kn)(ﬁ)uf X
xPﬁ+koqN+"_p—k°f(p)dp7 a = Koy B # ko3

_ - N\ ¢/
p(a,B) = 151(1“33)(7‘)(!?"9"_7@)‘1? + E*A (:) (L.;)of X
Xpu+ko +"-ko_af(p)dpy a F# ko ﬂ = ko;

(1—EA)? + EA(1 — BA) fp"°q""k°[(,:) + (f:o) q“""]f(p)dp +

By means of Bayes formula we get the following formulas for condi-
tional distributions f(p|a) and f(p|B).

[c(a) +a (") . "“‘]f(p)

(1.8) f(pla) s ’
c(a) +a( )bf ¢ °f(p)dp

[d(ﬂHa(ﬁm |riw)
d(B)+a )rpﬁsr‘ Sy

On the basis of (1.3) and (1.4) we get joint distributions (4,, P) and
{By, P)

(1.10) flayp) = [c(a) +a(Z) p"Q"“‘]f(p),

(1.9) f(pB)

(1.11) 18, ) :[dm) ta (;) p"q"”’]f(p)-
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Theorem 1.3. Conditional distribution p(Bla) is given by the formula
(1.12)  p(Bla) = d(B) +

ao(a) (g)jp’q”"f(p)dp+a=( )( )fp"*" Ninma=ff(p)ap

c(a)+a(2)fp"q"“’f(p)dp
0

Proof. By the virtue of theorem 1 from [1]

p(Bla) = [ p(Bip)f (pla)dp

which in connection with (1.4) and (1.8) gives (1.12).
The practical applications often requires the knowledge of P[By

< fl4, = a]. In the considered case, this probability is given by the
formula:

w3 (}) perona
(113) P(By<pBl4, = a] =2(B) + —

C(a)+a( \fp"q"“"f(p)dp

=+

M

N) [ A v (p)dp

) [p°¢""f(p)dp

c(a)—+—a|

where
0if B <k

B =1 mit gk

In a special cases, when the random variables P and 4 are uniformly
distributed, i.e.

1for0<p<1,

1.14 -
( ) 1(@) ‘Oforp >1 and p<0,
and

1lfor 0<s<1,
(1.15) g(s) =

0 for s>1 and <0,

1 :

(1.16) a=FKEl=—=1—FEi =),

2
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and therefore the formulas (1.5) — (1.13) take on the corresponding
forms

(117) p@) = ola) + 5" 5
(1.18) P(B) = AP+ 5 5
(1.19)
ap) ofa) (2)(3)

pla, B) = c(a)d(B) +

3(n+1) 2N +1) |

N
4(N+n+1)(ai—;

1) 2eta) +(2) 0|

(1.20) f(pla) = 1 +2¢(a)(n +1) :

(N +1)[2d(ﬁ) g (év) p"a"“’]
(1.21) f(pIB) = 1+2d(8)(N +1) :
(1.22) fla,p) =e(a)+ = ‘ ) "

1[N
(1.23) fB,p) = d(ﬂ)+§(ﬁ) ¢,
21 5 e(a)(n+1)
(1.24) 2(Bla) = 4B + ¥ T\ i2e(a)in +1) 7 1]
) [a) () 40

2(1‘% ﬁ) (N +n +1)[1 +2¢(a)(n +1)]

(a)(n +1)(B+1
i L e ?(N:(;)[71+2)c(5x)(n)4r1)]

(o o (i)
2(N +n+1)[1+26(a)(n +1)] £ (N +n)
atk

+

=
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here and in what follows

L. A
l 0 if B <k,
When the random variable P has the beta distribution
¢
(1.26) f(p) = y0<p<1,

B(r+1,8—7r+1)

where —1 < r < 8+1 all parameters and the random variable 1 is as

in above, then the unconditional distributions of 4, and By are given

by the formulas

B(a+r+1,n+s—r—a+1)
2B(r+1,8—r+1)

BB+r+1,N+s—r—§ +1)
2B(r +1,8—1r+1)

)

a2 p@ =)+ )

(128)  p(B) = d(B)+ (”)

Their joint distribution is

(") Ad(B)B(a+r+1,n—a+s—r+1)

(1.29) p(a, f) = e(a)d(p) + TSI g

2c(a)(ﬂ)B(ﬂ +r+1, N—B+s—r+1)

¥ TABG YL, esri1) o

(s en o gror
+

4B(r +1,8—7+1)
The conditional densities of random variable P given a or g are
(1.30)
B

J(@la) = : ” . ’
2¢(a)B(r+1, s—r+1)+| |B(a+r+1,n—a+s—r+1)

(1.31)

2a(6)p"¢ " + (5 | 9P AN
f(piB) =

2d(ﬁ)B(r+1 s——r—i—l)—i—(l;) B+r+1, N—f+s8—r+1)
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The joint unconditional densities of random variables 4, and By are

20((1)?' 8—°r ( )pa+r n—a+8—r

(5 Heg)e 2B(r+1,8—r+1)

T

2d(ﬂ)p' 8—r . (*'\) pﬂ+qu—ﬂ+a—r
4
2B(r+1,8—r+1)
The conditional distribution of random variable By given vale A, is
(1.34)

(1.33) fB,p) =

c(a)(ﬂ)B(r+ﬂ+1 N—Bts—ri1)

P(Bla) = d(p) + - +
2¢(a)B(r+1,8— r+1)+( ’B(a+r+1 n—a+8—r+1)
; |
E{Z)(Z/;,) B(a+B8+r+1,N—f+n—a+s—r+1)
ST S S .
2c(a)B(r+1,s—r+1)+‘[2)B(a+r+1,n—a+s—r+1)
From (1.34), we have
(1.35) P[By<Bl4, = a]
c(a)E(*)B(HrH N—k+s—r+1)
= 3(8) +-=—i84 Kiwg +

2¢(a)B(r+1,s—r+1) +{2} B(a+r+1l,n—a+8—7r+1)

B.
N
%‘:)ké( | Blat+k+7r+1,N—k+n—a+s—r+1)

y o b iy —— .
2¢(a)B(r+1,8—r+ 13*( |Bla+r+1l,n—a+s—r+1)
!

2. Extreme

First let us consider if the random variables P and i are uniformly

distributed.
Let us introduce the following notations

(E)) o

2(N +n +1) (‘\' +")

(2.1) h(B, a)

a+f

h(f+1,a)  (a+B+1)(N—p)
h(B, a) (B+1)(N+n—a—8)"

(2.2) $(8) =
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From (1.24) and (2.1) we have

h(B, a) , ¢(e)(n+1)

(2-3)  pBla) =dB)+ 5 T+ 1 T (DA +2e@@m T D]

Let us now suppose that n, N, a are constants.
If ¢(f) > 1, then h(f, a) is an increasing function of §. Because ¢(f) > 1,
a(N +1)—n

for p’<—ﬂ——, and for every g h(B, a) < % +h(ko, a), therefore

(2.4) m?XP(ﬂla) = P(kola)

(:) (iv) (n+1)(N +1) +2¢(a)(n+1)(N +n+1) + (N+n)

a+k,
2(ﬂ+lV
a+tk,

o s

) (¥ 47+ 1)[1 + 20(a) (n+1)]
(a;) I a(N +1)<n
@5  minp(fla) = p(Nla

(n+1)[(2) (N+1)+2c(a)(N+n+1)(N+”)]

at+N
2(N ?“;f) (¥ +n + 1) [L +2¢(a) (1 +1)]
a -+

In case when a(N +1) > n, h(B, a) reaches maximum at the greatest g,
therefore c.g.
(b;,) When a =n

9
(2.6) maxp(Bla) = p(Nin) = —— o,
B#kg 2(N+n+l)
a(N +1)—n

(¢,) If a +# ko and = k, and k is positive integer

n

(2.7) maxp(Bla) = p(kla)
Psky

(n+1)[(2)(;\') (N +1) +2¢(a) (¥ +n +1) (:’ :;)]

2(.N +n

atk
In case when k is not positive integer max p(8|a) reaches the greatest
k

Peky
value at 8 equal to [(N +1)/n] (here [(N +1)/n] denotes the integral part
of the real number (N +1)/n).

)(N+n+1)[1+2c(a)(n+1)]
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In case when the random variable 4 is uniformly distributed and the
random variable P has beta distribution, we introduce the following
notations

N
(2.8) I(B,a,N,n) = (ﬂ) (:) B(a+B+r+1, N+n—a—fB+8—r+1),
and by definition (g) =1,
_l_(ﬂ-}—l,a,lv,’n) ) (N+ﬂ)(a+ﬁ+r+l)
l(B,a, N,n) B J,—1)(n—a+l\/ B-- s—r)
By means of the formulas (1.34) and (2.8), we have

o c_(_iﬂ_(ﬁyo N, 0)+‘}l(ﬁya N, n)
(250 p(pla) = 4(B) + 2¢(a)l(0, 0,0,0,) +1(0, a, 0,n)

It is easy to see that for every g p(Bla) < p(kola), therefore
(2.11) maxp(fla) = P(kola)
s

(2.9) n(p) =

(N
‘k ) c(a)B(ko+7r+1,N—ky-+s—r+1)

=1+ — - I =
2¢(a)B(r +1, s—r+1)+‘[ )B(a+r+1,n—a+s—r+1)

i(n) (i)B(a+ko+r+1 N—ky+n—a+s—r+1)

2¢(a)B(r +1, 8—T+1)‘r( )B(a+r+1 n—a+s—r+1)

From (2.9) it follows that l(B,a, N,n) is an increasing function
(N +1)(a+7)
f B for e
of B for p< s
(ay) If (N +1)(a+r)<mn+8, U(B,a, N,n) is a decreasing function of B,
therefore when N # k,

(2.12) m;np(ﬂla) = p(Nla)

-1.

K c(a)B(N+r+1 s§—7r+1) "
2¢(a)B(r +1, s—r+1)+\ }B(a+r+1 yM—a+8s—r+1)

}(:) B(a+N+r+1l,n—a-+8—r+1)
3 P ’
2¢(a)B(r+1,8—r+1)+ I\:,B(a+r+1,n—a+s—r+1)
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(2.13) maxp(Bla) = p(0|a)
Bk

¢(a)B(r+1, N4+s8—r+1) +§(Z) B(a4-r+1,N4+n—a+8—r+1)

2¢(a)B(r+1,8s—7r+1) +(Z) B(a+r+1,n—a+s—7r+1)

(bg) When a+7r =n+s8, I(8,a, N,n) is an increasing function of 8,
therefore

{2.14) mi;lp(ﬂla) = p(0]a)

{a )
¢(a)B(r+1, N+s—r+1)+4}{:] B(a+r+1,N+n—a+s8—r+1)
; -

) - — )
2¢(a)B(r+1,8—r+1) —{—I\:) B(a+r+1,n—a+s—7r+1)
/

(2.15) maxp(fla) = p(N|a) (see the formula (2.12)).
Bk

(N +1)(a+7)

n+8
max!(B, a, N,n) = l(k, a, N, n). Hence
8

(cg) If a+7r #n+s and = k, where k is a positive integer

(2.16) maxp(Bla)
Brky

c(a) (f) B(k+r+1, N—k+s—r +1)+1}(:)(iv)

%(a)B(r +1, s—r+1)+(Z) Bla4+r+1,n—a+s—r+1)
Bla+k+r+1,N—k+n—a+s—r+1)

In\ :
2¢(a)B(r+1,s—r+1)+ {: | B(a+7+1), n—a +8—r+1)
/

When (N +1)(a+7)/(n +s) is not a positive integer I(8, a, N, n) reaches
its maximum at B equal to the greatest integer smaller then
(N+1)/(a+r)/(n+8).

3. A limit behaviour of p(p|a) probability

Now, we shall deal with the limit behaviour of p(f|a) probability.
We shall consider a limit behaviour of p(8|a) probability in case when
N, f are constants and a, » tend to infinity in such a way that #/a = constant,
and in case when %, a are constants, but 8, ¥ tend to infinity in such
a way that f/N = constant.
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For this purpose, we shall prove two theorens.

Theorem 3.1. If N, 8 are constants, a -~ oo and n — oo in such & way
that

(3.1) % = po = constant, (p, # 0, Py # 1), then
. B\ s e
(3.2) lim p(fla) = d(B) +a pm/.po%N )
Ppg=const.

where g = 1 —p,.
It is easy to see that if random variable A = constant = 1, we get the
formula (4. V) from [1].

Proof. The above limit ought to be computed

lim p(fla) = lim {d(ﬂ>+

Dgcotel’ Ha=consl
@y} P'e 1w sl () roerma
R Y H( )fp“ "*f(p)dp. 3

Taking into account that ¢(a) = 0 for a # k, we have

1
a(lg) [ pott gt Pf(p)dp
@3 lm p@w = lm {a@+ 21 .
Poconal. po=conat. 0f P°q"f(p)dp

In paper [1] it has been proved that

Ot

p gVt f (p)dp |

| = gl

(3.4) lim :
Dymconat [p"¢""°f(p)dp
0

—

under the assumption that f"’(p) is limited in the neighbourhood of point p.
Fiom (3.3) and (3.4) we have

lim p(Bla) = d(ﬂ)+a(l;) et~

Ti—e00
Po=consl.

What was to be proved.

4 — Annales
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Theorem 3.2. If n,a are constants, N —» oo, ff — oo in such a way
that

(3.5) % = p, = constant (p, # 0, p, # 1), then
(3.6) lim p(Bla) =0,
plzz—e:):st.

[ac(a) +a? (2) p‘,‘qi""]f“”(p,)
3.1) lm  (Np(fla) = 4
i ola)+a (%) [ w*arm)an

where ¢, = 1—p,, and P (p,) implies that f is a function of variable p
taken at the point p,.

Proof. From the (1.12)

1

lim p(Bla) = lim {ld(ﬂ) +
N-oo N-o ‘
P)=const, 5y =consl.

wtf) [ perrman () (7)) 2 ”“"”"“f(p)dp}

a(Z){?“q ~*f(p)dp +c(a)

Since d(f) = 0 for g # k,, therefore

lim p(Bla) = lim X
N— N-soco
P)=const, P)=const.

>(’mv(a)( )Ip’q”“‘f(p)dp +a’(ﬁ)() e ”"*"“'f(p}dp}'
\ c(a)+a( )jp" q"°f(p)dp

To compute the value of this last limit, it is necessary to determine
1 1
tim {(5) (%)) et sapf ana 1 |() [ o0t rran)
N-+oo B/\a N-oo I o
cons P)=const,

0
=
Taking into account that

tim {( )Ip¢+nq~+n_a—#f(p)dp}

N...w
=

= tim e e o)

N—=oo
Pp)=const.
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and

N+
D) =const. p)—const.

g N\.r N5 ko) !]; , ol
s {(ﬁ)oqu f{mdpj ‘ j}f;‘l;\.. [f?(p,) + 0N )]}

where 1/3 < o < 1/2 and f'”)(p,) denotes that f is a function of variable p
taken at the point p, (see [1]), we get

(3.8)
[ac(a) 4 a* (z) p‘:qi‘""] [P (p,) +O(N )]
lim p(fla) = lim J

N—oo N—oo l (L }'

D)= conal. P =const. N [0 (a) ta (Z),,f Paq"_af(.p)dp]

On the basis of the formula (3.8), it is easy to see that (3.6) and (3.7)
are satisfied, what ends the proof of the theorem.

Let us consider a limit problem in particular cases.

It is easy to sec that if random variables 4 and P are uniformly distri-
buted, then

(3.9) lim  p(Bla) = d(p) +%(g) 040 %
Dg=conasl.

\
2c(a)(n+1)+(:)(n+1)p‘1q1‘“
(3.10) P S S0(al (bl b 3

p)=const.

In case when the random variable P has the beta distribution and
the random variable 4 is as in above we have

(3.11) lim {Np(Bla)}
N-oo

py=const.

c(a)pig’ "+ %(Z) pitrgr et

2¢(a)B(r +1, 8—r+1)+'[z)B(a +r+1l,n—a+s8—r+1)

4. Expected values and variances

Theorem 4.1. Ezpected values and variances of random variables A,
and By are given by the formulas:

(4.1) EA, — naEP + kb,
(4.2) EBy = NaEP - kb,
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(4.3) EA% = naEP +n(n—1)akP? +kib,

(4.4) EB% — NaEP + N(N —1)aEP* 4 kb,

(4.5) A, = ab(k,—nEP)* +n’ac’P + an(EP — EP?),
(4.6) o* By = ab(ky— NEP)? + N*ac*P -+ Na(EP — KP*).

Proof. The probability law (1.5) and (1.6) allows to obtain in the
known way the mathematical expections and the variances of the random
variable 4, and By. To compute these characteristic still it will be more
convenient, to use of the formulas:

(4.7) E[E(A4,|P)] = EA,,
(4.8) E[E(A|P)] = EAZ.

In case being considercd E(A,|p) = nap +kyb. (It follows from 1.3).
Taking F(A4,|p) as a function of random variable P, we have

(4.9) E(A,|P) = naP +k,b.

Hence and from (4.7) we get (4.1). Similarly we prove (4.2).

Since E(Ai|P) = kib+naP +an(n—1\P?, thercforc on the basis of
(4.8), we get (4.3), what ends the proof of the theorem, as we derive (4.4)
similarly as (4.3) and the two left formulas follow immediately.

Now, we suppose that random variables 4 and P are uniformly distri-
buted. Then, the formulas (4.1) — (4.6) take on the corresponding forms:

(4.10) EA, = 7:— (n +2k,),
1
(4.11) EB, = T (N +2k,),
1
(4.12) EA: = ﬁ(2nil +n +6k3),
2 1 P 2
(4.13) EB% = E(21v + N 46k3),
Loysep. .
(4.14) oA, = E(&n +12K2 + 4n —12nk,),

1
(4.15) o*By = - (BN* +12K; + 4N —12Nk,).
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In case when the random vuariable 4 is as in above, but the random
variable P has beta distribution the formulas (4.1) — (4.6) are as follows:

n(r+1)
4.16 B — st WTTE ),
(4.16) s ks

o N(r+l)
(4-17) IzlfN = kl) -]_ 2,(8+2_)_’
1 n(r-+1) n(n—1)(r +2)(r+1)
4.18 BAZ = — J-
: ) 2 = 2(s8-+2) - (3 F3)(g+ 2y
(419) BB, = =@ 204l N —1)ir+2)(r+1)
. N o3> 2(8-+2) 2(8+3)(s+2) ’

(4.20)  o*An = 23 ko + It T ]
4 2(s +2)(8 -+3)
n(r-+1)(2s +4 nr—mn— 2kos—4ko)
4 TR
N(N—=1)(r +1)(r +2)
2(8+2)(8 +3)
N(r+1)(2s +4—Nr—N — 2kos—4ko)
4(s +2)°
It is easy to sec that in casec when P follows the rectangular distri-
bution or when P follows beta distribution the variances of random
variables A, and By are O(n?) and O(N?) order respectively.

1 2
(4.21)  o*By =K+

5. Conditional expected values and conditional variances

Theorem 5.1. Conditional expected values and conditional variances are
given by the following formulas:

(5.1) E(Byla) = NaE(Pla) + kb,
(5.2) E(B%ja) = Kb + NaE(P|a) +aN (N —1) E(P*a),
(5.3) o%(Byla) = ab(k,— NE(P|a))® +aN?¢?*(P|a) +
+aN [E(P|a) — E(P%(a)].
Proof. Taking into account that

N N 1
E(Byla) =ﬂ§:ﬂp(ﬂla) j:, f (BIp)f(pla)dp,
we get s

E(Byla) = [ E(Bylp)f(pla)dp = aNE(Pla) + keb,
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because by means of the formula (1.4) it is easy to see that E(By|p)
= Nap +kob. Now, taking advantage of fact that E(B%|p) = Nap +kib +
+ N (N —1)ap? we easly obtain the formula (5.2), which with (5.1) gives
(6.3). It is easy to see that formula (5.3) is similar to (4.6).

If the random variable 1 is uniformly distributed, and the random
variable P has the rectangular or beta distribution, then the above for-
mulas take on the corresponding forms

‘ Ty N(1+a)+Ne(a)(n+2)
(6.4) B(Byla) =5 kot 5 T2) T 0@+ D)in +2)°

i
(6.5) E(Bj}la) = 3 ky+

N Ne(a)(n +2)(n +3)[3 +(N —1)(n +1)]+3N (a +1)[1 +(N —1)(a +2)]
6[1+20(a)(n+1)](n +2)(n +3) ;

1
(5.6) E(Byla) = 5 kot

2¢(a)B(r+2,8—7r+1) 4 (:)B(a+r +2,n—a+8—7r+1)
N

-

o] =

)
2¢(a)B(r +1, s—r+1)+(2) B(a+r+1l,n—a+8—r+1)

1
(6.1)  B(Byla) = 7 K+

\
2¢(a)B(r+2, s—r—i—1)+(:)B(a+r+2, n—ats—r+l)
+=N b

+

|

fa Y
2(a)B(r+1,8—r+1)+ !‘:}B(a+r+1,n—a+s—r+1)

{m\
2¢(a)B(r +3, s—r+1)+(:;B(a+r+3,n—a+s—r+1)
 fnad |

1
+ 5 N(N-1) -
2¢(a)B(r+1,8—r+1)+ I(Z) B(a+r+1,n—a+s—r+1)
Since, for the random variable P uniformly distributed, by the formula
(1.20), we get
1+a+e(a)(n+2) .
2+4+n+2¢(a)(n+1)(n+2)°

2¢(a)(n +1)(n +2)(n +3) +3(a+1)(a+2)
3(1 +2¢(a)(n +1))(n +2)(n +3)

(5.8) E(Pla) —

(5.9)  E(P%a) —
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and for the random variables P having beta distribution take place
equalities

(5.10) E(Pla)

n
a

2¢(a)B(r+2, s—r+1)+( )B(a—+—r+2, n—a+8—r+1)

20(a)B(r+1, s—-r+1)+(

n '

a

)B(a+r+1,n—a+8—-r+1)

(6.11)  E(p?|a)

=

2¢(a)B(r+3,8—r +1)+( )B(a%—r+3, n—a+8—r+1)

a

?

=

20(a)B(r+1,s—r+1)+( )B(a+7‘+1, n—a+8s—r+1)

|

therefore we have (5.4) — (5.7).

Now, we shall deal with the variance of conditional expectation
E(By|A,) (we shall consider as a random variable assuming values
E(By|a)) and with the expected value of conditional variance o2(By|4,)
(we shall consider as the random variable assuming values ¢2(Byla)).

We prove thus the following

Theorem 5.2. The variance of conditional expectation is given by the
SJormula

(6.12) o?[E(Byl4,)] = a’ N2o?[E(P|A4,)],
and expected value of conditional variance by the formula
(56.13) E[¢*(BylA,)] = 0*By—a®N2g2[E(P|A,)].

Proof. The formula (5.12) casily follows from (5.1). Since E[o*(By| 4,)]
= 0*(By)—o?[E(Byl4,)] therefore taking into account (5.12) we
eagily get (5.13).

It is easy to see (by the formulas (5.12), (5.13) and (4.6)), that the
variance of the conditional expectation of the random variable B, and
the expected value of the conditional variance of B, tend to infinity
when the number N of experiments approaches to infinity and » is con-
stant. Speaking precisely they are of O(N?) order.

By virtue of (5.12) and (4.6), we obtain

. o'[E(By(4,)] ac®[E(P|A,)]
A
) ' *By EP*—aE?P °
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From the formulas (5.13) and (4.6), we have

. E[d*(Byl4,)] ao®[E(P|A,)]
: limpeis St s N Enb by, 70 aicn) L
(519 e Y Epi_amp

Now, let us suppose that the random variables 2 and P are uniformly
distributed. Then by (5.8) and (1.17), we obtain
(6.16) o*[E(P|4,)]
_ (n=3)(n42)(n +1) +12(ko + 1) [(n +1)* + By —nky]
24(n+1)(n +2)?

Taking into account that in this case EP = }, EP? = }, a = } and using
(6.14), we have

. ¢*[E(By|A,)]
(510 I,
(n 3)(n+2)(n +1)+12(ke+1)[(n +1)2+ kg — nko]

10(n +-1)(n +2)?
Let us notice, that in this case
| GE(Byl4)] 1

5.18 = —

(5:18) Nooo o*By 10’
E[o?(BylA 9

(5.19) lim —[U_(M Py Lol

Nosoo By 107

fi—»00

In the case when the random wvariable 4 is as in above, and the random
variable P has the beta distribution, by virtue of (5.10) and (1.27), we have

o ' n(r-}—l)(s—-r-i-l) :

...( ko+7r+1 ( )B(ko—i—r+1,n—ko+s—r+1)
n+8+2 2B(r+1,8—r+1)

+

y 17

B(r+2,s8— r+1)+( )B(L0+r+2 n—kyt-s—r+1)

| | . sy -1 X
B(r+1,8—r r1)+(},.-n\’ B(ky+r+1,n—ky+8—r+1)

o
o

_1J \B(lxo't r+1,n—ky+s—r+1)1
2‘5’ B(r+1,8—7r+1)

o |
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Further, since in this case

gp = T pp. _ FHDEHI)
842’ (s +2)(s +3)°
therefore by (5.14) and (5.15), we have
o [E(BylA n(s—r+1
(5.21)  lim o BB ( ) =
Nesoo By 2(n+8+2)(rs+7r+3s+5)

n\ B(ko+7+1,n—ko+8—r+1)(s+3) X(s+2)2[ko+r+1)’
“\ko)] 2B(r+1,8—r+1)(re +7+3s+5) r+1)\nts+2

(8 +2)2(8+3) [1__ Blko4+7r+1,n—Fko+s—r4+1)7 .
T (rt1)(rs+r+3s+5) [ 2 2B(r+1,s—r+1)

'B(r+2,s—r+1)+(;,')B(ko+r 8, by e —#£1)
0

X
n

B(r +1,8—7r+1) 4-(
_ ko

)B(I.'0 4 r+ly,n—ky+s—r+1)

Let us notice finally, that in case from the formula (5.21), we have

5.22) lim o*[E(BylA4,)] - (r+2)(s +2)
(®. Nosoo d’By C 2(rs+r+3s8+5)°

Hence, and from (5.15), we have

. E[0*(Byl4,)] rs +4s+6
(5.23) lim - .
N—s00 O'zBIv 2(1‘8—{—7—{-38—{-5)

6. The correlation coefficicnt between random variables 4, and B,.

Since by the assumption P(4,, By|P) = P(4,|P)-P(By|P), therefore

(6.1) E(ByA,) = E[E(A,|P)B(By|P)].
Now, taking advantage of (4.9), we obtain
(6.2) E(A,By) = nNa®EP? -+ bko(N +n)EP + b k;,

hence and by (4.1) and (4.2)
(6.3) Cov(A,, By) = EA,By— EA,-EBy = na*No*(P).

If the random variables 4 and P are uniformly distributed, then

1
(6.4) Cov(A4,, By) = ENn.
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In the case when the random variable 4 is as in above, and the random
variable P has the beta distribution, we have

Nn(r+1)(s—7r+-1)

6.5 Cov(4,, By) =
( ) OV( nI N) 4(8—}-2)2(8—*—3)
On the basis of (6.3), (4.5) and (4.6), we obtain
Cov(4,, By)
6.6 AV RS IT " wY N
naNo?(P)

- V[b(ko— nEP)? +n20?P +n(EP — EP?)]

1
X
V [b(k,— NEP)? + N2o*P + N (EP — EP?)]
Hence
(6.7) lim i $AD
: Neoo T4nBN T EPt_EARP: -

n—+00

It is easy to observe that if the random variables 4 and P are uniformly
distributed, then

nN
(6.8) 048y =
l/[5n2 +12ky(ky—n) +4n][BN2 +12ko(ko— N) +4N]
and
X 1
(6.9) lim 04By = 5
Neos ;

In the case when the random variable 4 is as in above, and the random
variable P has the beta distribution, we have

n(r+1)(s—7r+1)
VEE (s +2)2 + (ko8 +2ko—nr —n)2 +2n(r +1)(s —7 +1)
N

X
(s+3) l/kﬁ(s +2)2 4 (ko8 +2kg— Nr— N)2+-2N(r +1)(s—r+1) '
and

(6'10) QA"BN' -

s—r+1
6.11 lim =
( ) L QA”BN 3(T+3)+T+5 S
N-+c0

So we have proved the following
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Theorem 6.1. The covariance between the random variables A, and By
18 expressed by the formula (6.3) and it is directly proportional to n and N
as well, with the coefficient of proportionality equal to E2Aa2P. The correlation
coefficient of these random variables is expressed by the formula (6.6). When
Eid’P

n and N tends to infinity at the same time tends to ——————.
) CanBy EP'_ EAL*P

7. Remarks about applications

In a quality control of mass production the probability of getting k
bad pieces equal in a sample of #, is given by the Bernoulli formula

P(k) = (Z)p*q““*} k= 0,1,2,...,n (see [2]),

Such an approach refers to the majority of practical applications.
However situations cxist where an article is subjected for studing not
immediately after producing but after a certain period of time, for example
glass, tinned meat, eggs and many alike.

At that time the binomial distribution does not precisely reflect the
probability of number of bad picces, especially when k = 0. With the
regard to this fact, applying the inflated binomial distribution

1—5813¢" for k =0,
P(k) —
|8(:)p"q""‘ for k =1,2,...,m

seems be more substantiated in such cases.
This observation has also to be taken into consideration during a priori
construction of a distribution function.

In the paper [1] the possibilities of applying distributions p(a), p(8la)
1

to the quality control were indicated. The applying p(a) = (Z) [pq" " x
0

X f(p)dp is being suggested instead of P[A, = a|P = p] = (:) p°q¢" " The

reasons are given that the p(a) distribution is a theoretical model for
results of really collected samples from whole extension of production
process. On the contrary p(a|p) is a model for results of thought out
but practically not carried out sample replications from the same isolated
parcel.

The formulas from [1] can be applied in case when the control was
accomplished directly after the production cycle (or when the article
was not subjected to deterioration). The formulas from [1] will not preci-
selly reflect the investigated reality in case when the control is carried
out after a certain period of time, during which the number of pieces
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can increase. The number of bad pieces in sample, in such case, with
given p is described by the inflated binomial distribution with greater
accuraty and in case, when p and s are values of random variables P
and 2 respectively, by the distribution

1
1-— E}.-{—Elfq"f(p)dp for £k =0
P(k) =

A(")fp" n=kf(p)dp for k = 1,2,

Hence, the results given in this paper, in particular the formulas
determining p(a) and p(S|e) can have a similar application to the quality
control as the corresponding formulas from [1].
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STRESZCZENIE

Niech P i A bedg niezaleznymi zmiennymi losowymi przyjmujgcymi
odpowiednio wartosci p i s z przedzialéw (0, 1) i (0, 1). Niech dalej 4,1 By
bedg dyskretnymi zmiennyini losowymi takimi, ze

PlA, = a|P =p; A =

Il —§ -t x(;)p*ng”""". a =k,
0

= x'] ==

s(n) P g% a = 0,1,2, .,k =1, ky+ 15, oy n

o

PiBy =f|P = p;

Il "3'?"3(:)?%‘{\'"%9 B = ko,
A=38] = ’

N' r—
.”(Jﬂ)?ﬂq-\—#v B =0,1,2,...,k—1,k+1,...,N.
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W pracy rozpatruje si¢ uogélnione polgczenie zagadnicnia Bernoulliego
i Bayesa, ktore lgczy si¢ z poszukiwaniem rozkladéw lacznych, warun-
kowych i brzegowych wyzZej wprowadzonych zmiennych losowych. Po-
nadto zbadano asymptotyczne wlasnodei znalezionych rozkladéw oraz
wyznaczono ich charakterystyki. Rozwazono dwa szczegélne przypadki
rozkladéw zmiennej losowej P (jednostajny i beta). Podane wyniki moga
znalezé zastosowanie w statystycznej kontroli jakosei.

W przypadku szczegdlnym A = const. = 1, otrzymuje si¢ wyniki
podane w [1].

PE3IOME

Nycts P M A — HE3aBHCHMBIE CiydailHble BEJMYMHBI DPHHUMAOLUHE COOTBET-
CTBEHHO BeJaH4IHHBI p U s U3 npeaenos (0, 1) n (0, 1). Tlyctb 4, u By — OHCKpPETHbIE
CiyyailiHple BeJHIHHBI TaKHE, 9TO

1-—s -I-s(:)pkoq"‘ko, a =Tk,
«,

P[A,=a|P=p;1=38] =

n a -a ’
s(u)P " % a=0,1,2,..., k—1,k,+1,...n;

IJ. —8 48 (;\) pFogN %, g = I,
P(By = IP = p;d = 5] = :

N
S(ﬁ)p"q"’“’, B=0,1,2,...,k—1,k+1,...N.

B paGote paccmaTpuBaeTcs 00606u1eHHO-06beauHenHas npobiema Bepuynu
u Beileca, cBi3aHHasi ¢ HOMCKOM COBMECTHBIX, MapruiabHLIX H YCJIOBHBIX pacnpe-
OeNeHH TIPMBENEHHBIX BBIIE CIYYaWHBIX BejauduH. KpoMme TOro, HCCIeayroTCs
aCAMIITOMHYECKHE CBOMCTBAa HAHJEHHBIX pacnpeleNieHHi, a Takke ONPEAeaAIOTCH
MX XapaKTepACTHKH. PaccMaTpuBAalOTCA [Ba HaCTHBIX CiyYyas paclpenesicHuii Cly-
yajinoit BemuMHbpl P (mpsmoyrosibHoe H f-pacnpenenenue). IToydeHHBIE pe3yib-
TaThl MOFYT HaWTH NpHMEHEHHE B CTaTHCTHYECKOM KOHTPOJIE Ka4eCTBa.

B wacTHOM ciyyae A = const = | MOJIy4eHEI pe3yasTaTel paboTh [1].






